Supporting Disconnected Operation in a Mobile
Object System

Marco Thlio Valente?, Roberto Bigonha!,
Mariza Bigonha'! and Antonio Alfredo Loureiro!

Department of Computer Science, Federal University of Minas Gerais
%Institute of Informatics, Catholic University of Minas Gerais
Belo Horizonte, MG - Brazil
E-mail: {mtov,bigonha,mariza,loureiro}@dcc.ufmg.br

Abstract

With the increasing use of mobile devices to access the Internet anytime and anywhere, the
relevance of disconnected operation has emerged. Disconnected operation allows users to execute
applications during temporary failures in networks or when they explicitly decide to work off-line.
This paper presents a system, called Jamp, that uses mobile computation (or logical mobility)
to handle disconnections. Jamp has abstractions supporting the migration of groups of objects
and classes to other nodes of the network. In this way, programmers can push applications to
clients with code and data that makes disconnected operation possible.

1 Introduction

Nowadays, advances in wireless networks and portable hardware technology are making mobile
computing possible. Users carrying handheld devices, like personal digital assistants (PDAs), can
now access the Internet anytime and anywhere. In this new paradigm, disconnected operation is
a relevant requirement, i.e., users should be able to continue executing their applications during
temporary failures in the network or when they explicitly decide to work off-line [12]. The reason
is that wireless networks are subjected to higher error rates and larger bandwidth fluctuations
than fixed networks. In addition, voluntary disconnections are often requested by users to reduce
communication costs.

Previous works in distributed systems have showed that caching of data is a central idea to
disconnected operation [7, 8]. The reason is that cache can be used not only to improve performance
but also to enhance availability. However, in mobile computing systems it is important to send to
clients not only data but also code. In this way, it is possible to push to clients applications that
can execute in the absence of the network. For example, an e-business site can pro-actively send
applications that allow mobile users to choose off-line the item they want to buy. Similarly, a
conference reviewing system can push to the members of the program committee code and data to
support reviewing of papers in disconnected mode.

This paper describes a system, called Jamp, that uses mobile computation to handle disconnec-
tions. Mobile computation is the notion that the execution of a program need not be tied to a single
node of the network [4]. In Jamp, mobile computation is used to distribute to clients software that
can execute in disconnected mode. Thus, the system uses mobile computation (or logical mobility)
to handle the problems raised by the physical mobility of portable computing devices.

When compared to other mobile computation systems, Jamp shows differences related to the
mobility and communication model supported by the system:

e Mobility model: In Jamp there is an abstraction, called container, to the construction of
applications robust to disconnections. A container is a group of objects and classes that can
be pro-actively shipped to execution environments provided by nodes of the fixed network
or by mobile devices. In Jamp, these environments are organized into a two level hierarchy
in order to deal with disconnections that can constraint the migration of containers and to
support operation across several administrative domains.

e Communication Model: Jamp does not make use of any construction that requires continuous
connectivity or that creates “static bindings” that can restrict the migration of containers.

The remainder of the paper is organized as follows. Section 2 describes the programming model
supported by Jamp. Section 3 describes the system API and shows examples of its use. In Section
4, the implementation of the system is described. Section 5 reviews related work and Section 6
concludes the paper.

2 Programming Model

This section describes the mobility and communication constructions that exist in Jamp to deal
with connectivity failures in the Internet.

2.1 Mobility Model

The main construction available in Jamp is called container. A container is a group of objects and
classes that can be shipped to another node of the network. The system provides methods to create
containers and also to insert and remove objects and classes from containers. The option to move
objects and classes provides support to operation in disconnected mode since we can transfer in
a single operation all data and code that an application needs to execute. Once the transfer is
completed, the application no longer depends on the network to run. The programmer, however,
can make the choice to move only objects in containers when the destination node already has the
code to run the application. In this way, the network load is reduced.

In order to receive containers from other nodes, stationary computers or mobile devices should
provide a contezt to this execution, i.e., contexts are processes available in some nodes of the network
to receive and execute containers. In Jamp, contexts can also provide resources to this execution
like, for example, a data structure.

In the wireless Internet, however, it is not realistic to suppose that it is always possible to move
a container directly from any context A to another context B. The first reason is that B may be
running in a mobile device that is not connected to the network when the migration is requested.

And the second reason is that B can be in an administrative domain different from A and a firewall
protects access to B.

In order to solve these problems, the mobility model of Jamp organizes the contexts of the
network into a two level hierarchy. The first level is composed by system contexts and the second
level by user contexts. A system context is a service that can receive containers from other contexts
and then proceed in one of the following ways: start a new thread for the execution of the container
or store the container in secondary memory. The later case is chosen when the container is shipped
to a specific user of the system context. In the proposed model, system contexts should run in a
node that is always connected to the Internet and it should be possible to send containers to this
node from other administrative domains.

The second level of the hierarchy of contexts is composed by user contexts. Every user context
is associated to a system context and to a user of the application. From time to time, a user context
retrieves all containers shipped to its user that are stored in the associated system context. In Jamp,
however, the execution of containers in user contexts does not start automatically after downloading
them. In the system, the user has to explicitly request this execution using the graphical interface
of the user context. Since user contexts do not need to execute continuously neither need a reliable
connection to the Internet, they can run in mobile devices.

The mobility model of Jamp can be compared to the one used by electronic mail systems, which
is the oldest and most popular push application available nowadays in the Internet. By this analogy,
a container can be compared to an electronic mail, with the advantage that containers have code
and data and not only text. System contexts can be compared to mail servers and user contexts
can be compared to mail reader systems.

The mobility model of Jamp can also be compared to the one used by Java applets [1], which is
the most used mobile code application in the Internet. By this analogy, a system context is similar
to a Web server where applets are stored. A user context can be compared to a Web browser where
applets are executed and a container is similar to an applet. But, unlike applets, containers are
robust to disconnections, since they provide support to both code and data mobility. Containers
can also be pro-actively shipped to users in order to support the construction of push applications.
The communication model of Jamp, described in the next section, is also more flexible than the
sandbox model used by applets in Java.

2.2 Communication Model

In Jamp, objects communicate by calling methods, as usual in object oriented languages. A mobile
object, i.e., an object that is part of a container, can hold references to objects of the same container
and to objects of another container. Since in the Internet it is not possible to suppose continued
connectivity, references in Jamp can be in two states: connected and disconnected. The meaning of
these states is the following:

e A reference is connected when it references an object located in the same context as the object
that holds the reference.

e A reference is disconnected when it references an object located in a different context from
the object that holds the reference.

In Jamp, connected references can be used to call methods of the objects they reference. But
when a method is called using a disconnected reference, an exception is raised. Therefore, the

system uses references to name objects, but only connected references can be used to call methods
of the named object.

This is the fundamental difference between the communication model of Jamp and the one
normally used in distributed object systems, where proxies encapsulate access to remote objects.
However, it is only feasible to support transparent access to remote objects in environments with
low frequency of disconnections, like local area networks [4]. Moreover, proxies require non-official
TCP/IP ports for remote communication and firewalls usually forbid any network traffic through
these ports.

Contexts in Jamp can also provide resources to the execution of containers. A resource is a non-
mobile object and thus can not be added to any container. Resources have a name, given by the
programmer when the resource is created. Similar to references to mobile objects, a reference to a
resource can also be connected or disconnected. A reference to a resource with name n is connected
when there is a resource with the same name in the current context; otherwise, the reference is
disconnected.

Figure 1 gives an example of how connected and disconnected references work. In this figure,
a and b are references to mobile objects (represented by squares) and c is a reference to a resource
(represented by a diamond). In case 1, there is a container running in context P and the references
a, b and ¢ are connected. Case 2 shows the configuration of the system when the container moves to
context). In this new situation, references a and ¢ are connected but reference b is disconnected.
If the container returns to context P, case 1 is reestablished.

Context P Context Q

Resources ? Resources <>

Case 1: Container running in context P

Context P Context Q

Resources <> Resources

Case 2: Container was shipped to context Q

Figure 1: Connected and disconnected references

The communication model of Jamp allows objects in one container to hold references to ob-
jects in another container. Object sharing across containers is important to do not constraint the
implementation of mobile applications. If object sharing is not supported, cross container commu-
nication should use only copy-by-value semantics, which can be inefficient in some cases. Besides,
copy-by-value can make complex the distribution of mutable objects, i.e., objects whose state change
continuously, like application environment objects [2].

In Jamp, however, object sharing does not create “static bindings” that restrict the migration of
containers. The reason is that cross-container references have their state changed after migration.
For example, in Figure 1, the state of reference b changed from connected to disconnected after the
migration of the designated container.

3 Jamp API

Jamp implements in Java the programming model described in Section 2. The system is structured as
a package with the following classes: JContainer, JResource, JSystemContext and JUserContext.
3.1 Containers

In Jamp, containers are objects of the JContainer class, whose public methods are described in
Table 1'.

‘ Class JContainer ‘

JContainer (String description)

Creates a new container with a description about it
void addObj(Object obj)

Adds the specified object to the container

void addClass(String className)

Adds the code of the specified class to the container
void removeObj(0Object obj)

Removes the specified object from the container

void removeClass(String className)

Removes the specified class from the container

void move(String contextName, JStartObject start0Obj)

Moves the container to the specified context. The execution in the new context will
start by the method run of the specified object

static Object newObject(String className)

Creates a new mobile object of the specified class

Table 1: Public methods of class JContainer

In Jamp, mobile objects are created by the static method newObject of class JContainer and
not by the new operator of Java. Also the class of a mobile object must implement at least one
interface. References to mobile objects should be declared using one of these interfaces and not

!Exceptions are omitted from the methods for the sake of clarity.

using the class itself. As described in Section 2 such references can be in two states: connected or
disconnected. Moreover, in Jamp mobile objects can be in only one container at a time.

The following example shows the creation of a container and the instantiation of two mobile
objects of classes PaperImpl and ReviewFormImpl. Next in the code, these two objects, their classes
and a third ReviewFrameImpl class are added to the container. This third class can be used, for
example, to create an object remotely. Last, the move method is used to send the container to
another context.

JContainer container= new JContainer ("paper01");

Paper p= (Paper) JContainer.newObject ("PaperImpl");

ReviewForm r= (ReviewForm) JContainer.newObject("ReviewFormImpl");
container.add0bj(p) ;

container.add0bj(r);

container.addClass("PaperImpl");

container.addClass ("ReviewFormImpl");
container.addClass("ReviewFrameImpl");
container.move (" john@server.foo.br:5000", r);

The move method provides support to the so-called objective migration of containers, i.e., con-
tainers in the system can only be moved from the outside of the container [5]. Besides, since the
JVM does not support migration of threads, the move method only operates in containers that are
not active, i.e., no threads should be running in the objects of the container when the migration is
requested. Otherwise, an ActiveContainerException exception is raised by the move method. In
the design of the system the alternative solution of stopping all the threads running in the container
was not chosen because it could leave its objects in an inconsistent state.

The name of the destination context in the move method is specified in the format user@host:
port, where user is the name of the destination user of the container, host is the name of the
machine where the destination context is running and port is the number of the TCP/IP port
associated to this context. In order to start a thread for the execution of the container after its
arrival instead of storing it in disk, the name of the context in the move method should be specified
in the format host :port, i.e., without a user name.

3.2 Resources

A resource is a non-mobile object that provides services to containers running in a context. Re-
sources have a name and clients should know this name before using the resource. In Jamp, re-
sources are objects that implement the interface JResource. This interface only contains a method
getName () that returns a string with the name of the resource.

A client object can declare fields that are references to resources. These fields should be ini-
tialized with an object that stores the binding between the field and the designated resource. This
object is created using the static method newBinding(resourceInterface, resourceName) of
class JResBinding. In the following example, the fields buffer and calendar are references to
resources.

class A_Impl implements A {
BufferResource buffer;
CalendarResource calendar;

void init() {
buffer= (BufferResource) JResBinding.newBinding("BufferResource", "buffer01");
calendar= (CalendarResource) JResBinding.newBinding("CalendarResource",
"calendar2001");

In this example, the init method calls the newBinding method to initialize the resource fields
of the class with information about the resources accessed by them.

3.3 Contexts

In Jamp, contexts are created using the JSystemContext and JUserContext classes, as they are
system or user contexts. Table 2 shows the public methods of the JSystemContext class. The
JUserContext class has the same methods of the JSystemContext class, except the addUser
method.

‘ Class JSystemContext ‘

JSystemContext (int port)
Creates a new system context associated to the specified TCP/IP port

void addResource(JResource resource)
Adds the specified resource to the context

addUser (String name, String password)
Adds the specified user to the context

void run()

Starts the execution of the context

Table 2: Public methods of class JSystemContext

The next program creates a system context, adds two resources to it and then starts its execution.
public class ContextLauncher {

public static void main(String[] args) {
JSystemContext context= new JSystemContext(Integer.parselnt(args[0]));
BufferResource buffer= new BufferResourceImpl("bufferO1i",);
CalendarResource calendar= new CalendarResourceImpl("calendar2001",);
context.addResource (buffer) ;
context.addResource(calendar) ;
context.addUser ("john", "x2yz");
context.run();

In this example, after calling the run method the program enters in an infinite loop waiting for
containers.

4 Jamp Implementation

Jamp was implemented in Java, using JDK 1.3 and the system has about 2000 lines of code. The
basic construction used in the implementation of the system is called mediator. A mediator is an
internal object used by the system to support container migration and also to support the notion
of connected and disconnected references. Every mobile object in Jamp has a mediator, which is
created at the same time as its mediated object by the newObject method. A mediator has two
fields: guid and ref. The guid field stores a value that uniquely identifies the mediated object
in any node of the network. This value is the result of the concatenation of the IP address of the
machine on which it was created and a value that is unique in this machine across time. The second
field of a mediator, called ref, is the only reference that exist in the system to a mobile object since
the newObject method returns a reference to the mediator of the created mobile object and not to
the mobile object itself. Figure 2 shows a container from the programmer’s point of view and the
same container as implemented by the system, with mediators represented by circles.

Figure 2: Container in the programmer’s view (a) and its internal implementation (b)

Since the newObject method returns a reference to the mediator of a mobile object, any call
using this reference will first execute a method in the mediator. Therefore, mediators must imple-
ment all the methods in the interfaces of their mediated objects. The mediator implementation
of these methods should first check the value of the ref field. If this field has a non-null value,
it should redirect the call to the mobile object. Otherwise, it should raise an exception of type
UnavailableObjectException. Thus, in the implementation of the system a connected reference
is a reference to a mediator that has a non-null mediated object. And a disconnected reference is a
reference to a mediator with a null mediated object.

Suppose that we want to send a container ¢ = {(m1,01), (m2,02), ..., (my,0,)} to a context d,
where each o; is an object of the container and m; is the mediator of this object. First, we create
a serialized representation of the container, using a modified implementation of the serialization
mechanism provided in Java. In Java, the serialization of an object p includes the object closure of
p, i.e., all the objects that are reachable from p fields. In the implementation of Jamp we change
this mechanism in order to restrict the serialization of a container to objects that are included in
this container. Basically, the modified version of the serialization mechanism uses the reflection
features of the language to void any field in the container that references external objects. After
this first step, the method can thus call the default serialization method since the object closure of

the container will not contain anymore external objects.

Suppose now that the destination context d receives the previous container c. First, this context
should de-serialize the representation of c¢. In this process, the destination context uses a class
loader different from the default class loader of Java [10]. The class loader used by the system is an
instance of the class JampClassLoader. Usually, the default class loader retrieves the code of the
classes of a program from the file system of the workstation where the program is running. However,
in Jamp the code of a class can be part of a container and thus we need a customized class loader
that can retrieve classes not only from local file systems but also from the serialized representation
of containers.

Mediators are also used to check if a container is active or not. A container is active if there is
at least one thread running in its objects. In Jamp, when a method is called, the mediator of the
called object increments a counter of calls in execution in the associated container. Before returning
from the call, the mediator decrements this counter. The move method checks this counter and
raises an ActiveContainerException if it is greater than zero.

Mediators are generated in Jamp using the notion of dynamic prozy class that is part of the
reflection package of JDK 1.3. A dynamic proxy class is a class that implements a set of interfaces
specified at run-time [1].

5 Related Work

Mobility is gaining momentum in the design of Internet programming languages. Java [1], for
example, has propagated the notion of code mobility in the Internet. Code mobility allows the
execution of the same application in different nodes of the network, despite the architecture and
operating system of them. But since applets depend on the network to get access to data, the model
is not robust to disconnections.

Recently, mobile agents were proposed as an alternative model to the construction of distributed
applications in the Internet. A mobile agent is a program that can migrate by the nodes of the
network, carrying the state of its execution [17]. Aglets [9], Ajanta [14], D’Agents [6], pCode [11]
and JavaSeal [3] are examples of Java mobile agent systems.

In Aglets and Ajanta, mobile agent classes are implemented by inheriting from a pre-defined class
that comes with these systems. Since Java does not support multiple inheritance, this solution can
restrict reuse of code in mobile agents. Moreover, in both systems, the default Java serialization
mechanism is used to transfer an agent and all the objects reachable from it. In Ajanta, after
migration, the code of the agent is downloaded on demand from a code base server. Thus, the
system is not robust to disconnections. In Aglets, code can be downloaded on demand, but it is
also possible to store classes in a JAR file that is transfered along with the agent. This mechanism,
however, requires the set of classes to be defined in deployment time and it is not possible to change
this set during the agent life. Unlike Aglets and Ajanta, D’Agents provides support to strong
mobility using a modified JVM to capture the full control state of an agent.

In pCode, there is an abstraction, called group, to define the set of objects and classes that
is transfered with an agent. The system, however, does not provide support to communication
across groups. Thus communication primitives should be implemented at the application level.
JavaSeal also provides an abstraction, called seal, to the implementation of mobile agents. Similar
to containers, seals have a set of objects and classes. The programmer, however, can not add or

remove classes from seals. In JavaSeal, synchronous message passing via channels is the only inter-
agent communication mechanism that exist. Values exchanged over channels are transmitted by
deep copy and sharing objects is not allowed across seals. In some mobile applications, this can be
inefficient and cumbersome [2]

The notion of containers, contexts and resources were first defined in [15]. In the present paper
we describe a system that implements the proposed abstractions in Java. The present paper also
introduces the notions of system and user contexts and connected and disconnected references. The
style of mobility supported by Jamp is also inspired in some process calculi proposed recently to
model mobile computation in the Internet, like the Ambient Calculus [5] and the Seal Calculus [16].

6 Conclusions

This paper has presented a mobile object system, called Jamp, that supports the construction of
Internet applications that can run in disconnected mode. There are three abstractions in Jamp to
support disconnected operation: containers, contexts and disconnected references.

A container is a group of objects and classes that can be pro-actively shipped to execution
contexts provided by nodes of the network. Thus Jamp supports the construction of applications
that can be pushed with code and data to their users and thus execute in disconnected mode. This
requirement is specially relevant in Internet applications for mobile devices, since wireless networks
are susceptible to temporary interruptions of bandwidth and also to voluntary disconnections.

The mobility model used in Jamp organizes the execution contexts of the network into a two-
level hierarchy. In this way, the system supports the construction of applications that do not rely
on continued connectivity to move and that can execute in several administrative domains. The
system also uses the notions of connected and disconnected references to support object sharing
without restricting the migration of containers.

Jamp was used to implement part of a conference reviewing system. As future work, we intend
to transform containers into protection domains. In this way, we intend to address the security
properties that are relevant in any application that executes in an open network like the Internet.
We also have plans to implement a cut-down version of the system in the K Virtual Machine (KVM),
the VM designed to run in small mobile devices [13].

References

[1] K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language. Addison Wesley, 3rd
edition, 2000.

[2] C. Bryce and C. Razafimahefa. An approach to safe object sharing. In ACM Conference on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA), Oct. 2000.

[3] C. Bryce and J. Vitek. The JavaSeal mobile agent kernel. In First International Symposium on
Agent Systems and Applications and Third International Symposium on Mobile Agents, 1999.

[4] L. Cardelli. Abstractions for mobile computation. In J. Vitek and C. Jensen, editors, Secure
Internet Programming: Security Issues for Mobile and Distributed Objects, volume 1603 of
Lecture Notes in Computer Science, pages 51-94. Springer-Verlag, 1999.

10

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

L. Cardelli and A. Gordon. Mobile ambients. In M. Nivat, editor, Foundations of Software
Science and Computational Structures, volume 1378 of Lecture Notes in Computer Science,
pages 140-155. Springer-Verlag, 1998.

R. S. Gray, G. Cybenko, D. Kotz, and D. Rus. D’Agents: Security in a multiple-language,
mobile-agent system. In G. Vigna, editor, Mobile Agents and Security, Lecture Notes in Com-
puter Science, pages 154-187. Springer-Verlag, 1998.

J. J. Kistler and M. Satyanarayanan. Disconnected operation in the coda file system. ACM
Transactions on Computer Systems, 10(1):3-25, Feb. 1992.

G. H. Kuenning and G. J. Popek. Automated hoarding for mobile computers. In 16th ACM
Symposium on Operating Systems Principles, pages 264-275, 1997.

D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with Aglets.
Addison-Wesley, 1998.

S. Liang and G. Bracha. Dynamic class loading in the Java Virtual Machine. ACM SIGPLAN
Notices, 33(10):36-44, Oct. 1998.

G. P. Picco. puCoDE: A Lightweight and Flexible Mobile Code Toolkit. In Proceedings of
Mobile Agents: Second International Workshop, volume 1477 of Lecture Notes on Computer
Science, pages 160-171. Springer-Verlag, Sept. 1998.

M. Satyanarayanan. Fundamental challenges in mobile computing. In ACM Symposium on
Principles of Distributed Computing, May 1996.

Sun Microsystems. Java 2 Plataform Micro Edition Technology for Creating Mobile Devices,
May 2000.

A. Tripathi, N. Karnik, M. Vora, T. Ahmed, and R. D. Singh. Ajanta - a mobile agent
programming system. Technical Report TR98-016 (revised version), Department of Computer
Science, University of Minnesota, 1999.

M. T. Valente, R. Bigonha, A. A. Loureiro, and M. Bigonha. Object oriented languages with
abstractions for mobile computation. In FElectronic Notes in Theoretical Computer Science,
volume 38. Elsevier Science. (to appear).

J. Vitek and G. Castagna. Seal: A framework for secure mobile computations. In H. E. Bal,
B. Belkhouche, and L. Cardelli, editors, Internet Programming Languages, volume 1686 of
Lecture Notes in Computer Science. Springer-Verlag, 1999.

J. E. White. Mobile agents. In J. Bradshaw, editor, Software Agents, pages 437-472. AAAI
Press/MIT Press, 1997.

11

