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Abstract

This article describes a novel approach to compiler generation, based on monadic
combinators. A prototype of a compiler generator, called Mimico, is described,
that handles infinite look-ahead and left recursive context free grammars, and
dyadic infix operator precedence and associativity. Novel ideas and the general
principle from which this work has been based are presented, as well as limitations
of Mimico and a comparison with related work.

1 Introduction

This article describes a prototype of a monadic combinator compiler compiler, called
Mimico. Mimico can work with left recursive context free grammars and allows for an
easy specification of precedence and associativity of dyadic infix operators.

Some familiarity with functional programming and the language Haskell[Bir98, Hud00]
is assumed, as well as with monadic programming|Wad92a, Wad90, Hut92, HM96].

Section 2 describes the input, output, overall behaviour and structure, as well as
the general principle behind Mimico, by means of simple examples. Subsequent sections
discuss the treatment of left recursion, and operator precedence and associativity, re-
spectively. Section 5 synthesizes limitations of Mimico and of compiler generation based
on the use of monadic combinators in general. Section 6 provides a comparison with
related work. Section 7 concludes.

2 Overview

Mimico is a Haskell program prototype comprised of four modules, together with module
Parser from the combinator library Parsec[Lei00].



e Grammar contains type defintions and functions for treating context free gram-
mars (first, follow and other related functions).

e Prod is responsible for reading the input file and generating the context free gram-
mar description, with associated semantic rules, as defined in module Grammar.

e [nfo checks input validity and collects information needed for compiler generation.

e Mimico contains the main routines for compiler generation, taking the result of
the grammar description, annotated with data generated from module Info.

Module Parser defines usual parsing combinators (many, manyTill, choice and oth-
ers), parsers for lexical analysis (i.e. character parsers like letter, digit, lower, upper,
space, spaces, char, anyChar and string), and functions for the support of better er-
ror message reporting (mainly <?>; see [Lei00]). The primary reason for using Parsec,
instead of another combinator library, was support for error handling (see [Lei00]). How-
ever, programs generated by Mimico use another set of combinators, taken from [Bir98],
because Parsec’s parser type does not provide support for nondeterministic parsing (see
below).

As is well-known[Wad92b, Hut92, Wad90, HM96], a monadic parser can be viewed
as a function that takes a string as input and yields a list of pairs: the first component
represents the result of parsing the consumed part of the input string, and the second
component represents the unconsumed part of the input after parsing.

Taken into account this definition, our approach to compiler generation is based on
the following basic informal rule:

Alternatives for a given nonterminal are parsed according to their textual
order in the input file, meaning that those that should occur at higher levels
of the generated parse tree should be written before those at lower levels.

We can refer to this rule as “first alternatives higher in the parse tree” (or, simply, first
alts higher). Consider, as an example, the following simple input grammar:

{ "yes" }
A { yes )

pop

Mimico does not require the user to explicitly distinguish terminals from nontermi-
nals, neither to specify which is the initial nonterminal symbol. Nonterminals are those
symbols which appear in the left hand sides (lhs) of the input grammar, and the initial
nonterminal is the nonterminal at the lhs of the first production.



Productions finish according to a layout rule: a next production has the same in-
dentation as its previous one. The first = occurs after the non-terminal, and symbol |
indicates the start of an alternative and should occur in the same column as the first =.

This simple grammar should not be given as input to Mimico, on intent of generating
a program that outputs "yes" when given as input a sequence of a’s, and fails (issuing
an error message) otherwise. The program generated by Mimico for this grammar will
successfully parse all the input only if this input consists of a unique symbol a.

The input grammar for a* can be written as follows:

=

{ yest )
{ yes )

PP

The parser for the first alternative tries to parse more than one a. If it fails, the
second alternative is tried. Given this input, Mimico generates the following:

import Parser
compile = apply al

al = do symb "a"
al <- al
return "yes"
<|> a2
a2 = do symb "a"

return "yes"

Monadic parser generation involves the simple general idea of syntax-directed recur-
sive descent parsing: a parser is written for each production, which is a combination
of parsers for its constituent symbols. A monadic compiler is formed by simply follow-
ing the corresponding monadic parser by a (monadic) return action. This return has
as parameter the Haskell code that constitutes the semantic rule (possibly with some
adaptations, as we will see in the sequel).

In the above example, compilers al and a2 correspond to each alternative of the
production, whose lhs is nonterminal A. The names of each compiler are generated from
the name of the nonterminal at the lhs, followed by the alternative number. If, as in
this example, the nonterminal starts with an upper case letter, Mimico tests whether
there exists a nonterminal with the same name, but with the first letter changed to



lower case (since function names may not start with an upper case letter in Haskell);
if this new name is not already used as the name of another nonterminal, it is chosen
as the compiler name; otherwise, character ’_’ is introduced before the name of the
nonterminal to form the compiler name.

The parser for a terminal symbol s is one of the (usual) lexical analysers string s
or symb s. Which one depends on the following. We call lexzeme a grammar symbol
that may be followed by white spaces (i.e. either blanks, newlines or tabs), and use the
following conventions:

e if the name of a nonterminal symbol starts with a lowercase letter, then it is a
lexeme. For example, in the right hand side (rhs) e + e, nonterminal symbol e is
a lexeme, and in the rhs a A, nonterminal symbol A is not.

e if a terminal symbol is followed by another terminal or by a nonterminal which is
a lexeme, then it is a lexeme. For example, in the rhs e + e, terminal symbol +
is a lexeme, and in the rhs a A, terminal symbol a is not.

Combinator <[> implements nondeterministic choice: p <[> q applies both p and
q and appends their results. Lazy evaluation is clearly important here, for the sake of
efficiency. Nondeterministic parsing is not needed in most cases, but it allows the use of
some non-predictive (not LL(k)) grammars, as in the example at the end of this section.

apply is the simple monadic deconstructor (or “run”) function; that is, the result of
apply (Parser p) s is the first component of the resulting list given by p s.

The semantic rules, specified after each rhs of an alternative, can be used, of course,
for more interesting purposes, other than merely specifying a (kind of) language recog-
nizer. In the next example, we count the number of a’s in the input sequence:

import Parser
compile = apply al

al = do string "a"
A=aA{1+4A} a_1<_ga1
return + a_
la {1] (1+ail)
<|> a2
a2 = do { string "a"; return 1 }

The variable that receives the result of the compilation and the compiler names
corresponding to nonterminal A are, respectively, al and a_1.

Mimico adopts the following simple conventions for the specification and interpreta-
tion of semantic rules:



e the absence of a semantic rule is interpreted in the same way as one textually
identical to the rhs. Briefly, no semantic rule means (semantic rule = rhs).

e if a nonterminal v occurs more than once in a rhs, each occurrence is distinguished
in the semantic rule by specifying subscripts v_1, v_2 etc., where the subscripts
(which must be numbers) refer to the order of occurrence of v in the rhs.

For example, production e = e + e { e_.1 + e 2 } specifies e_1 as the result of
the compilation of the first occurrence of nonterminal e in the rhs, and e_2 as the
result of the compilation of the second occurrence of e.

e if a nonterminal v occurs more than once in a rhs and a subscript is not used in the
semantic rule to distinguish distinct occurrences of this nonterminal, as explained
above, than these occurrences in the semantic rule are interpreted as numbered
from 1 upwards, according to its textual order of occurrence in the semantic rule.

For example, e = e + e { e + e }isequivalent toe = e + e { el + e 2 }.
Productione = e + e { e + e + e }isincorrect (an error is detected when this
production is included in an input grammar). Productione = e + e { e.1 + e
+ e2 + e}isequivalenttoe = e + e { el + e.1 + e 2 + e.2}.

We present next a final introductory example, that illustrates the use and need for
nondeterministic parsing, that allows infinite look-ahead (non-predictive) grammars as
input. The example is of a simple grammar for recognizing palindromes:

P = Char P Char { Char == Char }
| Char { True }
| epsilon { True }

Char and epsilon are reserved nonterminals, representing any symbol and an empty
rhs, respectively. The program generated by Mimico is shown in Figure 1.

The use of the nondeterministic choice operator <|> allows input strings such as aa
to be parsed successfully. Parsing this input involves a “backtrack”, on the recursive
call to p1. The first call to p1 consumes the first input symbol a before calling p1 again.
This recursive call suceeds, returning the list of sucessful parses [("a",""), ("","a")].
Of these, the first does not originate a successful parse for the first call to p1; but the
second (after a “backtrack”), in which no input is consumed on the recursive call, does
originate a successful parse of the input.

The next sections describe the ideas that enabled us to develop Mimico’s handling
of left recursion (Section 3) and operator precedence and associativity (Section 4).



import Parser
compile = apply pil

pl = do char_1 <- sat (const True)
p-1 <- pl
char_2 <- sat (const True)
return ( char_1 == char_2 )
<|> p2
p2 = do char_1 <- sat (const True)

return True
<|> return True

Figure 1: Nondeterministic parsing handling an infinite look-ahead input grammar

3 Left Recursion

Since monadic parsing is based on a recursive descent technique, one might expect that
left-recursive productions are not allowed as input (because they would cause monadic
parsers to go into an infinite loop). Furthermore, one could also think that it would
be natural to take into account the usual argument that left-recursive grammars can
be rewritten to an equivalent non-left-recursive grammar. However, this is not a strong
argument in the case of a compiler generator, since the non-left-recursive grammar may
not be so simple to specify as its left-recursive counterpart, specially with respect to the
semantic rule, which may also turn out to specify a less efficient algorithm (see below).

Consider as a first example the following left recursive grammar, describing the
language {ab*}:

X=Xb{X+1}
la {0}

The semantic rules specify the output to be the number of b’s in a given input. Given
this input grammar, Mimico generates the program shown in Figure 2.

In this example, left recusion is eliminated by using essentially the standard left-

recursion elimination algorithm for context-free grammars[AVAU86]. We'll see in Section



import Parser
compile = apply x1

x1 = do _b_1 <- _bil
x’_1 <- x’1
return ( let f z x =z + 1 in foldll £ ( b1 : x’1 ) )

-bl = do { string "a"; return O }
x’1 = do _undef_ 1 <- _undefl

x’_1 <- x’1

return ( _undef 1 : x’.1 )

‘orelse‘ return []

—undefl = do { string "b"; return undefined }

Figure 2: Example of program generated from a left recursive grammar

4 that left recursion is not always handled with this approach, with the aim of simplifying
the specification of the input grammar, operator associativity in particular.
Because of semantic rules, left recursive productions must have the simpler form:

A=A Rz' { ST; }
Y { st }
where A R;{sr;} is an abbreviation for alternatives A Ri{sr;} | ... | AR,{sr,} and anal-

ogously for b;{sr’;}, each R; is a sequence of symbols containing at least one symbol and
at most one nonterminal symbol, and each b; is any sequence of symbols not beginning
with A. Formally R; = uS;v or R; = w, where u,v € ¥*, w € ¥, S; € V, ¥ is the set of
terminal symbols and V' the set of nonterminal symbols.

Semantic rules not withstanding, it is trivial to transform any context free grammar
into this form; this restriction is relevant only with respect to the requirement that
semantic rule sr; be written with respect to A and S; (fori =1,... ,m).

This left recursive form is converted to the following (fori =1,... ,n,j7=1,... ,m),
where abbreviations are used similarly as before:



A =B A { code; }
B =D { sr'; }

A’ =S A { s:a}
| epsilon { [I }

S; = R {s;}

where A’ and B and each S are fresh nonterminal symbols, and, for each i, code; is
given by (where sr[B/A] denotes the string obtained from sr by subsitituting B for A):

foldll £ (B: A’)
where f z x = sr; [z/A, x/S;]

Also note the following: for each j, when {b;} consists of a single nonterminal,
production B = b; is not needed; for each 7, when R; is a single nonterminal, produc-
tion S, = R; is not neeeded and, furthermore, when R; = w (that is, there exists no
nonterminal after the left recursive nonterminal A), S is (set to) undefined.

This translation, with the use of foldl1, can be seen as a formal specification of
the semantics of semantic rules for left-recursive grammars. Informally, the input is
parsed and the results of compilations are collected into a list, say [. The basic point
to note is that the semantic rule of the i-th alternative, in the original left-recursive
grammar, considers the list of results [ as given by [ Ay, ..., Ax, S; 1, where Ay, ...,
A, are the results of compilations of the left-recursive nonterminal A. Therefore, folding
over this list to obtain the desired compilation result is given by foldl11 f 1, where £ is
defined as above. This list is formed, in the non-left-recursive grammar, by successively
applying the right-recursive productions of A" after the base case given by B. The base
case corresponds to applying one of the productions b, for some j € {1,...,m}.

The next example illustrates that left-recursion may indeed simplify the specification
of the semantic rules. The following grammar transforms binary into decimal notation:

L=LB { B+ 2xL }
| B

B = {o}
| 1 {1}



import Parser
compile = apply 11

11 = do b_1 <- b1l
1.1 <- 11
return ( let f z x = x + 2 * z in foldll £ ( b_1 : 1’1 ) )

1’1 = do b_1 <- bl
1.1 <-1°1
return ( b1 : 1°_.1)
<|> return []

bl = do { string "O"; return 0 }
<|> b2
b2 = do { string "1"; return 1 }

Figure 3: Program generated for converting binary to decimal notation

Note that again no semantic rule is needed for the second alternative of nonterminal
L (no semantic rule means semantic rule = rhs). Mimico generates the program shown
in Figure 3 for this grammar. Left recursion not only simplifies the semantic rule in
this case; it also leads to the generation of more efficient code. Compare with the
right-recursive alternative:

L=BL { (B *2"(snd L) + fst L, snd L + 1) }
| B { B, 1}

B =0 {0}
| 1 {1}

4 Precedence and Associativity

Consider now the following archetypical left-recursive grammar for arithmetic expres-
sions (we use only the symbols +, - and * for brevity):



B ® © O
*
o

n is a reserved meta-variable, denoting an integer numeral lexeme. Note the absence of
semantic rules (no semantic rule means semantic rule = rhs).

Given this concise input, Mimico generates the expression evaluator shown in Figure
5 (with program header removed, for brevity). We will look at this program in a mo-
ment; before doing so, however, let us examine a simpler expression evaluator program,
generated for the following similar input:

The dots inserted in this grammar indicate right-associativity of dyadic operators.
The grammar specifies also, according to the first alts higher rule, that + has the lowest
precedence, then - and finally *. The program generated is shown in Figure 4.

Each of the little compilers el to 5 correspond to an alternative of the input gram-
mar. Compilers el, €2 and e3 are parameterised, to control operator precedence. The
parameter indicates a list of terminals that should not be parsed successfully, because
they should be parsed using a parser of lower precedence level. Right-associativity
follows directly, in this scheme. Left-associativity, the default, is based on the same
parametrization scheme but uses left-factoring (see Figure 5).

It is possible to “override” the first alts higher rule and specify that infix operators
should have the same precedence, and left or right associativity. For example:

e=¢e+e e=¢e+e

= e - e =l e - e

| e *x e | e *x e

| n | n

| (e {e} | (e) { e}

10



Figure 4: First alts higher and right associativity
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el s = do e_1 <- token $ e2(["+"] ‘union‘ s)
op <- if "+" ‘elem‘ s then zerop else do symb "+"; return (+)
restl s e.1l op
<|>e2 s

restl s e_1 op0 = do e2 <- token $ e2(["+"] ‘union‘ s)
op <- if "+" ‘elem‘ s then zerop
else do symb "+"; return (+)
let opnd = op0 e_1 e 2
restl s opnd op
<|> do e_2 <- token $ el s
return ( op0 e_1 e 2 )

e2 s = do e.1 <- token $ e3(["-"] ‘union‘ s)

op <- if "-" ‘elem‘ s then zerop else do symb "-"; return (-)
rest2 s e_1 op
<|> e3 s

rest2 s e_1 op0 = do e_2 <- token $ e3(["-"] ‘union‘ s)
op <- if "-" ‘elem‘ s then zerop
else do symb "-"; return (-)
let opnd = op0 e.1 e 2
rest2 s opnd op
<|> do e2 <- token $ el s
return ( op0 e_1 e 2 )

e3 s = do e_1 <- token $ e4

if "#" ‘elem‘ s then zerop else string "x*"
e_2 <- token $ el s
return ( el * e 2 )

<|> e4

e4 = do { n1 <- token (some (sat isDigit)); return ( read n1 ) }
<|> e5b

e5 = do { string "("; el <- token $ el []; string ")"; return e 1 }

Figure 5: Left factoring for left associativity
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Symbols |= and =| mean left and right associativity, respectively, with respect to
the operator in the previous alternative.

The programs generated in these cases differ only slightly from the corresponding
ones above (for left and right associativity, respectively), as shown in Figure 6. Compilers
for alternatives with same precedence are coalesced into a single one, and the arguments
passed to compilers for the next alternative are the union of the current list with the
list of terminals with same precedence (cf. Figure 4).

Similar programs are also generated if a nonterminal is used in the place of the infix
operators, as in the following grammar:

e =eope {opee}
| n
| (e) {e}
op = +
|_
| *

5 Limitations and Further Work

Mimico is still a prototype. What is mostly needed is better error handling and report-
ing. In the current implementation, if the input is syntactically wrong, the program
simply halts, issuing a simple error message. There is not yet any mechanism that
enables the user to specify specific error messages for certain kinds of input.

Another aspect is related to providing the possibility for the user to override the
first alts higher rule, for example, for allowing ambiguous nested dangling elses to be
associated to the outermost conditional expression (or command).

Further work includes analysis of the runtime efficiency of programs generated by
Mimico, with a comparison with other compiler generators, like e.g. Yacc[LMB92] and
Happy[GMOO0].

6 Related Work

A lot of work has been done on compiler generators|LMB92, Lee89, MMO00, GMO0O].
We have not yet done any performance comparisons with well-known generators like
Yacc|[LMB92] and Happy[GMO00], because Mimico is still in its infancy. Our main moti-
vation up to now has been to show that it is possible and worthwhile to generate simple

13



Figure 6: Same precedence and right associativity
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and readable monadic compilers automatically, from an input grammar, written in a
clear way and without the need to separately specifying lexical analysers. We expect
the generated compilers to be reasonably efficient, in comparison to (say) Happy. This
will not be surprising, since monadic parsing and lexers are known to be fast, with run-
time efficiency comparable to parsers generated by Happy, which are based, as parsers
generated by Yacc and many others, on the LALR(1) parsing technique.

One particular point has encouraged us to do this work with enthusiasm. Mimico
input grammars and output programs are remarkably simple and readable, in compar-
ison to those produced by Yacc and Happy, and this is not because our examples are
small. We are confident and will emphasize this aspect as we see Mimico getting older
and smarter.

Another point that is well worthwhile pointing out is the fact that Mimico allows as
input grammars that are non-predictive (i.e. not LL(k), for any k). For example, the
simple grammar for palindromes presented at the introduction would not be accepted
by Yacc or Happy.

A simple and interesting question — for which we do not yet know the answer
— is which condition should input grammars satisfy such that its parsing (in general,
and, also, using our parsing scheme generation in particular) requires the use of a non-
deterministic parser combinator? Note that deterministic parser combinators can be

used (by Mimico) to parse even some non-predictive grammars, such as, for example,
{a™0b*} U {a"1b"}.

7 Conclusion and Further Work

We have described a novel approach to compiler generation, based on monadic combina-
tors, and have described a prototype implementation, called Mimico. As far as we know,
this is the first compiler compiler based on monadic parsing. We have presented the
general principle (first alts higher rule) and the ideas on which this work has been based
(the scheme for supporting left recursive input grammars, parametrization of compilers
as a way of handling operator precedence and associativity, and the use of nondeter-
ministic parsing to allow non-predictive grammars as input). Noticeable contributions
of Mimico, when comparing with other related work, is the clarity and readability of
Mimico’s input grammars and output programs, as well as the fact that Mimico accepts
as input and generates programs that are able to parse even non-predictive grammars.
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