Adapting Web Contents to WAP Devices using Haskell

Pedro Ivo Oliveira and Carlos Camarao
DCC, UFMG, Brazil
{camarao, ivo}@Qdcc.ufmg.br

August 21, 2001

Abstract

This work describes an implementation of a sys-
tem for adapting the contents of HTML Web pages so
that they can be shown adequately in mobile devices
with WML microbrowsers. The article reports on the
experience of using a lazy functional programming lan-
guage and, in particular, compilation by composition of
monadic combinators, in the development of a practi-
cal application in a modern and emerging technological
area.

1 Introduction

The Internet is a rich source of information, which can
be used freely, at any instant of time. A significant lim-
iting factor for further spreading of access and use of
this information, among others such as the data trans-
fer rate, is that users must still make use of a connection
that is physically attached to a computer.

With dropping in prices of integrated circuits and
the evolution of technology of wireless devices and their
interconnection[21], we have recently seen the devel-
opment of new forms of overcoming this limitation,
from the creation and development of notebooks and
portable computers, through personal digital assistants
and cellular phones connected to portable computers,
to a new era of mobile phones which can access in-
formation available in the Internet directly. New data
transmission protocols have been created, which take
into account the limitations of mobile phones for access
to data in the Web (see Figure 1).

A large part of devices allowing access to the Web
use the WAP protocol[20, 4]. This protocol is more
adequate to data transmission in wireless applications,
because it requires fewer control and data processing
than TCP /IP[24, 3] (the conventional protocol used for
data transmission in the Internet).

Documents in the Web are created by using mark-
up languages, characterized by the use of marks to

Restriction

on processor speed ;"\\\\
and memory size ™\ V\\
Restriction
on bandwith
Restriction
on screen size
Restriction on
input from the
keyboard

Figure 1: Limitations of mobile devices for Web navi-
gation

specify document structure and layout. The mark-up
language most widely used in the Web is HTML[25].
However, WAP devices use WMLJ[20, 5]. The amount
of information available nowadays in the Internet in the
form of WML documents is quite minute, in compar-
ison to the enormous amount of information available
— and, moreover, frequently modified — in the form
of HTML pages (in the order of 1 billion pages).

There exists, therefore, a strong and clear moti-
vation for experimentation with tools and systems for
translating HTML to WML, and in general for adapting
Web pages so that they can be shown in a suitable form
in wireless devices. Figure 2 illustrates the situation of
a WAP device with a WML microbrowser making ac-
cesses to Web pages in HTML by using a translator
from HTML to WML. In this paper we report on an
experience of employing a recently developed compi-
lation technique in the development of a practical ap-
plication in this modern, emerging technological field,
with potentially highly influential consequences in soft-
ware and high-tech industry.

This technique is based on the composition of
monadic combinators[12, 13, 9, 23], explored for ex-
ample by the language Haskell[6, 9]. The next section

\‘.J\ -/"1—-;
wML <
T
Mobile devices

do not support
HTML
Impossible

without a ‘\ﬁ\\,\/\/‘lf
5= o
<

"—\—A Web
-;

Figure 2: Accessing data from mobile devices

Possible

provides a description of the main characteristics of
monadic parsing/compilation, as well as a comparison
with a more traditional approach based on the use of a
parser generator system like, for example, YACC[19].
We consider the monadic technique a significant land-
mark in the field of compiler development, which has
not yet been duly explored in practice, in particular in
cases in which the efficiency of generated compilers are
not of utmost importance.

2 General Description

The system developed for adaptation of Web contents
to WAP devices consists of a Text Adapter, a Person-
alized Adapter and a Page Splitter.

The text adapter takes HTML texts[25] extracted
from Web pages and adapts them in order to generate
WML decks and cards that can be shown in the screen
of a mobile device. An example is shown in Figure 3.

The major difficulties in the implementation of
this tool were due to the facts that, firstly, the HTML
language has a great number of elements, with corre-
sponding attributes, and their use involves recognizing
a lot of small rules and details; secondly, a significant
number of these rules introduce context-sensitive con-
ditions, some of which introduced because of irregu-
larities contained in most Web pages throughout the
Internet, and allowed by HTML browsers commonly
used. These irregularities do not conform to the W3C
specification[25].

As an example of a simple adaptation performed
by the text adapter, consider the translation of the fol-
lowing HTML element:

The text adapter translates Web pages into plain text
and, when it sees, for example, a figure, it simply indi-
cates that a figure with a certain name existed in that

"Escolka seu|desti
oy

Segunda-feira, 19 de margo de 2001

[aresaro] soscaoon |
t@Juol

Weja trailer do
candidato ao
b | Oszcar" Traffie!

COMVC 2.0: Versio otimizada
Instale agora em seu computadar

A T
|_E-MAn GRATis | 00 UoL Tem

INTERAGAO
bate-papo

Poridade -

nome ou apelido:

SEGUNDA
12h Atendimento ao assinante

17h Tels Redonds: jornalistas da
Placar analisamn = Gitima rodads

18h Consultor da Quatro Rodas

tira dduidas sobre automoueis

22h Gabi.UOL: faga perguntas
sobre sexo para lairo Bousr

ALMANAGUE
Teste seus canhecimentos da cinema
neste quiz sobre ganhadores do Oscar

fAonDAe ne ncrnssin

Figure 3: HTML and corresponding WML

place. In this case, it simply extracts the name of the
figure and introduces it, between square brackets, in
the current position of the WML card being generated,
producing for the HTML element above simply:

[celular.jpgl

The Personalized Adapter, on the other hand, al-
lows the user to specify figures, links and alternative
texts to be included in a WML document. It treats
special marks inserted in an HTML document, with
the aim of generating a better translation. In the ab-
sence of marks, it behaves just like the Text Adapter.

The translation rules create simple WML code
(based on WML 1.0[5]), allowing generated documents
to be visualized in any WAP device.

The Page Splitter divides a WML document, if
necessary, into smaller documents that can be sent to a
particular WAP device. The splitting is done when the
size of the memory necessary for storing a document is
greater than the WAP device’s cache memory.

Section 4 provides more details of the functionality
of these tools.

3 Implementation Overview
The implementation is essentially a syntax-directed re-

cursive descent monadic translation, as described in the
next subsection. Monadic translators are defined by

composing previously defined ones by means of combi-
nators, starting from basic character and string trans-
lators. We call a monadic parser simply a monadic
translator that just parses the input, not producing
any useful result (translation).

We comment next on the fundamental advantages
and disadvantages of this approach, in comparison to
a more traditional one, of using a parser generator.

The most important advantage of monadic trans-
lation comes from the possibility of using the abstrac-
tions and mechanisms available in Haskell, for writ-
ing new monadic translators and combinators, in a
clean and compositional way. This occurs in contrast
with the source code of a compiler generated automat-
ically, with semantic rules written in C. Section 3.1
highlights the advantages of using polymorphic higher-
order functions. A second and related advantage comes
from avoiding to deal with the problems of errors and
grammar conflicts associated with using a LALR(1)-
based table-driven parser generator (like, for example,
YACC).

On the other hand, we do not have yet a monadic
combinator library that is fast enough to compete, in
terms of runtime efficiency, with parsers generated au-
tomatically from LALR grammar descriptions (but see
Section 5). The interested reader can consult the works
of Swierstra and others [23, 11, 18] in this respect.
Another advantage of using automatically generated
parsers from an LALR(1) grammar description is that
ambiguity in the specification of grammar rules is au-
tomatically detected by parser generators. However,
this has not represented a big problem in our case, be-
cause the HTML language does not introduce cases of
ambiguity.

3.1 Monadic Translation

Monads were originally used as a way of structuring the
semantic descriptions of computational features such
as state, exceptions and continuations[22]. Later, they
were used as a technique for structuring functional pro-
grams and representing state changes[30, 28]. As part
of these works, a parser was defined and used as an in-
stance of a monad[12, 13, 9]. This has renewed interest
in this area and conveyed a more profound understand-
ing of the behaviour of parsers. This was to a certain
extent surprising, given the fact that this is an area
that had already received a great deal of attention by
many researchers.

The type of a translator can be defined in Haskell
as follows:

newtype Translator a =
Translator (String -> [(a, String)])

This means that a translator receives a string as
input and returns a list of pairs: the first component of
each pair represents a possible translation obtained as
the result of parsing and consuming part of the input,
and the second component represents the unconsumed
part of the input, after parsing.!

For example, parser item defined below consumes
and returns the first character of an input string, always
with success:

Translator Char

item = Translator (\sO -> case s0 of
nn > [];

(c:s) -> [(c,s)])

item::

The first component of the result, c, is the trans-
lation of the consumed character (itself c) of the in-
put s0, and s is the rest (the unconsumed part) of
the input, after parsing.? As will become clear in the
sequel, a “failure” is represented by an “empty list of
successes”[27].

The monadic combinators >>= (called bind) and
return define respectively a translator which returns a
value without consuming any part of the input, and a
translator that combines two translators sequentially,
passing the result of the first to the second:?

instance Monad Translator where
return a = Tramslator (\s -> [(a, s)])
p >>= f = Translator (\s -> concat
[app (f a) s’ | (a, s’) <- app p sl)

ISymbol -> is Haskell’s notation for specifying a functional
type (A -> B is the type of functions from A to B). Symbol [] is
the list type constructor ([A] is the type of lists of elements of
type A) and : and nil are list value constructors (nil denotes the
empty list and 1:nil the list whose first element (or head) is 1,
of type Int, and the tail is the empty list). The notation [1,2]
is an abbreviation of 1:(2:nil) (representing the list formed
by the elements 1 and 2, of type Int). (,) is the (type and
value) constructor for pairs ((A,B) is the type of values whose
first component has type A and the second type B, and (1,°2?)
is a pair whose first component is 1, of type Int, and the second
is 72, of type Char).

2\x -> e is Haskell’s notation for the anonymous function
with the same behaviour of function f given by £ x = e. " is the
delimiter for string literals ("" is the empty string).

3[f(x) | x <- 1] is a list comprehension, and can be inter-
preted analogously to a set comprehension, commonly used in
mathematics; it represents the list of elements f(x), for all ele-
ments x of list 1. Function concat concatenates a list of lists to
form a single list.

where app is simply the deconstructor function of
datatype Translator:

app (Translator p) = p

An empty list represents a failure, in the sense
that, if app p s returns an empty list, then app (p
>>= £) s also does (due to the behaviour of list com-
prehensions), for any well-typed f. Thus, after such
a failure, no further processing is done on the input,
which means that parsing stops after such a failure.
This is not specific to this monad, but occurs for each
monadic type with a zero[29].

Now, as the second translator, f a, can depend on
the result of the first, monadic translation is able to
receive as input languages that can only be described
by context-sensitive grammars, and are neither LL(%)
nor LR(k), for any k. This is not surprising. It is often
necessary, when using a parser generator (like YACC,
for example) to have to resort to semantic rules for
input validation. A simple example, which happens to
occur quite often, of a language rule that is context-
sensitive, can be referred to as ‘“use-as-defined”: the
uses of a variable (or any other defined entity) should
be such that it conforms to its definition.

Parsing of HTML elements is an example where
this is useful, since the context determines, in many
cases, whether an occurrence of a given element is valid
or not, and in the first case what meaning it conveys
to the structure or layout of a document.

Using the monadic operations of return and >>=,
we can define new translators, in a simple and compo-
sitional way. Haskell’s do notation[15] is helpful, albeit
a construct that can be defined in terms of the basic
monadic combinators: do { x <- p; q} is used fre-
quently, meaning (p >>= (\x -> q)), due to its natu-
ral operational reading: “first apply p, binding its result
to x, and then apply q.

Consider now the example of the higher-order
function sat, that receives as parameter a predicate
and returns a translator that just consumes a single
input character if this character satisfies the predicate,
and otherwise fails:

sat:: (Char -> Bool) -> Tramslator Char
sat p = do item
if p x then return x else zero

where zero denotes a translator that always fails, for
any input:

zero:: Translator a
zero = Tramslator (\s -> [1)

Using sat, lexical parsers that parse an specific
character, a lowercase letter and an uppercase letter
can be defined very simply:

char ¢ = sat (\¢’ -> c==¢?)
lower
upper = sat isUpper

sat isLower

Here isLower and isUpper are predicates defined in
the Haskell Prelude.

The monadic combinator orelse, defined below,
is used often in our translators. It implements a deter-
ministic choice: (p ‘orelse‘ q) behaves like p unless
p fails, in which case it behaves like q:*

p ‘orelse‘ q = Translator (\s ->
let ps = parse p s
in if null ps then parse q s else ps)

Combinators some and many provides other exam-
ples of frequently used ways of combining translators:
when applied to an input string, some p applies p re-
peatedly to this input, one or more times, inserting the
result of each such application into a list, whereas many
p applies p zero or more times:

Translator a -> Translator [a]
some p = do a <- p

as <- many p

return (a: as)

some: :

many:: Translator a -> Translator [a]
many p = some p ‘orelse‘ return []

Note that many p tries to use p and, if p fails, in its
first application, the input is left intact.

As a simple examples, we can define a parser for a
string of spaces, tabs or newlines, as follows:

space:: Translator String
space = many (sat isSpace)

4Dyadic functions may be used in infix form, like operators,
in Haskell, by simply using backquotes before and after the func-
tion’s name, as in p ‘orelse‘ q.

Continuing in this way, we are able to build other
needed translators and combinators. Our final exam-
ple illustrates the definitions of i) a parser combinator
token, which receives a parser p and returns a parser
that behaves like p but throws away trailing spaces; ii)
a parser string that parses a given string (and fails
if the sequence of characters from the input does not
match the given string); iii) a parser symb that com-
poses token and string; iv) part of a interpreter (for
expressions) that treats let expressions, assuming that
var is a parser for identifiers (variable names) and exp1
treats other syntactic alternatives of expressions.

token:: Translator a -> Translator a

token p = do a <- p; space; return a

string:: String -> Translator String
string "" = return ""
string (c:s) = do char c
string s
return (c:s)
symb:: String -> Translator String

symb s = token (string s)

exp0 = do symb "let"
v <- token var
Symb n=n
e <- token exp0
symb "in"
e’ <- token exp0
return (\env-> e’((v,e env):env))
‘orelse‘ expl

The result of interpreting let v = e in e’ is ex-
pressed clearly, as a function that receives an environ-
ment (env) and returns the result of the evaluation of
e’ in an environment in which env is modified, by as-
sociating v with the result of interpreting e in env.

The monadic type that represents translators, as
well as the basic monadic operations return and >>=,
can be modified to deal with various features, such as,
for example, error handling (typically to register error
positions), in a way that is highly transparent to the
rest of the program using the monadic operations (see

e.g. [30]).
4 System Tools

This section describes the functionality of the Text and
Personalized Adapter, and the WML Page Splitter.

4.1 Text Adapter

The major difficulties in the implementation of this tool
were mentioned in Section 2. The Text Adapter imple-
ments a mapping, specified by carefully chosen transla-
tion rules, from each HTML element and its attributes
to a corresponding WML element or sequence of el-
ements and corresponding attributes. In some cases,
when there is no possible way of constructing a corre-
spondence for an HTML element, this HTML element
is discarded.

The following are illustrative examples of simple
translation rules:

Frameset: WAP devices do not provide support for
showing several documents simultaneously, in sep-
arate parts of a screen. A menu with a link to each
of the several distinct documents in the frameset
is therefore created, so that the user can choose
which of the several documents should be shown.
For example, given the following HTML code:

<frameset rows="20%,60%,20%">

<frame src="www.test.com.br/pgl.html" name="page 1">
<frame src="www.test.com.br/pg2.html" name="page 2">
<frame src="www.test.com.br/pg3.html" name="page 3">
</frameset>

the Text Adapter generates the following WML
code:

page 1
page 2
page 3

Body: This element is simply translated to a pair of
WML elements, as shown below:

HTML: <body> ...HTML... </body>

WML: <card><p> ...WML... </p></card>

Lists : As WML does not provide lists, HTML lists
are adapted, as shown below:

HTML:
<1i> First item
<1i> Second item

WML:

- First item

- Second item

Carlos Camaréo de Figueiredo

E-mail g

of Carputing 2 ence Faderal Unive siy of binas Gerais. 31270
Eral

 Comotting ¢ ence of L
955, €13 | ar & rerber

ins Ceraie]. | started to
 Languagss, togather

an defniior, e ardirmslementaicn of
1S, Y08 SesterTs, Caly norpniem,
NG forma semantics and the

& @ s

e

4
)
A\

\

Figure 4: Fragmentation of WML pages

Character references: HTML allows the use of
character references such as, for example, “&1t;”
(denoting <), and “"” (denoting double
quotes). There are thousands of character refer-
ences in HTML, whereas WML 1.0 provides only
7.

Each reference to a special character is converted
to its equivalent code in UNICODE[7]. For ex-
ample, “ ” (a blank space) is converted to
“g#160;".

Most translation rules are quite straightforward,
but there are quite a great number of them, and a lot
of details involving their use (as already mentioned in
Section 2, due mainly to irregularities, with respect to
the W3C specification, allowed by Web browsers). For
example, many elements (like block) close a previously
unclosed element (like p).

4.2 Personalized Adapter

The Personalized Adapter allows users to control the
translation of HTML pages, in order to obtain results
that are of better quality or are better suited for specific
needs. To make this control, an HTML page developer

may include certain marks for use by the adapter.

For example, a mark can be inserted to introduce
an alternative title for the WML version of the page,
so as to fit better in screens of mobile devices. Other
marks can be used to show specific links or delimit
parts of the text that should or should not be shown in
the WML version. A page developer can also indicate
figures with specific formats for WAP devices.

4.3 Page Splitter

The Page Splitter divides a WML document, if nec-
essary, into smaller documents that can be sent to a
particular WAP device (see Figure 4). The splitting is
done when the size of the memory necessary for stor-
ing a document is greater than the WAP device’s cache
memory.

The general problem of dividing WML documents
is rather complex, because of the existence of atomic
elements, which cannot be separated and placed into
two distinct documents. An example is the element
describing a link:

Site WAP

However, the pages generated by the adapter programs

are formed only by texts, links and images. Tables,
lists and frames are adapted to a textual form, and
forms and other complex structures are discarded. In
this simpler framework, the fragmentation problem be-
comes manageable, since the Page Splitter uses only
the following atomic elements: marks, words, elements
a and anchor (used to specify a link), and do (inserted
by some gateways®) to ease navigation in WAP pages.

5 Runtime Performance

As already mentioned in Section 3.1, parsers based
on the use of monadic combinators are, nowadays,
still slower than those automatically generated from
LALR(1) bottom-up parser generators like YACC. For
the adaptation of complex pages, the average rate of
translation, measured in a Pentium II 450MHz Xeon,
with 512 Mbytes of RAM, is approximately 15000
bytes/sec; for simpler (mostly textual) documents, the
average rate is 39000 bytes/sec (with the translator
compiled by using GHC’s[16] optimization directive;
without it, this rate is approximately a third of the
above rates).

Current WAP devices have a wireless data trans-
mission speed between 1200 and 1800 bytes/sec and
maximum memory capacity of 3800 bytes (cf. descrip-
tion of second generation TDMA, CDMA and GSM
in [1]). For devices of generation 2.5 (GPRS, see
also [1]), this speed increases to between 8000 and
15000 bytes/sec, with memory capacity staying ap-
proximately the same as in devices of the second gen-
eration. Third generation devices have much higher
speeds, and much more memory available, but they are
not intended for operating with WAP protocols and the
WML language.

In this context — i.e. considering the speed of
WAP devices and the fact that they cannot store a
large amount of data —, translation rates have proved
to be quite satisfactory.

Runtimes of the Text Adapter, Page Splitter and
both programs together are shown in Figure 5. Run-
times were measured on the machine described above,
using a Perl script to repeat 1000 times, for each of the
HTML pages used, the operations of the Text Adapter
and Page Splitter, modified so as to read from and to
generate a local file. We can divide the HTML pages
used in two groups, the first containing images, figures
and sometimes Java scripts, and the second consist-
ing mainly of text. Pages AOL, UOL, UAI, Estad&o, IG,
Matrix and Terra are in the first group, and Camaréo,

5A gateway is a program responsible for the integration be-
tween the WAP network and the Web.

Haskell and Loureiro in the second. The time taken
by the fragmentation process is in practice not signifi-
cant, since only a single card needs to be produced at
first. The other cards may be subsequently generated
while the user receives and interacts with previously
generated ones.

The run times of both tools increase with the size
of the input. More complex tags, like for example tags
for images, take more time to be analyzed by the Text
Adapter, in comparison to plain text and simpler tags.
On the other hand, the Text Adapter tends to generate
relatively less output code for complex pages, diminish-
ing the Page Splitter runtime (in comparison to simpler
pages).

6 Related Work

Related works consist mainly of commercial tools, and
there are few or no technical information or perfor-
mance data available. This makes it difficult to per-
form any detailed comparison. We comment on some
of these works below.

The paper VBXML: Converting HTML to
WML[10] presents a source code of a program that con-
verts HTML to WML pages. It uses the approach of
converting from HTML to XHTML first, and then to
WDML. However, the code is rather rudimentary, having
a naive design and containing incorrections and sources
of inefficiency.

The commercial tools Zap2WAP[14] and
WAPTool[8] make simulators available which show
the result of adapting HTML pages to WAP devices.
However, there are no technical information available
about the translation process or the architecture of
the system.

PyWeb[2] is a commercial tool that converts
HTML to WML and is able of adapting the result
according to the specific mobile device used. It also
works with personalized marks that allow the user to
specify how a document should be translated. Judging
from the tests performed, which were run on a simu-
lator, this has proven to be the best of all the tools
we have analyzed. The approach used in the transla-
tion process is not described, neither other technical
information about the system architecture.

The paper Two Approaches to Bringing Internet
Services to WAP Devices[17] is another work similar to
ours. The system architecture is described in the paper,
but again there is no information about the approach
used in the translation process. The related Web page
does not present any significant additional information.

The approach for adaptation of HTML pages
based on the use of XML — i.e. based on making two

Text Adapter Runtime
2500
1G
2000 ?
Tera £ Estadzo
1500
AOL
Matrix
1000
Haskell
500
Camaré/gurem
0 T T T T T T
) 10000 20000 30000 40000 50000 60000 70000
input size (bytes)
Page Splitter Runtime
3000
Haskell
2500 f\\)
16 uoL
2000
1500 Estadéo
UAl Terra
1000
) AOL
Camaréo
500
) T T T T
0 5000 10000 15000 20000 25000
input size (bytes)
(Text Adapter + Page Splitter) Runtime
5000
16
4500
uoL
4000 £

Tema (\ \
3500 Haskell
Maﬁf”‘—giiw ‘\\~‘~,.01444
3000 /\
/' ‘\\\ ,f 0al
280 mejy \ I
2000
/ P
A0l
1500 /
1000

Camarzo 3

time (milisecondis)

500

o 10000 20000 30000 40000 50000 60000 70000
input size (bytes)

Figure 5: Runtimes of Text Adapter, Page Splitter and both tools together

conversions, from HTML to XHTML|26], and then
from XHTML to WML, using XSL[31] — is often men-
tioned/cited, but we are not aware of any successful im-
plementation currently available. This approach would
also, of course, have the drawback of needing the de-
velopment and use of two translators, and in the use of
another, intermediary, mark-up language.

7 Conclusion

The Internet is a rich source of information, which can
be used freely, at any instant of time. A significant lim-
iting factor for further spreading of access and use of
this information, among others such as the data trans-
fer rate, is that users must still make use of a connection
that is physically attached to a computer.

This work described programs that allow access
to information available in the Web — in the form of
HTML documents, the most widely used medium of
data interchange in the Web —, in mobile devices with
WML microbrowsers. These programs include a Text
and a Personalized Adapter, as well as a WML Page
Splitter. We have adopted a relatively unconventional
approach for the development of these tools, namely,
translation by composition and use of monadic combi-
nators and translators. An architectural environment
has also been defined and developed for the proper use
of these tools.

The achievements and conclusions of this work can
be summarized as follows:

e The adapters have demonstrated a quite satisfac-
tory result for the visualization of HTML docu-
ments in mobile devices. It is encouraging to see
that a significant amount of Web pages can be pre-
sented adequately in these devices.

e The use of special HTML marks for enhancing the
quality of translated Web pages for presentation
in WAP devices is quite important, to enable Web
page developers to improve the quality of the pre-
sentation in cases where such an improvement is
desired.

e The development of programs that deal with the
whole of the HTML language requires a large
amount of work, due to amount of details involved,
and the use of Haskell abstraction facilities and
monadic parsing/translation has enabled both a
swift development of a working prototype as well
as an easy modification by stepwise incremental
extension of this prototype.

e The performance of the implementation has been
quite satisfactory, given the speeds and the lim-
ited amount of data that can be stored in current
mobile devices.

References

[1] Anywhere you go. http://www.ayg.com.
[2] PyWeb.com. http://www.pyweb.com/.

[3] TCP and UDP transport. www.medusa.uni-
bremen.de/intern/orpc/node57.html.

[4] WAP Forum Specifications.
www.wapforum.org/what /technical.htm.

[5] Wireless Markup Language — wversion — 1.5.
wwwl.wapforum.org/tech/terms.asp?doc=WAP-
191-WML-20000219-a.pdf.

[6] Haskell, The Craft of Functional Programming.
Addison-Wesley, 1997.

[7] The Unicode Standard, version 3.0. Addison Wes-
ley, 2000.

[8] Argogroup. Argogroup WAP Tool VI1.1.
http://www.argogroup.com/waptool /.

[9] R. Bird. Introduction to Functional Programming
using Haskell. Prentice-Hall, 1998. 2nd ed.

[10] J. Britt. VBXML: Converting HTML to WML.
www.vbxml.com/WAP /html2wap.asp, 2000.

[11] M. Chakravarty.
In Fourth Fugi

Lazy Lexing is Fast.
International — Sympo-
sium on Functional and Logic Program-
ming (LNCS 1722, Springer-Verlag), 1999.

www.cse.unsw.edu.au,/ chak/papers/papers.html.

[12] G. Hutton. Higher-order functions for parsing.
Journal of Functional Programming, 2:232-343,
1992.

[13] G. Hutton and E. Meijer. Monadic parser combi-
nators. Nottinham Univ. CS-TR-96-4, 1996.

[14] Jataayu Software. Jataayu’s Zap2Wap.

www.vsellinindia.com /jataayu/zapconvert main.htm.

[15] S. P. Jones et al. The Haskell 98 Report.
http://haskell.org/definition.

[16] S. P. Jones et al. GHC — The Glasgow Haskell
Compiler.
1998.

www.dcs.gla.ac.uk/fp/software/ghc/,

[17] E. Kaasinen et al Two Approaches to
Bringing Internet Services to WAP Devices.
http://www9.org/w9cdrom /228 /228.html.

[18] D. Leijen. Parsec combinator library.
http://www.cs.ruu.nl/~daan/parsec.html.

[19] J. R. Levine, T. Mason, and D. Brown. Lez &
Yace. O'Reilly & Associates, 1992.

[20] S. Manu. Programming Applications with the
Wireless Application Protocol. Wiley, 2000.

[21] G. R. Mateus and A. A. F. Loureiro. Introdu¢ao
a Computacao Mdvel. Imprinta Grafica e Editora
Ltda., 1998.

[22] E. Moggi. Computational lambda-calculus and
monads. In IFEE Symposium on Logic in Com-
puter Science, 1989.

[23] S. Swierstra. Parser Combinators, from Toys to
Tools. In Haskell Workshop, pages 113-128, 2000.
http://www.cs.ruu.nl/people/doaitse/ .

[24] A. S. Tanenbaum. Computer Networks. Prentice
Hall PTR, 1996. terceira edic¢ao.

[25] W3C, http://www.w3.org/TR/html401. HTML
4.01 Specification, 1999.

[26] W3C. XHTML 1.0: The Extensible Hyper-
Text Markup. www.w3.org/TR/2000/REC-xhtml1-
20000126 /#toc, 2000.

[27] P. Wadler. How to replace a failure with a list of
successes. In Functional Programming Languages
and Architecture, LNCS 201, pages 113-128, 1985.

[28] P. Wadler. Comprehending Monads. Mathemati-
cal Structures in Computer Science, 2(4):461-493,
1990.

[29] P. Wadler. Monads for Functional Pro-
gramming. Computer and Systems Sci-
ences, 118, 1992. http://www.cs.bell-
labs.com/who/wadler /topics/monads.html.

[30] P. Wadler. The essence of functional program-
ming. In Conference Record of the 15th ACM Sym-
posium on Principles of Programming Languages,
1992.

[31] Extensible Stylesheet Language (XSL).
http://www.w3.org/Style/XSL, 2001.

10

