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Abstract. As pointed out by Damas[Dam84], the Damas-Milner system
(ML) has principal types, but not principal typings. Damas also defined in
his thesis a slightly modified version of ML, that we call ML, which, given
a typing context and an expression, derives exactly the same types, and
provided an algorithm (named as T) that infers principal typings for ML
This work extends each of ML' and T with a new rule for typing mutu-
ally recursive let-bindings. The proposed rule can type more expressions
than the corresponding rule used in ML, by allowing mutually recursive
definitions to be used polymorphically by other definitions.

1 Introduction

It is well known that the Damas-Milner type system [Mil78, DM82] has principal
types, but not principal typings, as pointed out by Damas [Dam84] and stressed
by Jim [Jim96]. The usefulness of the principal typing property has already been
adressed in [Jim96], who suggests that principal typings are the key ingredient for
efficiently solving the problem of type inference for mutually recursive definitions.

A slightly modified type system for core-ML that types exactly the same terms,
and has principal typings, was defined by Damas [Dam84] in his thesis. This type
system, which we call ML, uses exactly the same syntax of types of the Damas-
Milner system (ML), but allows a variable to be bound to several distinct types in
a typing context. Damas also gave a type inference algorithm that infers principal
typings for ML, which he named algorithm T.

This work extends ML’ and T with a new rule for typing mutually recursive let-
bindings, that allows mutually recursive definitions to be used polymorphically
by other definitions.

The rest of this paper is organized as follows. Section 2 provides formal
definitions of the concepts of principal type and principal typing that apply
to any type system, by parameterizing the definitions by a suitable order on
types. Section 3 defines a partial order on ML types. Section 4 presents type
system ML and algorithm T, (a slightly modified version of algorithm T), which
infers principal typings for ML. Section 5 extends ML and T, for typing mutually
recursive polymorphic definitions. Section 6 discusses related work and Section
7 presents our conclusions.



2 Principal Typing

The following syntactic meta-variables are used, ranging over the following sets
of syntactic terms: z,y, for variables, e for expressions, o for types, 7 for simple
types, a, (3 for type variables and I for typing contexts, a finite set of pairs z : o.

If I'={xy:01,...,2Zy : 0n}, also written as {z; : 0;}¥=!", then dom(I") =
{z1,... ,xn}. We use this superscript notation similarly for other sets. If I" is a
typing context in which each z occurs only once, then: if z : ¢ € I, then o is the
type of z in I', denoted by I'(z); I' © z is defined as I' — {x : ['(z)}; ([, z : o)
is defined as (I" © z) U {z : 0}. Analogous definitions are assumed for the case
where I' may have more than one type assumption for the same variable.

A typing formula I' I e : o asserts that expression e has type ¢ under the
assumptions given by typing context I.

The set of free variables of term e, denoted by fv(e), and the set of free type
variables of type ¢ (and of a typing context I'), denoted by tv(o) (tv(I")), have
the usual definitions.

Definition 1 (Typing Problem). A typing problem is a pair (e, I").

Note the possibility of including a typing context in a typing problem, that
allows the use of fixed (predefined) assumptions to be considered in typing so-
lutions, e.g. { True: Bool, False: Bool, 1: Int, ... }.

Definition 2 (Typing Solution). A solution to a typing problem (e, [5) in a
given type system is a pair (I,0) such that I' F e : o is provable in this type
system and, if z € fv(e) Ndom([p), then I'(z) = I'n(x).

For example, given the typing problem (f z,{z : a,f : @ — (}), a typing
solution in the type system of core-ML is (8,{z : a, f : @ — B}) (in this case
this would be the only solution to this typing problem).

The definition of principal typing below is parameterized by a suitable par-
tial order < on types of the relevant type system. This partial order induces
a corresponding partial order < on typing contexts, representing “requirements
on variables” occurring in these contexts, as well as an ordering on typings (i.e.
pairs (I',0)). The principal typing for a typing problem is thus defined simply as
the <-smallest element of the set of typings which are solutions to this problem.

Definition 3 (Ordering on typing contexts). Given a partial order < on
types, a corresponding partial order < on typing contexts is defined by:

I' X I'" = (z € dom(I') implies that z € dom(I"") and I''(z) = I'(z))

From this definition, (} < I' is vacuously true, for any I". Informally, I" < I’
can be read as “I" requires less (of its variables) than I'"”. Typing context I
requires less than I'" if for each assumption z : ¢ in I' there is an assuption
x : o in I" such that ¢’ < o (i.e. o' provides more than o). This definition
also applies to typing contexts which allow more than one typing for the same
variable, provided that a partial ordering on sets of types is defined:



Definition 4 (Ordering on sets of types). Given partial order < on types,
the partial order < on sets of types is defined by {o;}*=*" < {o}}/=t™ if, for
each o}, j = 1..m, there exists 0, 1 <i < n, such that o; < 0;.

Definition 5 (Ordering on typings). Given a typing problem (e, I), for any
typing solutions (I',o) and (I",0') to this typing problem, we define:

(Io) X (I'",o') = (I' X I'" and (I" = I" implies 0 < o))

Definition 6 (Principal Typing). The principal typing solution to a typing
problem (e, I') is the <-smallest element of the set of all solutions to this typing
problem, if it exists; otherwise there is no principal typing for (e, I").

Definition 7 (Principal Type). Given a typing problem (e, Ip), o is the prin-
cipal type for expression e in context I, if there exists a principal typing solution
(0, I) to this typing problem; otherwise, there is no principal type for e in .

According to Definition 2, the principal typing for problem (e, Ip) is a solution
(0, ') such that I" requires less of its variables than any other solution and, for
this minimal context, the principal typing solution gives the smallest type.

3 Parametric Polymorphism

The context-free syntax of types and terms of ML [Mil78, DM82] is given below
(meta-variables x and « range, resp., over a countably infinite set of variables
and a countably infinite set of type variables): !

Simple Types 7 i=a | 7 — 7'
Types ou=Ya.o| T
Expressions eux=z| Ar.e| ee'| letz=¢ in¢

An equivalent version of ML type system [Hen93, KTU93, KTU94] is presented
in Fig.1.

Predicate inst(V(o;)=*".7',7) holds when 7 = 7'[r1/a1,... ,Tu/ay)], for
some Ty, ... ,Ty,. We use ¥(a;)=!". 7 as abbreviation for Va;. - - - Ya,,. T, where
n>0. We sometimes drop the superscripts (i = 1..n), and write Ya,. 7.

A solution for typing problem (e, Ip) in the ML type system is a typing
(I,o) such that I' F e : 7 is provable by the given rules and close(r, o, tv(I)).
Predicate close is defined, for any type o and any set of type variables V', by
close(o,a' V)= (o' =VY(a;)=1". o), where {a;} =1 =tv(c)—V. 2 We overload
close to define close(o,0’) = close(o, o', ).

! As usual (c.f. [MH93, KTU93, KW94]), we do not include term constants, neither
type constants (constructors) other than the functional type constructor, for sim-
plicity of notation. The results in this work are also valid if they are included.

2 The reader should not be confused by the overloading of ‘=’. The first occurrence in
the definition of close means ‘is defined by’ while the second represents a predicate.



I'zx:obFx:7 where inst(o,7) (VAR)

I'teir:n ITzx:okex:m

TFletz—eiines 7 close(r1,0,tv(I")) (LET)
Iz:7'Fe:r

I'FXx.e:7 —>T1 (4BS)

I'kFe :™ =71 I'kFey: 7
I'Feles: T

(APPL)

Figure 1: Type System ML

The ordering on types for languages with quantified and simple types formed
by means of type variables and type constructors should consider relations be-
tween quantified types and relations on types obtained by substitutions (which
are functions from type variables to types).

Meta-variable S is used to range over substitutions, which are functions from
type variables to types; So represents the capture-free operation of substituting
all free occurrences of type variables a in o by S(a); ST represents the typing
context obtained by replacing each z : 0 € I' with x : So. We define S { {a —
THB) = S(B),if f # a, and 7 if f = a; and o[r/a] = (id } {a — T})0, where id
is the identity substitution.

We define below a partial order <, on quantified types o and simple types 7,
formed by means of type variables and type constructors, called ordering induced
by parametric polymorphism. A more complex definition would be necessary in
order to consider relations on types with quantifications not restricted to occur
at the outermost level.

The definition of the ordering on types is simplified by observing the conven-
tion that types are syntatically equal modulo renaming of bound type variables,
reordering of adjacent quantifiers and elimination of unnecessary quantifiers.

Definition 8 (Parametric Polymorphism). Partial order < on ML types is
defined by o < ¢’ if 0 <5 o', for some substitution S, where the relation o <g o’
is defined as follows:

1. 0 <50, if So' =0
2. Ya.o =44 o[r/a], for any 7, and
o RiaVa.o' if 0 250" and a & tv(o)
3. 0=2s0',ifo 2g, 01,01 Zg, 0" and S = S50.5;

Note that relation inst(o, 7) can be expressed as o <;q 7.

We have, for example: Va. 8 — a =g Yag,a2. = (a1 — a2), from (2),
VYag,as. f = (a1 = a2) <ia = (a1 = ag), from (2), and § — (a1 = a2) <g
a, from (1), for any S that maps a to f — (a1 = o).

We comment briefly on some simple properties of the ordering on types that
come directly from the given definitions. The first one is the antimonotonicity




of quantification over an ordering that considers only rules I and 3: if So; =
o2 then o] <4 o), where close(o1,0) and close(oz,0h). This reflects simply
that if “less is required” of the type of a given expression e (in the sense that
substitutions on free type variables are not “required” for the expression to be
well-typed) then the type of the term obtained by closing e (i.e. by introducing A-
abstractions over all its free variables) “provides more”. For example, the type of
Az. z provides more (is more general) than, say, Az. Af. f x, since less is required
of the variable z (in expression z than in Af. f z).

Another, rather trivial property, is that the function type constructor is
monotonic, in both arguments, over an ordering that considers only rules 1 and
3: If Soy = o] and Soy = 0}, then S(o1 — 02) = o] — 4. It follows that the
function type constructor is neither monotonic nor antimonotonic, with respect
to = (either in the first or the second argument).

4 Principal typings for ML

The fact that ML type system has principal types, not principal typings, can be
seen by considering that each of the following infinite list of typing contexts can
be used to derive a type for x z, and for each such typing context the next one
in the list is smaller: {z: Va.a}, {z: Va.a—a},{z: Va. (a—a) = (a—a)},...

As pointed out by Jim [Jim96], in a system that lacks principal typings, one
can still achieve the benefits of this property by finding a suitable “representa-
tion” for all its possible typings, relaxing the principal typing condition that the
representatives themselves be typings in this system: the representation may be,
for example, a typing in another system.

Type system ML is a slightly modified version of a type system defined by
Damas [Dam84], which is also similar to ML type system. A typing context in
ML allows multiple assumptions for the same variable. We distinguish between
A-bound variables and let-bound variables and use meta variable u to denote a
A-bound variable and meta-variable x to denote either a A-bound or a let-bound
variable, when the distinction is clear from the context or is not important.

We define I' = {z : 0 € I' | ¢ is a A-bound variable } and tv,(I") = tv(I™).
We also define I'|x = {z :0 € I' | # € X}, for any set of (term) variables X,
and we use #V for the cardinality of set V.

With the distinction between A-bound and let-bound variables, a typing con-
text I is valid in ML if it satisfies the following conditions: i) x € dom(I") implies
that I'(z) = {0}, for some type o, and if = is a A-bound variable then o is a
simple type; ii) tv(I") = tvu ().

ML differs from ML only in rule (VAR), which is substituted by the rule:

I'u{z:o}bFz:7 where o <jq 7 (VAR")

and in rule (LET), where the side condition close(r,o,tv(I")) is substituted by
close(m, 0, tvy(I)).

The relationship between typability in ML and typability in ML is formally
stated by theorems 1 and 2 at the end of this section.



. _ {(eg(Io(2)), Io) if #1Lo(z) > 1
Loba:(rI)  where (r,I') = {(a,]'b U{z: a}) otherwise, where a is fresh

(VAR®)

Iokei:(n, ) Igx:okes:(m,Ib)
IokFlet x =e1 ines : (S0, ST U (SIh © 1))

Iy = Ilaom(ry) U IT (LET®)

close(r1, 0, tvu(I1))

S =unify(Eu(L1, %))
In,u:ate:(r,I)

IokXu.e: (" 57, Ou)

{r'} =I(u) (ABS®)

« is a fresh type variable

Ioker: (i, 1) Iokes:(m,I3)
IokFeies: (Sa,SINUSIy)

S =unify(Eu(l, R)U{n =1 — a})
« is a fresh type variable
(APPL®)

Figure 2: Type System T,

Algorithm T,, defined in Fig.2, infers principal typings for ML. T, is essentially
equivalent to algorithm T defined by Damas, except that it is modified to have
a typing context as input, in accordance to our definition of a typing problem.

As with MU, T, allows typing contexts to have more than one assumption for
the same variable. For example, the principal typing solution to typing problem
(zz,0) is (o/,{z: a,x: @ = a'}), where a, o' are fresh type variables.

We use leg({r;}=1") to denote the least common generalisation of the set
of types {r;}*=1-". A simplification is used (as lcg is not really a function), that
considers lcg as a function by choosing any (representative of the equivalence
class of types) T that is a least common generalisation of {7;}*=!" (where 7 = 7'
if they are equal except for renaming of fresh type variables), and we assume
that leg({r}) = 7. We overload lcg and define:

leg({o;}) = 7 where 0; = V(a;)I=1 "y, fori =1..n

7 = leg({mi[aj; /=t e pi=tm)

;; is a fresh type variable for j = 1..n;, i = 1.n
leg(I') ={z:0| z € dom(I") and close(lcg(I'(x)), o, tvy(I"))}

Function unify, used in rules (LET®) and (APPL®), computes the most general
unifier of a set of type equations. &, (I, I'') represents the set of equations on the
types of each A-bound variable occurring both in I" and I, that is:

E(OT)={r=1"|u:Telu:17 eI}

The relationship between ML and ML is formally stated by theorems 1 and 2
below, where we use F and I’ for derivations in ML and ML, respectively. A typing
context I" in MU' must satify the condition that lcg(I") is a typing context in ML.

Theorem 1. Let I' be an ML typing context. If I F e : 7 is provable then
I' ' e: 7 is provable.




x:7ke: Izx:Yaj.TkFe:
LT T (FIx-m) LI TC T Yoyt g 7 (FIX-P)

TFpuse:r It po.e:r
) {zflti } — €T close(t, 0, tvu(I")) (FIX')
pr.e:. T o <iq 04, for:s=1..n
o Sia T

Figure 3: Typing rules for polymorphic recursion

Theorem 2. Let I" be an MU typing context. If I' F' e : 7 is provable then
leg(I") - e : T is provable.

Corollary 1. If I' is an ML typing context, then I" - e : 7 is provable if and only
if '+ e : 7 is provable.

The relationship between ML and T, is formally stated by theorems 3 and 4
below, where we use ' and F° for derivations in ML and T,, respectively.

Theorem 3 (Soundness T,-ML'). Let I be an ML typing context. If I F° e :
(1,I") is provable, then I' is an ML typing context and I' F' e : 7 is provable.

Theorem 4 (Principal Typing T.,-ML). Let (e, ) be a typing problem such
that Ip|gye) is an ML typing context. If Iy > e : (7,I") is provable, then
(0p,I7}) is the principal typing solution for (e, Ip) in ML, where ) = I'|fy(.)
and close(t, 0p, tvy(I},)); otherwise, (e, Ip) has no solution in ML.

5 Mutual Recursion

The language of core-ML is extended with polymorphic recursive definitions by
including expressions of the form px. e, which represent expression let z=e€ in z,
where e may contain occurrences of z (more often written letrec x=e in z).

Languages that restrict polymorphism and use a decidable type inference al-
gorithm are based on an extension of ML with rule (FIX-M), presented in Figure 3.
Note that this rule only allows the defined variable (z) to be used monomorphi-
caly in the body of its definition (e).

In an attempt to overcome this limitation, Mycroft [Myc84] and Meertens
[Mee93] have independently proposed rule (FIX-P), also presented in Figure 3.

Expression pz. xx is a simple example of an expression that is typable under
rule (FIX-P), but is not typable under rule (FIX-M). For a more useful example,
consider the following definition:

data Seqa = Nil | Cons a (Seq (a,a))

length Nil 0
length (Cons zs) = 1 + 2 x (length s)




for j=1..n I {z;: Tz}lzl" Fej:mj
r{z;:o;} =" ke:r

- 1 i, o, to(I” p=1.. LETREC-M
I'+ letrec {z; =e;}i=l-" ine: T close(ri, o, to(I)), @ no )

for j=1.n I {z;: U_;}i_zl"" Fej:mj
Lzi:o} =" ket

J lose(r;, o1, tv(I")), i = 1.n  (LETREC-P
I't letrec {z; =¢;}*='*" ine: T close(ri, o3, tu(I), 4 no )

: i=1..
for j=1l.n I {zi:04,... 25104, }" ke
I{zi:0:} =" Fe:r

I'F letrec {z; = ¢;}i=-" ine: T close(rs, i, tou(I')), i=1..n

oi Rid Tijs j=1l.n;,1=1.n
(LETREC')

Figure 4: Typing rules for mutually recursive definitions

Data type Seq a represents sequences of 2% — 1 elements, k = 0,1, .... The data
type is non-uniform because the recursive component Seq (a, a) is different from
Seq a. Function length computes the length of sequences in time O(log n). Its
definition uses polymorphic recursion, since length receives a value of type Seq
a, for any a, and returns an integer, but calls itself with type Seq (a, a) — int.

Type system ML is extended with rule (FIX'), also presented in Figure 3, for
typing polymorphic recursion. Note that, as in rule (FIX-P), the recursive variable
() can be used polymorphicaly in the body of its definition (e).

The idea behind rule (FIX') is the same as the one behind the following
rule (FIX), also suggested by Mycrof [Myc84], namely, that each of the finite
occurrences of x in e may have a different (simple) type (so long as they can be
used to type e and are instances of the derived type for e):

I'Xzy...zp.€ i — .1, =T
I'tupz.e:71

(FIX)

where e is an expression with n occurrences of z, ¢’ is e with each occurrence
of x renamed to a fresh variable x;, 71,...,7, are simple types, ¢ <;s 7; (or,
equivalently, inst(o, 7;)), for ¢ = 1..n, and o <4 7', where close(r, o, tv(I")).

It is also interesting to extend the language for expressing (possibly) mutually
recursive definitions, by adding the construct letrec 1 =ey,... ,x, =€, ine,
which we also write as letrec {z; = €;}!=!*" in e, where all z; are distinct.

Corresponding rules (LETREC-M), (LETREC-P) and (LETREC') are given in Fig-
ure 5. Rule (LETREC-M) allows the defined variables to be used only monomorphi-
caly in the body of the mutually recursive definitions. For example, the following
definitions cannot be typed with rule (LETREC-M):

map f xs =[fz | x <= zs ]
complementList = map not
squareList = map square




This program is not typeable under rule (LETREC-M), when presented as a single,
mutual recursive definition, since function map is used polymorphically by the
other functions, and the rule requires these functions to be typed under the
assumption that map has a simple type. Note that map does not depend on
the other functions and the program could be typed by the rule above if map is
placed in a separate recursive definition.

This strategy is in fact used to type any unordered set of definitions. The
call graph of the program is examined to determine a set of strongly connected
components By, ... , By, of mutually recursive bindings, and the B;s are topo-
logically sorted to determine an order in which to type the definitions. That is,
to check that a program z, = ey,... , T, = e, is well typed, one performs type
inference on the expression letrec By in ... (letrec B, in 0) derived from
the call graph of the program, where each B; is a strongly connected component
of mutually recursive bindings and the B;s are topologically sorted.

The relation between typability in ML’ extended with rules (FIX') and (LETREC’)
and typability in ML extended with rules (FIX-P) and (LETREC-P), respectively, is
formally stated by the theorems below.

Theorem 5. Let ' be an ML typing context. If I' - e : 7 is provable in
ML+(FIX-P)+(LETREC-P), then I'F' e : 7 is provable in ML+(FIX')+(LETREC').

Theorem 6. Let I' be an MU typing context. If I' F' e : 7 is provable in
ML +(FIX')+(LETREC’), then lcg(I") F e : 7 is provable in ML+(FIX-P)+(LETREC-P).

Type inference for the extension of ML with rule (FIX-P) has been proved to be
undecidable, independently by Heiglein [Hen93] and by Kfoury et al. [KTU93].
On the other hand, type inference for ML+(FIX') is decidable, as we show below.
We comment more on this apparent contradiction in Section 6, after presenting
a type inference rule corresponding to rule (FIX'), and some simple examples.

Type inference algorithm T, is extended with rule (FIX°), given in Figure 5,
for inferring types of expressions of the form uzx.e.

Notation &, (7, {r;}7=1", V), used in this rule, represents the set of type
equations defined as follows:

& (r r =1, V) = (el = 13 | 7/ =l fag = myi=on
where {a;}/=lm=tv(r)-V
{oy, }=1-md=1-m: are fresh type variables

As a first example of type inference by rule (FIX°) consider type inference
for expression pz.z x, given an empty typing context. We have that () -° = = :
(8,{x : « = B,x : a}) is provable, where «, /3 are fresh type variables. According
to rule (FIX°), we have that £ = 1 and substitution S; is obtained as

St =unify({f =a— B, 8" =a})

Thus S1I'=1 ={z:a — 3, z: a}, 0 = VS.5, and the type inferred for pz.z
is 8 (where 8 is implicitly quantified), since o <;q @ — 3, and o <4 a.



Innoxke:(r,I)
ok px.e: (Ser, Se(I" © x))

(FIX°)

where ¢ = max(1,#(tv(r) —tvu(I))), So=1id
Si = unify(EP(Si_lr, Si_1F(1}),tUu(Si_1F))) o Si_l, for ¢ = 1, cee ,f
close(S;t, 0, tv,(SeI"))
o <iq 7', for each 7' € S,I'(x)

Figure 5: Type inference rule for recursive expressions

As another illustrative example, consider type inference for the following
expression (ph. ey), in an empty typing context:

ph.Ax. \y.if hxy == y then (hyx) + 1

We have that O F e : (¢ > 8 — int, {h:a — 8 = B,h: 8 = a — int}) is
provable. By rule (FIX°), we have that £ = 2, and substitution Ss is obtained by
the following sequence of unifications:

Slzum.fy<{a’—>ﬂ’—>int =a—f— 8, })oid

o = p" - int =8 — o — int

. a' = int — int = @ — int — int,
Sy = unify o . . . 0S5
« — 1nt — int = 1nt —- o — 1int

Then SoI" = {h : int — int — int} and the inferred type is int — int — int.

Expression pf. Az.f is a simple example of a recursive expression that is not
typable. We have that @ F° Az.f : (o« — 8,{f : §}) is provable. By rule (FIX°),
we have that ¢ = 2 and S, is obtained by the following sequence of unifications:

S = unify({a’  §' = B)) = id {8 (a/ = #)] oid
Sy =unify{a" =o' = ' = = f'}) oS

Then Sol' = {f : &' = o' — ('} and 0y = Va Vo' VG . a = (¢! = o — f').
Type inference fails since it does not hold that oy <;4 7 for each 7' € SoI'(f).

As an example of type inference for polymorphic recursion inside a A-abstraction,
consider type inference for A\z. uf. z f, given an empty typing context. We infer:

ez f:(BAz:a—p,f:a})
By rule (FIX°), we have that £ = 1 and substitution S; is obtained as:
Sy = unify({# = a})

Then we have that § b uf.xz f : (a,{z : a = a}) is provable and, using rule
(ABS®), we have that O F A\z. uf.z f : (o, ) is provable.



for j=1..n I, @{zi}izl_“" Fej:(r,I5)
Iz -0} =" ke: (1,1
I - letrec {z; = e;}i =" ine: (ST,I")

(LETREC®)

where I, = U, I
= maz(1, #tv({r}'=1") — tva(13))), So =id
Sj = unify (U, Eo(Sj— 176, Sj=1 Lo (2:), tva(Sj—113))) © Sj—zy, j=1,... .4
S’ = unify (Uizz..(w Ea(SeT, Szl—'(i+1))) o8
15 = S' I laom(re) U Iy
close(S'ti, 04, tva(S'T})), fori=1,...,n
0; <ia 7', for each 7' € §'I(x;), fori=1,... ,n
S = unify(E.(S'I, I))
I'=(SrusSs'ny) e {x;}=tm

Figure 6: Type inference rule for mutually recursive definitions

Our last example illustrattes type inference for nested mutual recursion. Con-
sider type inference for the following expression, given an empty typing context:

p1g. pf- Au. if true then g(u) else f(3)
According to the type inference rules, we infer
0 F° Au.if true then g(u) else f(3): (o = B,{f : int = 8,9 : @ = B})
By rule (FIX°) we have that £ = 2 and Sy = id 0 Sy, where S; is obtained as:
S1 =unify({an — B1 = int — f}) oid

Then we find that Va.VS.a —  has int — [ as an instance, obtaining that
typing (a — 8,{g : « = (}) is inferred for pf. \u.if true then g(u) else f(3).
After the unification and generalization steps, we find that a — 3 is an instance
of Va.Vf3. o — (3, inferring the validity of typing formula

0+ pg. pf. Mu. if true then g(u) else f(3): (a — 3,0)

Algorithm T, is extended with rule (LETREC®), given in Figure 6, for inferring
types of mutually recursive definitions. Rule (LETREC®) can be obtained from rules
(FIX°) and (LET®), by noting that expression letrec {z; = ¢;}*=!*™ in e can be
rewritten as let * = pzx.(e},...,el) in €', where e; = e;[m; x/z;]"=t ", for
i=1,...,n,¢ =e[mz/z;]7", n>1,and 7; (e1,... ,en) = €;, for 1 <i < n.

As an example of type inference using rule (LETREC®), consider the following
definitions (analogous to the ones defining map, squareList and complementList):

m=Af. ) \z.fz x=m(A\z.0)1 y=m (Az.’0?) 1’




We infer that (where e, e, and e, are the expressions defining m, z and y):

b em: (0> f)>a—5,0)
DFez: (B, {m: (an —»int) > int— 31 })
0+ ey: (B2, {m: (as — char) — char — 2 })

According to rule (LETREC®), we have that £ = 4. Substitution S is given by

o (o’ =>p)—=a' = = (a;—int)—int—fy, .
Si1=unify ({ (o' = B") =" — 3" = (ay — char) — char — 3, | | ° id

Then S;1I;, = Iy and, since also Si7; = 7, for each 7; (i = 1,...,3) inferred
above, it is easy to see that further unifications are not needed. This condition
is often verified and can clearly be used as an optimization. Thus, S’ = S; and
we have that S'I}y = I, and 0y, = Va f.(a = ) = a — . Since oy, =g 7', for
each m : 7' € S1 I3, the definitions are well-typed.

As another example consider type inference for the following definitions:

h=Xx.(gz) + 1 g=Az.h(gx)
We infer that (where ey, and ey are the expressions defining h and g, respectively):

OFep:(a— int,{g:a — int})
DFeg:(ar = Po,{h:p1 — B2,9: 01 — Bi})

By rule (LETREC®) we have that £ = 3. Substitutions S; and S» are given by
o' — int ,81 — ﬂg,

S1 = unify oy = 1 = a — int, oid
of =By =a1 = B

o' — int = 1 — int,
Sy = unify o) — int = @ — int, oS
af > int =a; = 3

and we have that S3 = id o S». Moreover, we have that S’ = S; o id and thus
S'I[; = {h : int — int,¢ : @« — int,g : @y — int}. Also, o, = Ya.a — int
and oy, = VYa.a — int. Since oy, <4q 7' for all h: 7' € S'I3y and 0, <3¢ 7' for all
g:71 € 8'[}, each of the mutual recusive definitions is well typed. Note that:

i) I, = {h : int — int,g : @ — int,g : @y — int} is the smallest typing
context that can be used to derive a type for these mutually recursive def-
initions. Typing context {h : f — int,g : @ — int,g : @y — int} (or
any other typing context smaller that I},) cannot be used to derive any type
whatsover for these definitions.

ii) The greatest type for g and h, Va. e — int can be derived with I}.

These remarks are instances of Theorem (PRINCIPAL TYPING) below.



Theorem 7 (Soundness). Let Iy be an ML typing conteat. If Iy Fee:(r,17) is
provable in T,+(FIX°®)+(LETREC®), then I' F' e : T is provable in ML +(FIX')+(LETREC').

Theorem 8 (Principal Typing). Let (e, Iy) be a typing problem such that I'y
is an ML typing context. If I'o| o (e) F°e: (7, I},) is provable in To+(FIX°)+(LETREC®),
then (op,I}) is the principal typing solution for typing problem (e, Ip) in ML+
(FIX')+(LETREC’), where close(ry, op,tvy(Ip)); otherwise, (e,ly) has no solution
in ML+(FIX')+(LETREC').

6 Related Work

Shao and Appel [SA93] presented a smartest recompilation system for Standard
ML that is also based on Damas’s algorithm T. They do not address the problem
of type inference for mutually recursive definitions, nor the problem of separate
compilation of mutually recursive modules, since top-level declarations in the
Standard ML module language cannot be mutually recursive.

Aditya and Nikihil [AN91] also used a similar type inference algorithm in an
incremental compiler for the language Id. Their algorithm does not infer principal
typings and they use rule (LETREC-M) for typing mutually recursive definitions.
As a consequence, the addition of a new definition may cause the entire program
to be recompiled, since this may require that the call graph of the program is
examined to define an order in which to type the given definitions.

Jim [Jim96] adresses applications of the principal typing property and presents
a type system based on rank2 intersection types that has principal typings and
can be restricted to type core-ML expressions. He suggested that the given type
inference algorithm could be used as a basis for the implementation of a sepa-
rate compilation system for languages based on ML-like type inference. He also
discusses the problem of type inference for mutually recursive definitions, but
the rules presented in his work for typing recursive definitions can only type the
same expressions that are typed with rule (FIX-M) used in ML.

The result of undecidability of type inference for ML+(FIX-P) was proved in-
dependently by Henglein [Hen93] and Kfoury et al.[KTU93]. It is a corollary of
the result of undecidability of the semi-unification problem [KTU90], obtained
by showing that the semi-unification problem is polynomial-time reducible to
typability in ML+(FIX-P). Our rule (FIX') is based essentially on the same idea of
the rule proposed in [Myc84], that uses a kind of transformation from infinitary
to finitary polymorphism, in a similar way to (rank 2) type systems of intersec-
tion types (which have decidable type inference of principal typings [KW99)]).
This avoids typability of expressions to be constrained by the solution of a set of
semi-unification inequations, generating, instead, constraints that are expressed
as a limited sequence of unification equations between simple types.

7 Conclusion

We have presented a type system (ML) and a type inference algorithm (T,) for
typing core-ML expressions extended with mutually recusive let-bindings. The



new rule for typing mutually recursive definitions can type more expressions than
the corresponding rule used in ML, allowing mutually recursive definitions to be
used polymorphically by other definitions. This eliminates the need to examine
the call graph of a program to determine an order in which to type definitions
and provides support for compilation of mutually recursive modules.

The idea behind our rule for typing recursive definitions is essentially the
same as the one proposed by Mycroft. However, the extensions necessary to
define rules for typing and for inferring types of mutually recursive definitions,
presented in this paper, are certainly non-trivial.

A prototype implementation of type inference algorithm T, is available at
http://www.dcc.ufmg.br/~ camarao/MLo.
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