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Abstract. Artificial intelligence games are a very interesting tool for teaching
Artificial Intelligence techniques. Competitors write programs for agents, which
are supposed to complete a given task or fight against other agents. In order to
achieve the best performance, programs may have to use advanced Artificial
Intelligence methods. In this paper, we present a framework to build artificial
intelligence games, using Abstract State Machines (ASM) for the specification
of the rules of the games. Choosing ASM, we expect that the competitors will be
able to understand cleurly the semantics of the rules. The framework includes
a compiler for an ASM-based language, allows complete control of the order of
execution of agents and easy integration with graphical libraries.

1. Introduction

Game playing is one of the oldest areas of research in Artificial Intelligence. The first
studied games were board games, like chess. In the past years, research evolved to cover
multi-agent games with sophisticated agent interaction, including simulation of human
behaviour.

According to Russel and Norvig [Russel and Norvig, 1995], an agent is anything
that can be viewed as perceiving its environment through sensors and acting upon that
environment through effectors, or actions. In multi-agent artificial intelligence games, a
competition is established among agents, which are usually restricted to a small number
of actions. The agents are given a task to complete, or they fight against other agents
in order to achieve the best performance, according to the rules of the game. In a more
complex competition, agents with different behaviour may form teams to maximize their
results [Schurr et al., 2004]. When the behaviour of the agents is specified by computer
programs, with few or no human interference, they are called bots [Leonard, 1997]. Some
games allow also an interaction among bots and human players.

The main goal of the competitors, in a multi-agent artificial intelligence game, is
to write the best program for their bots. To achieve this goal, it is necessary to understand
clearly the rules of the game, i. e. what actions the bots are allowed to execute and the
consequences of the execution of these actions on the environment.
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Abstract State Machines (ASM) [Borger and Stirk, 2003, Gurevich, 1995] are
an ideal formalism for giving a clear definition of a multi-agent artificial intelli-
gence game. The semantics of an ASM specification is easy to understand and this
method has been used for the specification of many distributed systems successfully
[Borger et al., 1995, Gurevich and Huggins, 1996]. In this paper, we present a framework
for building artificial intelligence games, using ASM for the specification of the rules
of the games. The framework includes a compiler from an ASM-based language called
Machina [Tirelo et al., 1999b] to C++. It should be interesting if games could be repre-
sented graphically, possibly with animation, so the framework provides for easy integra-
tion with graphical libraries. The compiled code is efficient enough to produce animation
with reasonable speed.

2. Related Work

There is a great number of available commercial games which use artificial intelligence
techniques to specify the behaviour of bots [Sweetser, 2002]. Some of them have bots
with a fixed behaviour, designed to fight against human players. Most first-person shooter
(FPS) games are included in this category. FPS games are very popular 3D action games
where the user moves through different scenes and collect weapons to destroy enemies.
One example is Doom II [Provo, 2002]. We are interested in another kind of games: the
ones in which it is possible for the users to program the behaviour of the bots. They are
known as games with extensible AI [Woodcock, 2004].

Some modern FPS games have extensible Al For example, Half-Life
[Glanville, 1998] offers a bot kit using C++ as the programming language. Some games,
although classified as entertainment, have only programmable bots and no human player.
One example is AI Wars [Gemmer, 1997], with a programming language mixing special-
ized commands with basic programming resources. The Robocode project [Li, 2002]
implements a robotic battletank. The behaviour of the bots is defined using the Java pro-
gramming language.

Some frameworks provide visual tools in order to make the programming
tasks easier, even for users with no programming languages background. Stagecast
[Fleisher, 2003] and Gamur [McDaniel and Myers, 1998] are good examples of systems
which help users build games and simulations without writing code.

The Gamebots project [Adobbati et al., 2001, Kaminka et al., 2002] has been de-
signed for education and research in artificial intelligence. It has created a test-bed for
multi-agent systems using an extension for the commercial Unreal Tournament game en-
gine [Gerstmann, 1999]. Unlike other extensible Al games, Gamebots does not define
a single benchmark task. The wide variety of predefined tasks and environments can
be extended in various ways, using a C++-based scripting language called UnrealScript
[Sweeney and Moise, 1998]. Communication between the game server and bots are done
via sockets, so bots can be programmed in different languages. Examples using Java and
Soar [Rosenbloom et al., 1993] are available.

Our work is similar to Gamebots, in the sense that the proposed games have no
predefined tasks. But our approach is much more general, since we can define any kind
of game. The proposed games are not restricted to a predefined environment or style. In
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3. Abstract State Machines

In this section, we present a brief introduction to the formalism of Abstract State Ma-
chines, concentrating in the sequential model, Agents and concurrent execution wil]
be addressed later. A more formal and complete presentation can be obtained ip
[Gurevich, 19951, [Borger and Stirk, 2003] and [Tirelo et al.,’1999a),

Formally, in a Superuniverse X, a basic function with arity risa X7 — x func-
tion. When r = 0, a function is called distinct element. The Superuniverse always con-

undef is used for representing partial functions, for example, f(a) = undef means that
function f s undefined for tuple @. A T-ary relation over X can be represented by a
X" — {true false} function, An universe U is a special basic function: an unary relation
identified by the set of elements  such that U(z) = true, i.e., {z:U(z)}.

Programs A Program of A is a transition rule, specifying transformations over states,
generating new states, A transition rule is composed by basic and non-basic rules, The
basic rules are: update rule, block constructor and conditiong] constructor.

Update rule Ap update rule is an expression f(Z) : = ¢,, where [ is the name of a func.-
tion on the vocabulary of A, f is a tuple of terms whose length equals the arity of f and
to is another term, Terms have no free variables and are recursively built using names of
distinct elements and application of function names to other terms, The semantics of the
update rule is: the tuple ¢ is evaluated and the value of the basjc function f applied to the
evaluation of 7 is updated with the evaluation of the term to. In other words, the name f
receives a new interpretation,

if go then Ry elseif g, then Ry ... elseif 9k then Ry endif

The semantics is: the uleR,0<: < k, will be executed if the boolean termg oy, Gicy
cvaluate to false and gi evaluates to frye,
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Block constructor A block constructor is a set of rules:
RO) Rl: w5y Rk

with the following semantics: rules Ry, R, ..., Ry are executed in parallel. If this
execution produces inconsistent updates, an unpredictable result is generated.

Non-basic rules Non-basic rules use bound variables. They increase the power of ex-
pression of the language allowing, for example, the introduction of non-determinism and
the extension of universes, creating new elements. One example is the var rule:

var v ranges over U R, endvar

where v is a variable, U is a finite universe and Rjq is a rule. An instance of rule Ry is
created for each element belonging to universe U, associating the variable v to each of
these elements. Then, all rules are executed in parallel.

Runs A run of a program of A is a sequence of states. Each state is generated by
the execution of the transition rule over the previous state. If a run is not affected by
the external environment, it ends when no update is produced by the execution of the
transition rule. Most implementations of ASM define also a special command stop,
which indicates an explicit end for a run.

External functions In order to allow an interface with the external environment,
external functions are defined in ASM. An external function may return different results,
when called with the same arguments, in different steps of a run.

4. The Language Machina

Machina is a strongly typed ASM-based programming language, with special structures
for modularity, visibility control and information hiding. In this section, we present only
the main concepts of the language. Complete information about Machina is available in
[Tirelo et al., 1999b]. Examples are presented in sections 6 and 7.

4.1. Modules

The main syntactic structure of Machina programs is a module. A module contains a
transition rule and declarations of types, actions and ASM functions. Only declarations
qualified as public are visible outside the module.

To execute the transition rule of a module, it is necessary to dynamically create
an agent based on this module. The exception is the Main module, for which an agent
is automatically defined. When an agent executes the transition rule of a module, the
function name seif is interpreted as the current agent.

The first section of a module is the import section, where public names from
other modules can be imported. Next, the declaration section defines types, functions
and actions. Following the declarations, an initial state section may be defined, which
is an ASM rule executed only once, before the execution of the transition rule of any
module. Finally, the transition rule of the module can be defined. This rule is executed
every time an agent associated with the module becomes active. Elements present in the
declaration section of Machina modules are described bellow.

e
3
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Types New types can be created, using the predefined types and composition. Composed
types are: lists, sets, tuples and agents. The type “ Agent " is a generic agent and the type
“Agent of u" defines an agent based on a module with name “M”. A functional type is
defined by the syntactic construct (Ti -> Ty), where T and T, are types.

Functions Functions can be qualified as static, dynamic, derived and external.
Static functions are ASM functions that cannot be updated, dynamic Sunctions are ASM
functions that can be updated, derived functions receive parameters and return values and
external functions are defined outside the system, possibly written in another program-
ming language.

Actions Actions are abstractions for ASM transition rules, discussed in detail in Sec-
tion 4.3, Actions can also be qualified as external, when defined outside the system.

4.2, Transition Rules

The basic ASM transition rules, update, conditional and block rule, are implemented in
Machina with the usual ASM semantics. Other rules are available:

® choose: Non-basic rule for non-deterministic choices,

® forall: Equivalent to the yar rule, described in Section 3,

o let: For local definitions, ] :

© stop: Interrupts the execution of a program and kills all agents,

o create: Used for the creation of agents. When an agent is created, this rule in-

dicates the program code which will be executed, associating the agent with a
Machina module,

4.3. Actions

Actions are an important Machina feature, implementing abstractions for transition rules,
Actions may receive parameters and execute a transtition rule with bound variables, using
values instantjated at execution time. All values in Machina are dynamically allocated, so
when parameters are Passed to actions in an action call, references are used, implementing

5. Structure of a Multi-Agent Artificial Intelligence Game

In multi-agent artificial intelligence games, we can identify two kind of programs: pro-
grams designed by the creator of the game, defining the rules of the game, and programs
created by users, simulating the behaviour of competitors. In this section, we discuss
these programs and other components of a multi-agent artificia] intelligence game in de-
tail. It is important to understand the relationship between these components before we
present the framework we have built, in Section 6,
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Figure 1: Scheme of a muiti-agent artificial Intelligence game.

5.1. Main Components

In Figure 1, environment represents the current state of a game. The environment consists
of a set of objects. The attributes of these objects may be concurrently updated by agents,
denoted in Figure 1 by A, B, C, D, E and F. Dashed arrows represent agents reading infor-
mation about the environment, and solid arrows represent agents updating environment
information.

Some agents are designed by the creator of the game, defining the rules of the
proposed game. We will call them internal agents, represented in Figure 1 by A, B, C and
D. Figure 1 shows also user-controlled agents, as the ones represented by £ and F, which
we will call user agents. User agents may receive information from the environment and
try to act upon the objects.

Internal agents are always controlled by computer programs. User agents, on the
other hand, may also be controlled by humans. But in this work, we will suppose that all
user agents in an artificial intelligence game are controlled by computer programs. When
the behaviour of agents is specified by computer programs, working intelligently without
depending upon any human interaction, they may be called bots [Leonard, 1997]. So the
agents of Figure 1 will be classified as internal bots (the programs defining the rules of
the game) and user bots (which are user-defined programs, representing the players in a
multi-agent artificial intelligence game).

If graphical representation is necessary, it may be interesting to have an extra inter-
nal bot designed specifically to produce visual information. In Figure 1, it is represented
by D, which reads the current state of the environment and displays it in a suitable way,
in an output device.

Two or more bots may be running the same program code. In this case, they will
present the same behaviour. A bot may update several objects, and an object may_be
updated concurrently by several bots. When there is just one internal bot in the syste!
objects have a centralized control. In Robocode [Li, 2002], for example, the environ-
ment is controlled by a single agent, responsible also for producing visual representation.
When objects are updated by different internal bots, the rules of the game are defined
by a distributed program. This multi-agent definition for the environment is used in the
framework presented in Section 6, and represents a more general approach than the one
adopted in systems like Robocode. No assumption is made for the relative execution
speed of internal and user bot programs.
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more interesting. We will present these rules in Section 7,

Using the snake game in an artificia] intelligence context, we may have al] the
components shown in Figure 1, as described below.

Environment; The environment is represented by the position of the vitamin and the
iti ells of each snake, In addition, we may have an attribute associated with
each snake, representing the direction of its movement (north, south, eqst or west).

Graphical Representation: A special bot may read information from the environment
and define a visual fepresentation. Figure 2 shows an example of a simple graphical rep-
resentation for the snake game. A snake head is represented by an image that indicates

its direction of movement. Animation is generated by the sequence of state changes pro-
duced by the execution of the bot programs.

movement, so all internal botg run the same program code.

Among other tasks, programs written for internal bots must have code for:

© generating movement for 5 snake, according to the current direction of its head;
e detecting collision of a snake’s head with the vitamin;
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J3 3

Figure 2: Snapshot of the snake game.

]

6. A Framework for Multi-Agent Artificial Intelligence Games

The framework we have developed is composed by a compiler from the ASM-based Jan-
guage Machina to C++, together with facilities to control the concurrent execution of the
agents and to produce graphical representation for games. The framework provides an
implementation for all the components discussed in Section 5.

6.1. The Specification Language

We have chosen Machina as the specification language for our framework. The use of
an ASM-based language for the specification of the rules of the games provides a precise
definition for them. If the specifications are carefully designed, the rules will be easily un-
derstood. Another advantage of using Machina is that the specifications can be executed,
simulating animation at reasonable speed.

Important features present in Machina are: suitable data structures for the de-
scription of the environment in artificial intelligence games, possibility of specification
of distributed programs, control of visibility of data and actions, efficient compilation to

C++. The use of these features in the specification of multi-agent artificial intelligence
games is discussed below.

Environment Specification: When defining an artificial intelligence game, the first task
is the specification of the environment. The environment is a collection of attributes that
describe the current state of a game. Using an ASM-based language, these attributes

may be represented by functions, defining an ASM state. Machina offers suitable data
structures to represent these functions.

Programs executed by bots: The possible transformations that the environment may
suffer, together with the environment specification, define the rules of an artificial intelli-
gence game. These transformations are carried out by internal and user bots. Distributed
ASM programs may provide an implementation for bot programs, which execute concur-

rently. These programs can be defined using Machina modules, and executed by Machina
agents.

Visibility Control: User bots may affect the game environment in a restricted way, fol

lowing the rules of the game. The communication between user bots and the game en-
vironment can be implemented via ASM functions. With Machina, it is also possible
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to define this communication with actions, abstractions for ASM rules. Not all functions
representing the environment state and not all defined actions may be visible for user bots,
In Machina, it is possbile to define restrictions on the visibility of data structures and ac-
tions. This visibility control is important in preventing “cheating”, i. e. competitors are
supposed to follow strictly the rules of the game. ;

Graphical Representation: Visual representation of a game may be provided by an extra
agent that reads information from the environment, as discussed in Section 5. This agent
may have access to a graphical library via ASM external functions. Machina has also
external actions, abstractions for ASM transition rules which may be defined elsewhere
in the system, even using another programming language. We have developed examples
written in C++, using the open source multi-platform game development library Clanlib
[Norddahl and Gangstoe, 2004].

Using ASM and Machina, the rules of an artificial intelligence game are repre-
sented by the environment specification and by distributed programs which will be exe-
cuted by bots. We hope that, reading these specifications, a competitor is able to under-
stand clearly the rules of the game and is ready to write programs which will compete in
the proposed environment. ASM allows the creation of specifications at a natural level
of abstraction, and this quality is inherited by Machina, which has the advantage of an
efficient compilation to C++.

6.2. Controlling the Execution of Agents

In principle, no assumption is made for the relative execution speed of Machina agents.
[t means that an agent can execute several moves, before any other agent has the chance
to proceed. But sometimes it is interesting to define a more restrictive order of execution.
For example, consider the snake game of Section 5.2. A special internal agent produces a
visual representation for the environment. Every time another agent executes its transition
rule, a visual change may be produced. In order to create good animation, the agent that
provides visual representation should be executed immediately after the execution of any
other agent of the system.

Our framework has added to Machina the concept of active agents, similar to
that presented in [Gurevich, 1995] for Distributed Algebras, using the additional unary
relation name machactive . Only agents satisfying this relation are active and can make
moves. But in our framework, every time an agent executes its transition rule, it also
automatically executes the following update: machactive(self) := false. It means that
the agent becomes idle until the framework changes its state to active again. There is also
an additional relation machallagencs , which is true for any agent, either active or not.

As presented in Section 4.1, Machina defines a special module named Main mod-
ule, for which an agent is automatically defined. In our framework, this agent is desig-
nated the Main agent, and it is always active. The Main agent is allowed to create other
1gents, and update the function machactive, building any desired policy for the execution
of all other agents in the system.

Figure 3 shows an example of a Main module that implements the policy discussed
in the beginning of Section 6.2. The dynamic functions involved are:

o curag: Represents the current active agent,
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initial state:

[

[

| .

! dynamic functions:
1

Ag, exib Agent ;

| | €
J CUrAg := undef, J

| |

|

nextAgents := { }, /¢ empty sec ¢, &
) nextAgents of Agent; create x : Agent of Exibition do 1 "
exib ;% ! ,
[ | - R |
; .?}.’ s - T \\_‘M |
; |
I‘ L 1f nextAgents = {} chen :
| 2 nextAgents ;.- ; ichallagents - { exib | !
1' 3 CUrAg : . undef
i 4 elself CUrAg i ’
J‘ 5 choose a XtAgents do |
! 6 machictive(a) :-= true, |
7 nextAgents(a) :- fa} /' nextAgents := nextAgents - {a} =/ |
j 8 CUrAg := a [
9 end ’ 5
f 10 elseif not ma;‘h;\.cri\'r?(.'umg) and curAg !: exib then ‘ "
i 1l CUrAg := exib, £8
i 12 machActive (exib) :: tryue ( «
J 13 elseif not :nachAcL‘ive(cuzAgl and curAg = exib then | 5
J 14 CUrAg := undef [ e
I 15 end %j
e — ]

Flgure 3: Example of a Main module,

i

® nextagents: Set from: which an agent is picked up to be activated,
°

@ A

exip: Represents an agent that produces a visual representation for the game.

Suppose that a module named Exibition
resentation for a game. In the initigl state secti
executes transition rules defined by module
associated with the function name exib,
representing the internal and user bots of th

defines rules that produce a visual rep-
on of the Main module, an agent that
Exibition is created. This agent is then
Other agents may be created in this section,
¢ game, as shown in Section 7.4.

The transition rules received line

¢

numbers in order to make the following expla-
nation easicr. Lines 1-3 initialize the Set nexcAgents with all agents of the system, except
exib. Lines 4-9 choose, non-deterministically, an agent from the nextagents set. This
agent is activated, removed from the nextagents set and defined as the current active
agent. Lines 11-12 will only be executed after curag has executed its transition rule,
wheit it is automatically deactivated. Then, agent exib is activated to show the possible
changes produced by curag. Line 14 wil] only be executed after axib has executed its
transition rule, A new agent is sclected from the nextagents set, in lines 4-9, until this
set becomes empty. Then the process starts again in lines 1-3 with the set of all bots,
exceptagent exib. The semantics of the transition rules of Figure 3 assures that visual
information is provided immediately after any agent moves. Besides this, it implements a
policy which is free from starvation.

The order of execution of agents may be relevant for th
Our framework has the advantage that even this order of exec
tication written in ASM.

e rules of a proposed game.
ution is defined by a speci-
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7. The Snake Game Implemented in Machina

7.1 Representing Snakes

Figure 4 shows part of the module SnakeData, that implements an abstract data type
for the representation of snakes. Some basic structures, like pos2p (position in a 2-

dimensional space) and Dpirectjon (direction of movement) are imported from other
modules,

head is numbered a5 “] ") with positions in the 2-dimensional space,

Several public deriveq Junctions and actions implement operations on the abstract
data type. The symbol “; =" (usually used as function update) is used here for the defini-
tion of the body of derived functions and actions, For example, given a snake descriptor,
function getrenge returns its length. Suppose that p isa Position neighbour to the head
of a snake described by a SnakebDescriptor s. Then action moveToPosition Changes the
position of the snake head to p, moving also the cells of the snake body. Notice that
call-by-reference barameter passing is important for this action to work properly.

7.2. The Rules of the Game

In Figure 5, part of the code of module snakemove is presented. It implements the rules
that define the movements for snakes. These are in fact the rules of the game.

In Figure 5, the game environment js represented by the dynamic functions
vitaminpos, the vitamin position, snakeControl, which maps an user bot to the
“nakeMove agent that jt controls, and snakerno, which maps a

SnakeMove agent to
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Flgure 4: Module gnakeData : abstract data type representing a snake.

length of the associated snake, using a derived function with the same name from module
snakebata (see also Figure 4),

The movement of all snakes follow the same rules, so it is natural that agents
which move snakes execute the same code. Then, all internal bots run the same program
code. Each internal bot access the attributes of its associated snake using the function
name self, which has a different interpretation when the code is executed by different
agents. In module snakeMove, self is interpreted as the current snakeMove agent in
execution. Examples are shown in the transition rule of Figure 5, where line numbers are
added in order to muke the following explanation easier.

If a snake achieves a predefined length, it is considered the winner of the game.
Line 1 of the transition rule executes the Machina rule stop, Which kills all agents, if
the current agent has achieved the desired length. Otherwise, p is calculated as the new
position of the snake head, according to the currrent direction of movement. Lines 4-5
are executed if the snake eats the vitamin. In this case, action calls make the snake grow
one cell and make a new position to the vitamin be chosen. If p is a free cell, an action
call in line 7 makes the snake move to that position (observe the definition of the action
moveToPosition in figures 5 and 4). Lines 9-11 are executed when the snake head eats
another snake’s tail. In this case, the current snake grows one cell and the other loses one
cell. If none of the above conditions are true, it means that p is the position of a snake
cell, but not a tail. In this case, the action call in line 14 is executed and the snake loses
one cell. The rules of the game are much more sophisticated than the ones presented in
Section 5.2, but, using Machina, they are very clear and easy to understand. They define
when a snake can move, grow and shrink,

7.3. User Bots

User bots are based on modules written by competitors. The only public action from
module snakeMove they can execute is changebirection (in Figure 5). It is executed by
user bots in order to control the movement of a snake.

( module SnakeDatLa
import:
Position (Pos2D, Direction, ...);
type
public SnakeDescriptor is (
tength : Tnt;
posCell : Int -> Pos2D;
direction : Direction
)
derived:
public getLength (s : SnakeDescriptor) : Int := s.length
public buildSnake (p : Pos2D; d : Direction) : SnakeDescriptor :-
SnakeDescriptor (1, {1 -> p}, d)
actions:
moveToPosition (s : SnakeDescriptor; p : Pos2D) :=
s.posCell (1) := p,
forall 1 in 2 .. getLength(s) do
s.posCell (i) := s.posCell(i-1) /* in parallel */
end

AR LS A aR
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S
module SnakeM: e

dynamic
vitaminpos . Pos2D;
snakeControl : Agent ->» Agent of SnakeMove;
snakelnfo : Agent of SnakeMove -» SnakeDescriptor;

derived
public getLength (s : Agent of SnakeMove) Int :=
SnakeDaca.gctLong}h (snakeInfo(s)) e ol
actions:

moveToPosition (g : SnakeAgent; p : Pos2D) :=
SnakeData.moveToPosition (snakelnfo(s), p)
login (a : Agen:; X,y : Int; d : Direction) :=
create s : Agent of SnakeMove do
snakeContrcl(a) 2 gy
snakeInfo(s) := buildSnake (bui1ldPos2D (x,y), d)
end
public changeDirection (d : Direction) :=

SnakeData.changeDirection (snakelnfo(SnakeControl(self)), d)
transition rule:
i€ getlength(self) = target then stop
else let p = newPosition (getHead (self),
if p = vitaminPos then
growToPosition(self,p),
defNewVLLaminPos(J
elseif 1sFreeOfSnakes (p) then
moveToPOSLCicn(self,p)
8 elseif 1sSnakeTail (p) and (getTail(self) 1= p) then

1
2 getDirection(self)) in
3

4

)

6

9 growToPcsition(self,p)

10 forall s in setOfSnakes do

11 1f getTail(s) = p then shrink(s) end
12 end

13 else

14 shrink (self)

L5 end

Figure 5: Module SnakeMove : the rules of the snake game.

An user bot has access to its own a
to other agents. The framework gives the permission of this kind of ac
Main module. This restriction ensures that an user bot can only affec

t the direction of
movement of the internal bot associated to it by function snakeControl

In order to win the game, a competitor may write code that moves a snake toward
the position of the vitamin, It may also try to eat the tail of other snakes. The code may
be written in Machina or C++. We do not show an example here because of lack of space,
and because our main goal is the specification of the ru
of all modules, including examples of user bots and visual animation using the graphical
library Clanlib [Norddahl and Gangstoe, 2004] can be found in [Di Iorio, 2004].

7.4. Creating Instances of User Bots

I'he Main module creates instances of the user bots. Ass
formed by action login, defined in module
public, so it cannot be executed by another m

ociation to internal bots s per-
Snakettove, in Figure 5. This action is not
odule, except the Main module.

The action 10gin receives an user bot as a parameter. It creates a new agent, an
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internal bot, to move a snake. The new internal bot is associated to the user bot using
function snakecControl. A descriptor is created to store information about the new snake.
This descriptor is associated to the new internal bot using function snakerafte. Using
action login is the only way new snakes are inserted into the game.

For example, suppose that'a competitor writes a module named piayver:. The
code below creates an user bot and its associated snake, with initial position (10,30) and
initial direction of movement to north. This code should be placed in the specification of
the initial state of the Main module (see Figure 3):

login i(x, 10, 30, NORTH)

create x : Agent of Playerl do ]
end l

8. Conclusions and Future Work

Artificial intelligence games are usually defined using logic languages like Prolog. Exam-
ples of simple games created with Prolog can be found in [Saint-Dizier, 1990]. A much
more complex Prolog game is described in [Merritt, 1990, Merritt, 1993]. But problems
with efficiency of generated code prevent logic languages of being used on ganes with
visual animation.

Some systems like the Gamebots project [Adobbati et al., 2001,
Kaminka et al,, 2002] allow the definition of different scenarios for sophisticated
3D games, but the designer must be an expert on programming on the Unreal Script
[Sweeney and Moise, 1998] language. And there is a worse problem: in order to under-
stand the rules of a proposed game, either the competitors are also fluent in Unreal Script,
or they must rely on a textual, non-precise description of the rules.

In this work, we have shown that ASM and Machlna are a good alternative for the
definition of artificial intelligence games. The advantages are:

o ASM are a precise formal specification method. If a specification is carefully
designed, competitors can understand clearly the rules of the proposed game.

e Machina provides an efficient implementation for ASM specifications. Generated
code is efficient enough to produce animation at a reasonable speed. Besides this,
Machina includes features for visibility control of data and actions, and complete
control of the order of execution of agents. These features are important for pre-
venting “cheating” by the competitors.

Other languages based on ASM are also available. Perhaps the most important
is ASML [Gurevich et al., 2004]. For the purpose of this work, the main disadvantage of
ASML is that the language does not implement yet distributed Abstract State Machines.
Multi-agent systems can still be defined using ASML, but the specifications are not so
clegant and clear as they can be with Machina.

The framewok presented in Section 6 can be used for the definition of any dis-
tributed system with animated visual representation. In this paper, we have concentrated
on artificial intelligence games, but simulation of other distributed systems can he carried
out without difficulty.
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The framework is being prepared to be used in teaching Al for undergraduate
students. Interesting, animated multi-agent games can be specified. A competition will
be established among students, who are supposed to write programs for bots representing
the competitors in the proposed games. Advanced artificial intelligence techniques may
be used in order to produce the best programs. We expect that this competition will make
students feel also motivated for learning formal specification methods like ASM.

Our future plans include the definition of more sophisticated games, using also
3D animation. A current project is the implementation of a classic artificial intelligence
problem known as Wumpus World [Russel and Norvig, 1995], whose ASM rules were
first presented in [Di lorio et al., 2003].
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