
Tactics for Remote Method Invocation

Fernando Magno Quintão Pereira1∗, Marco Túlio de Oliveira Valente2,
Wagner Salazar Pires2, Roberto da Silva Bigonha1,

Mariza Andrade da Silva Bigonha1

1Department of Computer Science – Federal University of Minas Gerais

2Department of Computer Science – Pontifical Catholic University of Minas Gerais

{fernandm,bigonha,mariza}@dcc.ufmg.br

mtov@pucminas.br, wagner@pucmg.br

Abstract. Conventional object oriented middleware platforms rely on the no-
tion of remote interfaces to describe distributed services. This notation is very
similar to the one currently used in centralized systems, which increases the pro-
ductivity of programming. This paper is founded in the observation that remote
interfaces foster a programming model that ignores the differences between lo-
cal and remote interactions. This can result in distributed applications with
poor performance, that are not robust to failures, and that can not scale beyond
local networks. Therefore, we propose that remote interfaces should be accom-
panied by the specification of tactics that deal with typical events in distributed
computing, such as concurrency, partial failures and high latencies. The paper
proposes a tactics definition language and describes the implementation of a
middleware system that supports this language.

1. Introduction

In the last decade, distributed systems engineers have often relied on middleware plat-
forms to increase their productivity. Residing between the operating system and dis-
tributed applications, middleware systems provide abstractions that hide from application
developers several details inherent to distributed programming, such as network commu-
nication primitives, data marshalling and unmarshalling, failure handling, heterogeneity,
service lookup and synchronization. At the present time, object-oriented systems – like
CORBA [Object Management Group, 2000], and Java RMI [Wollrath et al., 1996] – are
the most common middleware platforms. In such systems, developers invoke methods on
remote objects using the same syntax of local invocations; therefore, code to handle dis-
tributed communication looks similar to code that handles communication in centralized
systems.

In commercial middleware systems, remote services are specified using the con-
cept of interfaces. CORBA defines a specific language, called IDL (Interface Definition
Language), to describe the interfaces of remote objects. CORBA also defines bindings
between IDL and general purpose programming languages, such as C, C++ and Java.

∗Supported by CNPq and FAPEMIG.

For this reason, CORBA is often classified as a language neutral middleware. Similarly,
remote services in Java RMI are specified using the standard concept of interfaces of
Java. Remote interfaces in this system must extend thejava.rmi.Remote interface
and their methods must throws ajava.rmi.RemoteException. Thus, systems like
Java RMI and CORBA strive to unify the specification of local and remote objects. The
idea is to provide high level abstractions – like remote method invocations – that make
distributed programming as simple as conventional programming.

However, as pointed in [Waldo et al., 1997], there are fundamental differences be-
tween interactions of distributed and non-distributed objects with respect to latency, con-
currency, partial failure and the model of memory access. Regarding latency, the differ-
ence between local and remote invocations is around four and five orders of magnitude,
and, if taken into consideration the Internet or wireless networks, this gap is even greater.
Also, the occurrences of failures is far more common in distributed systems than in cen-
tralized ones. Moreover, in distributed applications failures are worse because there is
not a global state that can be queried in order to discover the type and the source of er-
rors. Finally, distributed objects are intrinsically concurrent, frequently having to handle
simultaneous calls.

This paper is founded in two observations about the use of remote interfaces in
conventional middleware platforms:

• Remote interfaces provide a high level notation to describe distributed services.
This notation is very similar to the one currently used in centralized systems,
which increases the productivity of programming.

• Remote interfaces foster a programming model that ignores the differences be-
tween local and remote interactions. This can result in distributed applications
with poor performance, non tolerant to failures, and that can not scale beyond
local and small networks.

In order to clarify the second observation we can rely on the use of remote in-
terfaces in Java RMI. Interfaces do not allow the application developer to specify the
reliability level of methods, their priority, or what kinds of enhancements that can be used
by the middleware in order to improve invocations’ performance and fault tolerance. For
example, methods that neither cause side effects nor throw exceptions could take benefit
from a cache in order to avoid unnecessary accesses to the network. As another example,
the declaration of remote methods in Java RMI only specifies that communication fail-
ures should raise an exception. It is not possible, for example, to specify that a secondary
server should be contacted, if the primary service provider is not accessible. Also, it is
not possible to define that calls to a service should be dispatched to more than one server
in order to provide load balancing or to increase performance. Moreover, in Java RMI
programmers can not decorate remote invocations with extra processing, such as logs,
buffers and timeouts.

In this paper, we argue thatremote interfaces should be preserved as the basic
notation for the specification of remote services in object oriented middleware systems,
since they provide a high level of abstraction to programmers not familiar with the de-
tails of distributed computing. However, we also argue thatremote interfaces should be
accompanied by a specification of the tactics used to deal with phenomena typical of dis-
tributed settings, such as concurrency, partial failures and high latency. A set of tactics

specifications associated to a remote interface can be used to define aspects such as the
following:

• the semantics used to dispatch remote invocations (e.g. best-effort, at-least-once,
at-most-once, etc). The invocation semantics determines the level of reliability
the underlying middleware system provides to application developers regarding
the execution of remote methods;

• extra capabilities that can be added to remote methods in order to enhance their
non-functional aspects, such as fault tolerance and performance. Examples of
enhancements that may be added to remote operations include caches, buffers and
log generators, among others;

• the distribution of priorities among different methods. Generally remote objects
process calls in a first in, first out fashion; however, there are situations when it
is desirable to reduce the waiting time of critical operations giving them higher
priorities;

• the existence of more than one remote object providing the same service. For
example, in an over-provisioned environment, programs should be able to specify
that servers be contacted concurrently (to increase performance), sequentially (to
increase fault tolerance) or non-deterministically (to provide load balancing).

The remaining of this paper is organized as follows: Section 2 defines and explains
a tactics definition language for object oriented middleware platforms. This section also
shows an example of tactics usage. Section 3 describes a middleware system that im-
plements the proposed tactics system. Section 4 compares the introduced approach with
similar works. Finally, Section 5 concludes the paper.

2. A Tactics Definition Language

Tactics describe procedures to customize and adapt applications to events typical of dis-
tributed computing, such as partial failures, higher latencies, synchronization and con-
currency. In this section we propose a tactics definition language for object oriented
middleware systems. The general structure of this language is described in Figure 1 by
means of a BNF-like notation.

The remainder of this section describes the semantics and gives a rationale for the
proposed tactics language.

2.1. Services

In order to define a set of tactics, programmers should declare the service providers that
can be contacted to process remote invocations. The declaration of a service provider aims
at informing its location, which is given by a host name (or IP address) and by a name
that uniquely identifies the service in the host. If the host name is not given, it is assumed
that the service is located in the local host. The following example declares a service
located in the hostturmalina.dcc.ufmg.br and namedfoo. In the remaining of
the tactics specification file where this declaration appears, whenever necessary to refer
to this service, the namesrv1 should be used instead.

srv1 = turmalina.dcc.ufmg.br/foo

Tactics definition
T → Service | Method | Priority | T1 T2

Service
Service → Id = Id1 | Id = Host/Id1

tactics
Method → Id = S.D.I

S → S1 ‘ |’ S2 | S1 ? S2 | S1 > S2 | (S1) | Id
D → λ | D1 + D2 | Asynch(time) | Cache(Number) | Log(String) | Timer(Number)
I → OneWay()| TwoWay()| AtLeastOnce(Number,Number)

AtMostOnce(Number,Number)

Distribution of priorities
Priority → .Number @ Id

Regular expressions
Id → letter(letter|digit)∗

Number → digit+
Host → String ‘:’ Number | String
letter → [A–Z] |[a–z]
digit → [0–9]

String → any sequence of characters

Figure 1: Tactics Definition Language

2.2. Tactics

Tactics are specifications of procedures to be adopted by the middleware platform in or-
der to deal with particularities of the distributed environment, such as high latency and
communication crashes. The methods declared in a remote interface can be associated to
different tactics specifications.

The declaration of the set of tactics bound to a remote method may be divided
into three parts: the declaration of service combinators, the specification of invocation
decorators and the definition of a reliability level. The first part concerns the choice of the
service provider that will process the remote call, and the second part defines the chain
of enhancements that will be added to the remote invocation. Predefined enhancements
include the use of caches, buffers, logs, timeouts and support for asynchronous calls.
Finally, the last part defines the remote call semantics, for example: best-effort, at-most-
once and at-least-once.

The parts that constitute a tactics specification can be regarded as orthogonal sets.
Therefore, any service combinator may be combined with any reliability level. Further-
more, invocation decorators may be aggregated to remote methods, independently of the
other types of tactics bound to them. The only restriction concerns the reliability level
known asone-way, as discussed in Section 2.3.

2.2.1. Service Combinators

Service combinators rely on the existence of more than one remote object providing the
same services in order to give remote operations support to load balancing, fault toler-
ance, and improvements in performance. Service combinators are the first kind of tactics
specification to be handled. For example, if alternative execution is combined with the
at-most-once reliability level, described in Section 2.3, the same server may be contacted
several times before the next available remote object be activated. The available service
combinators are:

S1 ? S2 Non-deterministic choiceExactly one of the service providers,S1 or S2 is non-
deterministically chosen to perform the remote invocation. Because invocations
are equally divided among the available service providers, this combinator pro-
vides support to load balancing.

S1 | S2 Concurrent executionBoth service providers,S1 andS2, are concurrently acti-
vated to perform the remote invocation. The first answer that arrives is returned as
the result of the call and the other is discarded. Thus, this combinator is used to
optimize the response time of remote invocations.

S1 > S2 Alternative execution First, the service providerS1 is invoked. If for some
reason a result is not obtained from this service, the invocation is dispatched to
S2. Hence, this combinator provides support to fault tolerance.

2.3. Request Reliability

Since networks are subjected to various kinds of failures, different levels of reliability
can be provided by the protocols used to transmit remote messages in object oriented
middleware systems. Unfortunately, there is a trade-off between the reliability and the
performance of such protocols. Therefore, a remote invocation that does not require high
degrees of reliability can take benefit of a simpler delivery protocol.

In the proposed tactics definition language, it is possible to define the level of
reliability required in the invocation of each method of a remote service. The available
reliability levels are the following:

One-Way This level does not guarantee the execution of remote invocations and clients
are not notified when the invocation fails. After a one-way remote invocation is
transmitted to the underlying middleware system, the calling thread continues its
execution. Thus, one-way invocations should not have return values nor raise ex-
ceptions. This is the lowest level of reliability provided, and the one with the
lowest implementation overhead. Because one-way calls do not generate any re-
sponse from service providers, there is no point in using this strategy with tactics
such as caches, timers or asynchronous calls.

Two-Way This level does not guarantee the execution of remote invocations but an ex-
ception is raised when the invocation fails. The calling thread remains blocked
waiting the result of the call or a timeout. In case of timeout, an exception is
thrown, and no further processing is performed in order to check if the remote
method was executed or not. This level should be used in environments with low
error rates, like local networks with stable servers.

At-Most-Once This level does not guarantee the execution of remote invocations. How-
ever, in case of failure, the invocation is automatically retransmitted a certain num-
ber of times. If all retransmissions fail, an exception is raised. It is also assured
that an invocation will not be processed two or more times. This level should be
used in environments where failures are common, such as the Internet and wireless
networks.

At-Least-Once This level guarantees the execution of remote invocations, possibly more
than once. Multiple executions happen when the results of remote invocations are
successively lost. In this case, the middleware retransmits the invocation, which
might result in extra processing of the remote method. This is the highest level

of reliability, although it is not recommended when remote methods have side-
effects. Moreover, the calling thread will remain blocked in case of continuous
unavailability of the remote service.

2.4. Invocation Decorators

Invocation decorators define extra behaviors that are transparently inserted into the dis-
patching flow of remote operations. Invocation decorators can also be combined in order
to create chains of functionalities that are attached to remote methods.

The proposed tactics definition language supports the following predefined invo-
cation decorators:

• Cache(size): caches may be used to store the results of remote invocations in an
attempt to reuse them later when the same invocation is triggered again. A cache is
particularly useful when the associated method does not generate side-effects. In
this case, it trades space for response time. The parameter of this kind of decorator
represents the size of the cache, i.e., the maximum number of bytes that can be
stored on it.

• Timer(time): this decorator allows to define time limits for the execution of re-
mote calls. Despite its reliability level, if a remote call is not performed in the
specifiedtime parameter, its execution is aborted and an exception is raised. Such
decorator is useful in applications that can not tolerate unpredictable delays, such
as the real-time systems.

• Log(file): creates a log containing informations about remote invocations. The
file parameter indicates the name of the log file.

• Asynch(time): this decorator is used to support asynchronous remote invoca-
tions. When an asynchronous invocation is requested, an object of the type
Future is created and returned to the client thread (that continues its own pro-
cessing). A separate thread is created to deal with the remote invocation. Later,
when the result of the invocation becomes available, it is inserted into the future
object. The client thread must poll this object to check for the result. The deco-
rator parameter specifies the maximum amount of time the client can wait before
the result is available. Finished that time, if the call has not being processed, an
exception object is inserted into the future.

2.5. Priorities

In conventional middleware systems, all remote invocations are given the same priority.
However, in order to increase the overall performance of the system, it may be useful to
change the priority of particular invocations. For example, if a method takes a consider-
able time to finish and the calling thread supports delays on that operation, it is recom-
mended to assign a small priority to it. As a consequence, the server object will postpone
the execution of this operation, while quickly processing other simpler calls.

The proposed tactics definition language supports the assignment of priorities with
the following syntax:n@Id, wheren is a number between 0 and 1 andId is a method
name. This command reduces the priority of the specified method to the valuen × d,
whered is the default priority. The lowest is the valuen × d, the lowest is the invocation
priority of the associated method. Therefore, in the proposed tactics language, developers
can not increase the priority of a remote operation; only reduce it.

2.6. An Example of Tactics

In order to better illustrate how tactics may be used to determine some of the non-
functional aspects of remote methods, this section presents a translation service whose
operations have been associated to different tactics. This example is based on the tactics-
based middleware platform described in Section 3.

The translation service provides three remote operations:ip_word (translates
single words),ip_paragraph (translates sentences containing up to four hundred char-
acters) andip_text (translates text files). The remote interface of these operations is
the following:

interface IP_Translator extends Remote {
public String ip_word(String w)
throws ArcademisException, NotWordException;

public String ip_paragraph(String p)
throws ArcademisException, TextTooBigException;

public MarshalableFile ip_text(MarshalableFile f)
throws ArcademisException;

}

This interface uses a Java syntax, and classes likeArcademisException and
Remote that are provided by the middleware introduced in Section 3. We consider that
a client application can take benefit from the following tactics set when invoking the
translation methods:

turmalina = turmalina.dcc.ufmg.br/glossary;
diamante = diamante.dcc.ufmg.br/glossary;
sirius = sirius.inf.pucminas.br/ip_translator;

ip_word = (turmalina | diamante).Cache(2048)+Timer(1000).
AtLeasOnce(8,100);

ip_paragraph=((turmalina?diamante)>sirius).AtMostOnce(12,100);
ip_text = (turmalina > diamante > sirius).Asynch(0).TwoWay();

.8@ip_paragraph

.6@ip_text

This tactics specification assumes that the translation service is available on three
different hosts:turmalina, diamante andsirius. The following tactics are asso-
ciated to invocations of remote methods:

• ip_word: in order to reduce the response time, invocations of this method
are concurrently transmitted to the services available onturmalina and
diamante. A cache is associated toip_word invocations, since the client
application should request later the translation of the same word. The cache is
augmented with a timer, so that if the method is not executed within one sec-
ond (1000 milliseconds), the operation will be aborted. The reliability level is
at-least-once: the parameters tell the middleware to perform up to eight attempts
of contacting the service provider, being 100 the time interval, in milliseconds,
between successive calls.

• ip_paragraph: on a first trial, invocations of this operation are non-deter-
ministically distributed among services onturmalina anddiamante. If both
services fail to provide an answer, the remote service onsirius is contacted.
Neither a cache, nor any other type of decorator is used in order to aggregate extra
capabilities to this method. The reliability level defined for this type of invocation
is the at-most-once semantics. The parameters determine that up to 12 attempts of
contacting the service provider will be made in time intervals of 100 milliseconds
until an answer is available. In addition, the server will not process repeated calls.

• ip_text: a translation of a file can demand a reasonable computation effort.
Thus, this operation is asynchronous in order to release the calling thread while
the result of the translation does not arrive. The operation is firstly dispatched
to the service known asturmalina. If this invocation fails, a new attempt is
made ondiamante, and, if this object is also not available, the method is finally
invoked onsirius. The zero parameter in theAsynch decorator specifies that
the thread in charge of the call can only be aborted by the underlying middleware
(and not by a timeout). TheMarshableFile must implement theFuture
interface in order to allow clients to check for the result of the call. Because three
different service providers can be successively contacted in order to process this
method, it is possible to define its reliability level as two-way.

Invocations ofip paragraph andip text have their priority reduced respec-
tively to 80% and 60% of the default priority. Since the priority ofip word is not
declared, this method is assigned the highest priority value.

3. Implementation

This section introduces Aries1, a middleware platform that implements the tactics sys-
tem proposed in this paper. This platform has been implemented as an instance of Ar-
cademis [Pereira, 2004], a framework for middleware development.

3.1. Implementation of the Invocation Policy

In a distributed system, client and server objects may be located in different address
spaces; so, it is necessary to provide client applications with local representatives of the
remote objects. These local representatives are calledstubs. The stub acts as a proxy, hav-
ing the same interface as the remote object it represents. Therefore, whenever the client
invokes a remote operation, it is actually invoking one of the stub’s methods. The stub
is responsible for marshaling remote methods’ parameters and unmarshalling their return
values, if they exist; however, in Arcademis, the component that actually sends the invo-
cation request across the network is calledinvoker. Invocation decorators and reliability
levels are implemented by invokers; hence, in order to allow different methods to use dif-
ferent tactics, the stub must have access to a collection of such components. Arcademis
makes such collection available by means of theinvoker factory.

The partial description of a remote method invocation, as it is performed in Ar-
cademis/Aries, is given by the collaboration diagram in Figure 2. According to that
scheme,ip_word is a remote method that the client application is invoking onstb,

1Aries is an acronym forAnother Remote Invocation System

Network

app:ClientApp

stb:Translator_Stub

:SuperStub

:InvokerFactory

i:Invoker

1:ip_word("kid")

3:
in
vo
ke
(a
rg
s,

op
,s
Co
mb
,p
)

4:i=createInvoker()

5:r=invoke(call)

2: set the base invoker
that will be produced
by the factory.

6: creates a message
object describing the
required reliability
level and sends it
accros the network.

Figure 2: Partial view of the invocation path in the client side.

a stub of theTranslator_Stub type. Stubs, in Aries, are subclasses ofSuperStub.
Stbmarshals the call parameters and passes them to its superclass, but, before doing this,
it determines the type of components that will be produced by the invoker factory. Upon
receiving a call request, theSuperStub implementation gets from the invoker factory
the component that will perform the invocation according to the chosen strategy. The in-
voker sets up a connection with the server and sends to it an object of theMessage type,
that holds the call descriptor. Details of these final procedures are not exhibit in Figure 2.

3.2. Implementation of the Reliability Level and Scheduling Policy

The implementation of theInvoker component used to carry on a remote method in-
vocation determines the call’s reliability level, as discussed in Section 2.3. However, for
the purpose of ensuring a given invocation semantics, some processing is also necessary
in the server side of the middleware platform. For example, in order to implement the
at-most-once level of guarantee, the server has to keep a list of identifiers of already pro-
cessed calls. In Aries, the entity responsible for receiving invocation requests from the
network layer is theRequestReceiver component. Due to Aries’ design, it is not
necessary to provide theRequestReceiver with a separate clause for handling every
kind of reliability level. Arcademis defines the middleware communication protocol by a
set ofmessages: objects that implement theMessage interface. Messages are handled
by means of theCommand design pattern [Gamma et al., 1994]. TheMessage interface
defines anexecute() operation, whose implementation determines all the necessary
processing to assure the reliability level promised by the invoker implementation.

The collaboration diagram presented in Figure 3 depicts the path of a remote
method invocation after it is received at the server side. The invoker determines dif-
ferent reliability levels producing different types of messages to carry remote calls. Once
one of these messages is received, theRequestReceiver invokes theexecute op-
eration on that object. The implementation of this method must ensure that the invocation
parameters will reach the remote object that is providing the service requested by the call,
and that the correct reliability level will be guaranteed.

At the server side, remote invocations are ordered by theScheduler compo-
nent. TheScheduler and theRequestReceiver are active objects, that is, they
execute on their own control threads. Before issuing a remote call, the stub implementa-
tion assigns to its descriptor a default priority value, or a specific one, according to what
is determined in the tactics specification file. Every message theScheduler receives
is inserted into a priority queue. The scheduling thread continuously removes invocation

p:Protocol r:RequestReceiver

m:Message :Scheduler

:Skeleton

o:RemoteObject

Network

2:m=re
cv()

3:execute(r)

4:sche
dule(c

all)

5:dispatch(call)

6:ip_word("kid")

7: creates an answer
message and sends it
across the network to
the waiting invoker.

1: receives a
message from
the network.

Figure 3: Partial view of the invocation path in the server side.

TwoWayInvoker

 (from rme)

<<interface>>

Invoker

+invoke(c:RemoteCall, r:RemoteReference) : Stream

InvokerDecorator

+invoke(c:RemoteCall, r:RemoteReference) : Stream

+InvokerDecorator(i:Invoker) : InvokerDecorator

Cache

 (from aries.extras)

Timer

 (from aries.extras)

// method from CacheDecorator.java
public Stream invoke(RemoteCall c)
throws NetworkException {

Stream args = c.getArguments();
if(this.table.containsKey(args)) {

Stream r = OrbAccessor.getStream();
r.fill((Stream)this.table.get(args));
return r;

} else {
Stream r = super.invoker.invoke(c);
Stream bck = OrbAccessor.getStream();
bck.fill(r);
table.put(args, bck);
return r;

}
}

(a) (b)

Figure 4: (a): Invoker decorators. (b): Decorator that adds a cache do the
Invoker.

requests from the queue, and delivers them to the remote object that is responsible for
their execution.

3.3. Implementation of Invocation Decorators

The extra functionalities described in Section 2.3 may be inserted into the invocation
path of remote methods by means ofinvoker decorators. Decorator is a design pat-
tern [Gamma et al., 1994] which characterizes enclosing objects that modify the behavior
of other objects while avoiding the generation of complex chains of inheritance. A invoker
decorator is a subclass ofInvoker, and, in addition, has an attribute of theInvoker
type, which is the enclosed object. The decorator may overwrite theinvoke method in
order to intercept its parameters, and perform some processing on them, before passing
these arguments to the intercepted method. Because the invoker decorator has also the
Invoker type, subclasses of it can be assembled together in order to compose chains of
extra functions that may be added to the same invoker. The class diagram shown in Fig-
ure 4 (a) depicts an example of chain of decorators aggregated to a base invoker. These
decorators implements the cache and timer tactics discussed in Section 2.4.

Figure 4 (b) presents theinvoke method of a decorator that adds a cache to the
invoker. When this decorator receives an invocation request, it firstly verifies if that call
has already been processed. If so, it returns to the caller the operation’s return value saved
in the cache during the first call, otherwise the decorator sends the request to the enclosed
invoker and stores its result when it is available. In the figure, the classOrbAccessor
represents a fac¸ade for creating objects, andStream encapsulates serialized data, such
as the arguments of remote calls.

AriesC

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

.tactics

.class

Stub.java

private boolean ready = false;
public findServiceProviders() {
try {

RemoteReference r1 = AriesNaming.
lookup("turmalina.dcc.ufmg.br/glossary");
super.attach(r1);
RemoteReference r2 = AriesNaming.
lookup("diamante.dcc.ufmg.br/glossary");
super.attach(r2);
RemoteReference r3 = AriesNaming.
lookup("sirius.inf.pucminas.br/ip_translator");
super.attach(r3);
ready = true;

} catch (NotBoundException nbe) {
} catch (MalformedURLException me) {}

}

(a) (b)

Figure 5: (a): Generation of Stubs in Aries. (b): Example of discovery routine.

3.4. Automatic Generation of Stubs

In Aries, the tactics used to perform a remote method invocation are defined by the stub
implementation; therefore, for each of the stub’s methods, customized code must be pro-
duced. Aries’ stubs are automatically generated by a tool namedAriesC, which pro-
duces Java source code from a remote class and a tactics specification file, as depicted
in Figure 5 (a). The remainder of this section presents and discusses some examples of
automatically generated code obtained from the tactics specification file exposed in Sec-
tion 2.6.

AriesC produces for each stub an initialization routine, which is calledfind-
ServiceProviders. Such a method allows to bound the stub to the service providers
it has to represent in the client address space. The service providers are declared in the
tactics specification file, and, for each of them, a remote reference must be obtained from
the discovery agency and attached to the stub. Aries also allows dynamic binding, that
is, it is possible to assign a remote object to a initialized stub; however, such object will
be used only if no other service provider has been specified by tactics. An instance of
the initialization method, produced from the example of Section 2.6, is presented in Fig-
ure 5 (b).AriesNaming is the interface for the discovery agency provided by the Aries
system, and code for error recovery is not shown, due to space restrictions.

Figure 6 exhibit code automatically generated for two of the methods declared in
the interface of the translation program discussed in Section 2.6. Parts of these methods
have been produced from the tactics specification file that accompanied that interface.
Before effectively issuing a call, by means of theinvoke method, the stub has to define
the implementation of the invoker that will be in charge of performing the operation2.
In Figure 5 (a), this is done by the commands from line 8 to 12. Firstly, the stub obtains
a reference to the invoker factory; then it determines a list of decorators that must be
aggregated to the next components the factory will produce. Finally the stub defines the
base implementation of the invoker to be generated. During code generation,AriesC
considers invocation decorators and invoker definitions present in the tactics specification

2It is possible to improve performance if the invokers are created during the stub initialization, and as-
signed to the factory before method invocations. The approach presented in Figure 6, in which new invokers
are instantiated before every call, has been chosen because it makes clearer how the stub implements the
tactics described by the application developer.

1: public String ip_word(String param0)
throws NotWordException, ArcademisException {
2: if(!ready)
3: findRemoteReferences();
4: Stream args = (Stream)OrbAccessor.getStream();
5: args.write(param0);
6: int op = 1;
7: String servers = "(turmalina|diamante)";
8: InvokerFactory fc = ORB.getInvokerFactory();
9: fc.removeDecorators();
10: fc.insertDecorator(new Cache(2048));
11: fc.insertDecorator(new Timer(1000));
12: fc.setComponent(new AtLeastOnce(8,100));
13: this.setInvokerFactory(fc);
14: int p = 1000; // the operation priority.
15: Stream future = invoke(args, op, servers, p);
16: if(future.isException()) {
17: // handle remotely rised exceptions here
18: }
19: return future.readString();
20:}

1: public String ip_paragraph(String param0)
throws TextTooBigException, ArcademisException {
2: if(!ready)
3: findRemoteReferences();
4: Stream args = (Stream)OrbAccessor.getStream();
5: args.write(param0);
6: int op = 2;
7: String servers = "(turmalina?diamante)>sirius";
8: InvokerFactory fc = ORB.getInvokerFactory();
9: fc.removeDecorators();
10: fc.setComponent(new AtMostOnce(12,100));
11: this.setInvokerFactory(fc);
12: int p = 800; // the operation priority.
13: Stream future = invoke(args, op, servers, p);
14: if(future.isException()) {
15: // handle remotely rised exceptions here
16: }
17: return future.readString();
18:}

(a) (b)

Figure 6: (a) and (b): examples of automatically generated stub methods.

file as Java constructor methods.

The priority of invocations and the pattern for choosing service providers are also
defined by the stub. The priority is defined in the 13rd and 11th lines of Figures 6 (a) and
6 (b) respectively. In the Aries system, priority values range from 0, the lowest value,
to 1000. Service combinators are described by means of strings, which are parsed in
theinvoke method (Figure 6 (a) – 14th line) of thearies.SuperStub class. This
method receives four parameters: the serialized arguments of the invocation, the operation
identifier, the descriptor of service combinators (Section 2.1) and the invocation priority
(Section 2.5). The code presented in Figures 6 (a) and (b) has been simplified due to space
constraints: routines for handling exceptions thrown in the server side have been omitted.

4. Related Work

The following researchs are related to the tactics system proposed in this paper.

CORBA It is possible to implement in CORBA [Object Management Group, 2000]
some of the tactics proposed in this paper. For example, methods can be qualified as
one-way, which means they are called using the one-way semantics described in Sec-
tion 2.3. Also, meta-programming mechanisms, such as interceptors and smart proxies,
can be used to implement tactics such as invocation decorators and service combinators.
However, these mechanisms work by changing the default behavior of the middleware in-
ternals; thus, they provide a very low level of abstraction. On the other hand, we argue that
our tactics definition language allows easy expression of common strategies for handling
events typical of distributed systems. Moreover, tactics do not have a meta-programming
or reflective semantics; hence, tactics specification do not involve reification. In our lan-
guage, tactics are expressed at the same level of abstraction, for example, than remote
interfaces in IDL.

TAO TAO [Schmidt and Cleeland, 1999] is an extensible and maintainable middleware
based on CORBA. TAO uses the service configurator design pattern to support configu-
ration of several aspects of the middleware platform. A configuration file defines inter-
nal strategies of the middleware like thread policies, request demultiplexing, scheduling

and connection management. At startup time, the configuration file is loaded and the
selected strategies are applied. Thus, TAO supports the configuration of global aspects
of the middleware engine. On the other hand, tactics provide support for fine-grained
customizations that are related to particular remote services. Moreover, configuration in
TAO affects mainly components placed on the server side of distributed applications. On
the other hand, tactics mostly support the customization of client side aspects of remote
method invocation.

Aspect Oriented Programming Aspect-oriented programming
(AOP) [Kiczales et al., 1997] is an alternative technology for separation of con-
cerns in software development. AOP languages, such as AspectJ [Kiczales et al., 2001],
provide abstractions to modularize crosscutting concerns of a system, and permit to
weave aspects with conventional code. Similar to aspect languages, tactics define
strategies that crosscuts the traditional vertical decomposition structure of distributed
systems. However, the language proposed in this paper does not present a set of operators
and constructions as complete as, for example, AspectJ does. This is explained by the
fact that AspectJ is a general-purpose aspect language while our tactics language can be
considered a domain-specific aspect language that targets the customization of remote
invocations in object oriented middleware.

Chroma A previous tactics based remote execution system, called Chroma, is discussed
in [Balan et al., 2003]. The main purpose of tactics in Chroma is to describe how appli-
cations can be dynamically partitioned for execution in mobile computing environments.
Chroma uses three techniques in order to select tactics: resource prediction, resource
monitoring and user guidance. For example, suppose a Chroma based language translator
system for mobile computing. If the available bandwidth is sufficiently large, the system
would automatically adopt a more resource demanding service in order to perform trans-
lations; a simpler service would be used otherwise. Since tactics in Chroma are selected
dynamically, they are more flexible than the tactics system presented in this paper. On
the other hand, our tactics definition language supports several abstractions that are not
available in Chroma, like reliability levels, invocation decorators and priorities.

QuO Quality Objects (QuO) [Zinky et al., 1997] is a framework that adds quality of
service support to CORBA and Java RMI. Similarly to Chroma and Aries, QuO extends
a standard interface definition language with a meta-language that supports the specifica-
tion of a contract between clients and servers concerning quality of service requirements.
QuO permits the definition of a set of regions that are characterized by different QoS re-
quirements. The middleware will react when the QoS status moves between such regions.

5. Conclusions

This paper has proposed a domain specific language to define tactics adopted in remote
method invocations to handle particular characteristics of distributed environments, such
as communication failures and high latencies. The main motivation for the proposed

system is the fact that centralized and distributed environments present a number of dif-
ferences in terms of latency, reliability and concurrency. This makes the representation
of remote methods adopted by traditional middleware platforms, such as CORBA and
Java RMI, unsatisfactory. Therefore, this paper contributes to increase the flexibility of
object-oriented middleware systems in the following ways:

• it has proposed a set of tactics to customize non-functional aspects of remote
method invocations;

• it has described the implementation of Aries, a middleware that implements the
proposed tactics definition language;

It should be pointed that the tactics system proposed in this paper does not con-
stitute a closed group: other tactics can be incorporated into it, based on the needs of
application developers. Finally, the code of Arcademis and Aries can be downloaded
from http://www.dcc.ufmg.br/llp/arcademis.

References

Balan, R. K., Satyanarayanan, M., Park, S., and Okoshi, T. (2003). Tactics-based remote
execution for mobile computing. In1st International Conference on Mobile Systems,
Applications, and Services, pages 273–286. USENIX.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994).Design Patterns Elements of
Reusable Object-Oriented Software. Addison-Wesley.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G. (2001).
An overview of AspectJ. In15th European Conference on Object-Oriented Program-
ming, volume 2072, pages 327–355. Springer Verlag.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., and
Irwin, J. (1997). Aspect-oriented programming. In11th European Conference on
Object-Oriented Programming, volume 1241, pages 220–242. Springer Verlag.

Object Management Group (2000). The Common Object Request Broker: Architecture
and Specification (version 2.4).

Pereira, F. M. Q. (2004). Arcademis: Um arcabouc¸o para construc¸ão de sistemas de
objetos distribu´ıdos em java. Master’s thesis, Universidade Federal de Minas Gerais.

Schmidt, D. and Cleeland, C. (1999). Applying Patterns to Develop Extensible and Main-
tainable ORB Middleware.IEEE Communications Magazine – Special Issue on De-
sign Patterns, 37(4):54–63.

Waldo, J., Wyant, G., Wollrath, A., and Kendall, S. (1997).A Note on Distributed Com-
puting, pages 49–64. Springer-Verlag.

Wollrath, A., Riggs, R., and Waldo, J. (1996). A distributed object model for the Java
system. In2nd Conference on Object-Oriented Technologies & Systems, pages 219–
232. USENIX.

Zinky, J., Bakken, D., and Schantz, R. (1997). Architectural support for quality of service
for CORBA objects.Theory and Practice of Object Systems, 3(1):1 – 20.

