
Open and Closed Worlds for Overloading:
a definition and support for coexistence

Carlos Camarão1, Cristiano Vasconcellos2, Lucı́lia Figueiredo3, João Nicola1

1 Universidade Federal de Minas Gerais (UFMG), DCC-ICEX,
Caixa Postal 702, Belo Horizonte 30123-970, MG, Brasil

{camarao,joaoraf}@dcc.ufmg.br

2Universidade Federal de Pelotas,
Campus Universitário s/n, Caixa Postal 354, Pelotas 96100-900, RS, Brasil

cristiano.damiani@ufpel.edu.br

3Universidade Federal de Ouro Preto, DECOM-ICEB,
Caixa Postal 140, Ouro Preto 35400-000, MG, Brasil

lucilia@dcc.ufmg.br

Abstract. The type system of Haskell and some related systems are based on an
open world approach for overloading. In an open world, the principal type of
each overloaded symbol must be explicitly annotated (in Haskell, annotations
occur in type class declarations) and a definition of an overloaded symbol is
required to exist only when overloading is resolved. In a closed world, on the
other hand, each principal type is determined according to the types of defini-
tions that exist in the relevant context and, furthermore, overloading resolution
for an expression considers only the context of the definition of its constituent
symbols. In this paper we formally characterize open and closed worlds, and
discuss their relative advantages. We present a type system that supports both
approaches together, and compare the defined system with Haskell type classes
extended with multi-parameter type classes and functional dependencies. We
show in particular that functional dependencies are not necessary in order to
support multi-parameter type classes, and present an alternative route.

1 Introduction
The type system of Haskell [23, 12, 10, 20] and related type systems[31, 2, 26, 13, 4, 8]
are based on an open world approach for overloading. In an open world, the principal type
of each overloaded symbol must be explicitly annotated, and a definition of an overloaded
symbol is required to exist only when overloading is resolved.

In Haskell, type annotations occur in type class declarations, and definitions of
overloaded symbols are given in instance declarations.

For example, the principal types of (==) (“equal”) and (/=) (“not equal”) are
annotated in type class Eq (defined in the Haskell prelude) as follows:

class Eq a where
(==), (/=) :: a→ a→ Bool
x /= y = not (x == y)
x == y = not (x /= y)



A class may contain, apart from type annotations of overloaded symbols, also
default definitions, as shown in class Eq above. The following is an instance of class Eq
for values of type Int, assuming that primEqInt is a function for comparing values of type
Int for equality. The definition of (/=) in this instance is the default definition given in
class Eq, since it is not explicitly given in the instance declaration.

instance Eq Int where
(==) = primEqInt

In an open world, a definition of an overloaded symbol is required to exist only
when overloading is resolved. For instance, no definitions of equality are required to be
in the context where a definition of (polymorphic) equality of lists is given.

In a closed world, on the other hand, for any given expression the types of defi-
nitions available in the context where this expression occurs determine if the occurrence
of this expression is well-typed or not and, in the first case, its principal type. A closed
world is “closed” only in the level of modules, which introduce separate typing contexts.
If, say, x is imported from a module M into another module M ′, then the uses of x in M ′

consider only the definitions of x that occur in M . If new definitions of x need to be given
or used in M ′, an open world must be used. On the other hand, inside a module, a closed
world is, in fact, “more open” than an open world, in the sense that a new definition of
an overloaded symbol is not required to be an instance of any given annotated type. Each
new definition of an overloaded symbol x implies a redefinition of x’s principal type, as
the least common generalization of the types of definitions of x in the typing context.

In this paper we construct a framework that allows us to give precise definitions
of open and closed worlds, and discuss their relative advantages. A useful result of this is
the presentation of an alternative to the use of functional dependencies in an extension of
Haskell with multi-parameter type classes. The paper starts by giving some preliminary
definitions, in Section 2. Section 3 presents constraint-set satisfiability and simplification.
In Section 4 we give formal definitions of open and closed worlds; relative advantages
are compiled in subsection 4.1. Formal definitions of type systems to support both closed
and open worlds are presented in Section 5. Inference of principal typings is discussed
in Section 6, together with some relevant implementation issues. A brief discussion of
ambiguity is given in Section 7. Section 8 concludes.

2 Preliminaries
We use types and terms of a language that is basically core-ML [21, 3, 22] extended with
the possibility of introducing overloaded definitions in the outermost program scope, by
means of a leto construct which does not introduce nested scopes. In this way, typing
contexts are allowed to be stepwisely extended and may have more than one assumption
for the same variable. The context-free syntax of expressions, their types and kinds of
types is presented in Figure 2.

Each simple type expression has a kind, identified by an upper index in a simple
type expression. A simple type is a type expression of kind ?, which is usually omitted.

Meta-variables α, β denote type variables and C a type constructor.

Types of expressions are constrained polymorphic types. A set of constraints κ is
a possibly empty set of pairs x : τ , where x denotes an overloaded symbol and τ a simple



Programs p ::= e | leto x = e in p
Expressions e ::= x | λx. e | e1 e2 | let x = e1 in e2

Kinds ι ::= ? | ι1 → ι2
Simple type expressions τ ι ::= αι | Cι | τ ι→ι′

1 τ ι
2

Constraints κ ::= {x1 : τ1, . . . , xn : τn} (n ≥ 0)
Types σ ::= τ | κ. τ | ∀α. σ

Figure 1: Context-free syntax of expressions and types

type. A constrained polymorphic type is written as ∀α1. . . . . ∀αn. κ. τ , where n ≥ 0. If
κ = ∅, we have an unconstrained polymorphic type.

The set of free type variables of type σ is defined as usual and denoted by tv(σ).

We use ∀ᾱ. κ. τ as an abbreviation for ∀α1. · · · ∀αn. κ. τ , for some n ≥ 0, and
similarly for τ̄ , σ̄. Naturally, ∀ᾱ. σ = σ if n = 0, and ∀ᾱ.∅.τ = ∀ᾱ.τ . We also use ᾱ as a
set of type variables, as in ᾱ = tv(τ).

A substitution S is a kind-preserving function from type variables to simple type
expressions. The identity substitution is denoted by id. Sσ represents the capture-free1

operation of substituting Sα for each free occurrence of type variable α in σ. This opera-
tion is extended to constraints in the usual manner. We define dom(S) = {α | Sα 6= α}.
It is sometimes convenient to use a finite mapping notation for substitutions, where S =
{(αj 7→ τj)}j=1..m is used to denote the substitution such that dom(S) = {αj}j=1..m and
Sαj = τj , for j = 1, . . . ,m. We also write S † {αi 7→ τi}i=1..n to denote the substitution
S ′ such that S ′β = Sβ, if β 6∈ {α}i=1..n, and S ′αi = τi, for i = 1, . . . , n. We define
σ[τ̄ /ᾱ] = (id † (ᾱ 7→ τ̄))σ.

In type systems with support for (universal) polymorphism, the type ordering is
such that ∀α. σ ≥ σ[τ/α], for all τ . The principal type of an expression in a typing
context is the least upperbound, in this ordering, of all types that can be derived for this
expression in this typing context. If σ ≥ σ′, then σ′ is called a generic instance of σ.

3 Constrained Polymorphism, Satisfiability and Simplification
In type systems with support for overloading, a typing context may include multiple as-
sumptions for an overloaded symbol. The set of valid type assumptions which constitute
a typing context is usually restricted by an overloading policy.

The principal type of an overloaded symbol x is obtained from the least common
generalization (lcg) of the set of types in assumptions for x in the relevant typing context
(unless the principal type of x is explicitly annotated). We say “the” least, instead of
“a” least, by considering polymorphic types as equivalent up to renaming of bound type
variables. Let τ ≥S τ ′ if Sτ ′ = τ , and also τ ≥ τ ′ if there exists S such that τ ≥S τ ′.
The lcg of a set of types {σi = ∀ᾱi. κi. τi}i=1..n is ∀ᾱ. τ , where ᾱ = tv(τ) and: i) τi ≥ τ
(i.e. ∀ᾱ. τ ≥ ∀αi. τi, ᾱi = tv(τi), for i = 1, . . . , n; and ii) τi ≥ τ ′ implies τ ≥ τ ′

(i.e. ∀β̄.τ ′ ≥ ∀ᾱ. τ , where β̄ = tv(τ ′)).
1The operation of applying substitution S to σ is capture-free if tv(Sσ) = tv(S(tv(σ))), where appli-

cation of substitution S to a set of type variables {αi}i=1..n is given by {Sαi}i=1..n.



The constrained least common generalization of the types of x in a typing context
Γ is the type σ = ∀ᾱ. {x : τ}. τ , where ∀ᾱ. τ is the lcg of Γ(x) — written as clcg(x, Γ, σ).

EXAMPLE 1. Consider that the assumptions for (==) in a typing context Γ(==)
are (==) : Int → Int → Bool and (==) : Float → Float → Bool. The following types
can be derived for (==) in this typing context:

Int→ Int→ Bool, Float→ Float→ Bool,∀a. {(==) : a→ a→ Bool}. a→ a→ Bool

The last one is the principal type of (==) in Γ(==). It can be instantiated to types of the
form {(==) : τ → τ → Bool}. τ → τ → Bool, for which the constraint is satisfiable in
Γ — in this particular case, τ can be either Int or Float or α, for some type variable α. If
τ is Int or Float, the set of constraints can be simplified to an empty of constraints. �

EXAMPLE 2. Consider the following definition of function ins, that uses (==):

ins a [] = [a]
ins a (b:x) = if a==b then b:x else b:ins a x

The principal type of a recursive let-binding corresponding to this definition, obtained as
the clcg of types of (==) in Γ(==), is the following:

∀a. {(==) : a→ a→ Bool}. a→ [a]→ [a]

Thus ins can be used in any context with type τ → τ → Bool, if the constraint-set
{(==) : τ → τ → Bool} is satisfiable in this context.

EXAMPLE 3 (Functions overloaded over distinct type constructors). Assume that
there exist distinct definitions of function ins, corresponding to operations for inserting el-
ements in lists and trees, originating the following type assumptions:

ins : ∀a. {(==) : a→ a→ Bool}. a→ [a]→ [a],
ins : ∀a. {(==) : a→ a→ Bool}. a→ Tree a→ Tree a

In a typing context Γins containing these assumptions, the principal type of ins is
∀a.∀c. {ins : a → c a → c a}. a → c a → c a, where c is a type variable of kind
? → ?. Note that this type does not contain a constraint on (==). Such constraint is
automatically recovered from constraints on types of assumptions for ins in Γins, if and
when overloading is resolved, therefore automatically creating a hierarchy of dependen-
cies between overloaded symbols. �

EXAMPLE 4. Consider that we also want to overload ins in typing context Γ′
ins

that includes, in addition to type assumptions in Γins of Example 3, also the following type
assumptions, that correspond to definitions that take a comparison operator as argument,
working on ordered lists and trees:

ins : ∀a. (a→ a→ Bool)→ a→ [a]→ [a]
ins : ∀a. (a→ a→ Bool)→ a→ Tree a→ Tree a



In Γ′
ins, the type of ins is ∀a, b, c. {ins : a → b → c}. a → b → c, where a, b, c are

respectively the lcgs of:

{ a, a, a→ a→ Bool, a→ a→ Bool }
{ [a], Tree a, a, a }
{ [a], Tree a, [a]→ [a], Tree a→ Tree a }

3.1 Constraint-set satisfiability

A constraint-set κ on a type σ = ∀ᾱ. κ. τ restrict the set of types to which σ can be
instantiated, on a given typing context Γ, according to the type assumptions in Γ for the
overloaded symbols that occur in κ.

A definition of constraint-set satisfiability independent on provability in a type
system was given in [1]. We present below a simpler definition (◦ denotes composition):

DEFINITION 1 (Constraint and constraint-set satisfiability).

Γ |=id ∅
(SAT0)

Sτ = Sτ ′ Γ |=S′ Sκ

Γ ∪ {x : ∀ᾱ. κ. τ ′} |=S′◦S {x : τ}
(SAT1)

Γ |=S {x : τ} Γ |=S κ

Γ |=S κ ∪ {x : τ}
(SATn)

A constraint-set satisfiability problem is a problem of determining, for a given pair
(Γ, κ), where Γ is a typing context and κ is a constraint-set, whether Γ |=S κ is provable,
for some substitution S, which is called a solution to the satisfiability problem.

A solution S is principal if for any other solution S ′ there exists a substitution R
such that S ′ = R ◦ S. The application of the principal solution followed by constraint-set
simplification is called improvement[12, 14].

If Γ |=S κ is provable, for some S, then we write that Γ |= κ, otherwise Γ 6|= κ.

The constraint-set satisfiability problem has been proved to be undecidable [29].
However, practical implementations have been used, that either restrict the set of types
of overloading symbols that may be introduced in typing contexts, in order to guarantee
decidability, or use an iteration limit in order to prevent nontermination [17, 19, 11, 1].

Let a solution S to a satisfiabilty problem of κ in Γ be minimal if, for any other
solution S ′, dom(S) ∩ tv(κ) ⊆ dom(S ′) ∩ tv(κ) (informally, a solution is minimal if it
“modifies κ less” than any other solution).

DEFINITION 2 (Overloading resolution). Let Γ be any typing context and κ be
any constraint-set involving a constraint on x — i.e. let κ = {x : τ} ∪ κ′, for some
constraint-set κ′. Overloading of x is resolved, in an expression that has a principal type
with constraint-set κ, if there exists a minimal solution S to the satisfiability of κ in Γ
such that Sτ = S ′τ , for all other minimal solutions S ′. �



3.2 Constraint-set Simplification
Constraints can be simplified either by removal of resolved constraints or substitution of
constraints. For instance, {(==): Int → Int → Bool} can be simplified to an empty set
of constraints, in typing context Γ(==) of Example 1, and {ins: α → [α] → [α]} can be
simplified to {(==): α→ α→ Bool }, in typing context Γins of Example 3.

Simplification yields equivalent constraint-sets. Equivalence between constraint-
sets in a given typing context Γ is defined as the reflexive, symmetric and transitive closure
of the simplification relation Γ |= κ� κ′ defined below.

DEFINITION 3 (Constraint-set Simplification).

Γ ∪ {x : ∀ᾱ. κ′. τ ′} |=S {x : τ} ∪ κ Γ 6|= {x : τ} ∪ κ

Γ ∪ {x : ∀ᾱ. κ′. τ ′} |= {x : τ} ∪ κ� S(κ ∪ κ′)

The premise of the rule above implies that overloading of x is resolved.

3.3 Open world satisfiability
Open world constraints — i.e. constraints introduced due to the specification, by pro-
grammers, of the principal type of overloaded symbols — are tested for satisfiability only
when overloading of some symbol must be resolved. This can be formalized by means
of the constraint projection operation κ|∗tv(τ)∪tv(Γ), which returns all constraints with type
variables “dependent” on type variables of τ and Γ, transitively.

DEFINITION 4 (Constraint projection).

κ|V = {x : τ ∈ κ | tv(τ) ∩ V 6= ∅} κ|∗V =

{
κ|V if tv(κ|V ) ⊆ V
κ|∗tv(κ|V ) otherwise

DEFINITION 5 (Open world satisfiability). Γ |=V
S κ holds if Γ |=S κ′ � ∅, where

κ′ = κ− κ|∗V ∪tv(Γ). Γ |=V κ holds if Γ |=V
S κ holds, for some S. �

EXAMPLE 5. Consider the definition h = g True, in typing context Γg = {g :
Bool → Char, g : Char → Bool}. In a closed world approach, h has type Char. In an
open world, consider for example that the definitions of g with these types are instances
of the multi-parameter type class class G a b where g:: a → b.

In this case, h has principal type G Bool b ⇒ b, where b is a fresh type variable
(written ∀β. {g : Bool → β}. β in CT). The reason for this is that it is possible for h
to be exported and used in a program context where other definitions of g exist, and one
of these could be used in the evaluation of g True (for example, a definition with type
Bool → Int). According to Definition 5, we have: Γ |={β} {g : Bool → β}, for any Γ,
that is, no definition of g is required to exist in order to type g True.

An extension of Haskell with functional dependencies allows programmers to
“close the world”. In this example, type variable b can be explicitly defined to “depend
on a” (or a can be specified to determine b), by annotation of a functional dependency:
class G a b | a -> b where g::a → b. With such a functional dependency,
the world is closed, i.e. satisfiability is checked in typing context Γg, returning a substitu-
tion that, applied to type G Bool b⇒ b, improves (or simplifies) it to Char. �



4 Open and Closed Worlds: a Formal Definition
In this section we give formal definitions of open and closed worlds, based on the defi-
nitions given before. Our characterization is somewhat different from the one based on
open and closed refinement kinds of Duggan and Ophel[7]. Refinement kinds are defined
so as to a priori allow constrained polymorphic types to be “incrementally extended” (in
the case of open kinds) or not (for closed kinds). Closed refinement kinds completely
characterize (“close up”), by themselves, the possibly infinite set of instance types. For
this, refinement kinds use intersection types and fixed point operators. In contrast, our
definitions are always respective to a given typing context.

DEFINITION 6 (Open World). An open world is characterized by:

1. The principal type of each overloaded symbol is specified by a single type anno-
tation and Γ |=tv(τx) κx holds, where Γ is the typing context and x : ∀ᾱ. κx. τx is
the type assumption corresponding to this annotation.

2. In such Γ, each definition of x must have a type σ = ∀β̄. κ. τ such that β̄ =
tv(κ. τ), τ = Sτx and κ ⊇ Sκx, for some S, and Γ |=tv(τ) κ.

3. Γ |=tv(τ) κ holds for all Γ, κ, τ such that Γ ` κ. τ is derivable.

In Γ |=tv(τ) κ, the set tv(τ) can be restricted, e.g. by functional dependencies
in Haskell with MPTcs, so as to close the world (as illustrated in Example 5). In this
case, tv(τ) should be subtracted by a set of variables in κ that are specified as targets
(i.e. that occur at the right-hand side) of some functional dependency and for which the
corresponding source type variables have been instantiated (i.e. do not occur in κ).

DEFINITION 7 (Closed World). A closed world is characterized by:

1. The principal type of x in Γ is the clcg of the types of x in Γ.
2. A type annotation for e is an instance of e’s principal type.
3. Γ |= κ holds for all Γ, κ, τ such that Γ ` κ.τ is derivable.
4. If definitions of x are given in a module M — in which type assumptions are

given by Γ — and x is imported into a module N , then Γ(x) gives the types in
type assumptions for x used to type uses of x in N .

4.1 Open versus closed

This section compiles relative advantages of open and closed worlds. For space reasons,
we only include major issues. We start with the advantages of an open world:

• Overloaded symbols may be used without requiring definitions of overloaded
symbols to be visible (they must be visible only when overloading is resolved).
• The type inference algorithm can behave more efficiently in an open world, due to

satisfiability being tested only when overloading must be resolved. This is rather
significant in the case of frequently used overloaded symbols (e.g. (==)).

However, in a closed world:

• Types of overloaded symbols need not be annotated. The annotation of con-
straints of types of overloaded symbols require that programmers decide, in ad-
vance, which particular definitions an overloaded symbol might possibly have (in



Haskell, programmers must decide, in particular, how to organize type class hi-
erarchies). In some situations, this requirement can be rather inconvenient (as
pointed out by e.g. Odersky, Wadler and Wehr [24, page 137]). Since constraints
include information that is dependent on the implementation of a function (i.e. on
the fact that an implementation uses some particular overloaded symbols), if the
implementation of a function is changed, so that the new implementation uses a
different set of overloaded symbols, program parts that use this function need to
be modified, if they include type annotations, even if the types of argument and
result of the function remain the same. In a closed world, the hierarchy of depen-
dencies between overloaded symbols need not be given by programmers, but are
recovered automatically by the types of overloaded symbols (see e.g. Example 3).
• A closed world allows the inference of more informative types, (possibly causing

overloading to be resolved), due to earlier constraint-set satisfiability checking.
Practical examples for which an analysis of the types of overloaded symbols avail-
able in a typing context can be used to instantiate the types of expressions that use
these overloaded symbols can be found in e.g. [14, 8].
• A closed world approach opens possibilities for optimizations in code generation

which do not depend (unlike the case of an open world approach [6, 18]) on a
global analysis of the entire program for efficient dynamic dispatching to an ap-
propriate definition of an overloaded symbol.

5 Type system
Figure 5 presents a version of system CT to support a closed world. This is extended in
Section 5.1 in order to support both open and closed worlds together. Typing formulas
Γ ` e : σ express that expression e has type σ in typing context Γ.

For any typing context Γ, (Γ ; x : σ) denotes Γ ∪ {x : σ} if Γ ∪ {x : σ} is a
valid typing context (according to the adopted overloading policy), and (Γ, x : σ) =
(Γ	 x) ; x : σ, where Γ	 x = Γ− {x : σ | x : σ ∈ Γ}. Predicate gen(κ. τ, σ) is defined
to hold if σ = ∀ᾱ. κ. τ , where ᾱ = tv(κ. τ). Instantiation of constrained polymorphic
types is restricted by constraint-set satisfiability:

DEFINITION 8 (Instance relation of constrained types).

σ ≥ ∀ᾱ. κ. τ Γ |= κ

σ ≥Γ ∀ᾱ. κ. τ

Note that if Γ(x) is a singleton {x : τ} then clcg(x, Γ,∀ᾱ. {x : τ}. τ) and
clcg(x, Γ, τ) also holds, since ∀ᾱ. {x : τ}. τ and τ are equivalent modulo constraint-set
simplification (in Γ).

5.1 Selectively opening a closed world
An extension of system CT to support also an open world is presented in Figure 5.1. It is
based on the use of special type annotations, that specify the types of overloaded symbols,
as in the following example: assume (==) :: a→ a→ Bool.

A clause assume x :: τ introduces in the typing context an open-world assump-
tion x : ∀ᾱ. {x : τ}. τ , where ᾱ = tv(τ). Note that the form of an assume clause
contributes to restoring data abstraction, since it does not include constraints.



clcg(x, Γ, σ) σ ≥Γ κ. τ

Γ ` x : κ. τ
(VAR)

Γ, x : τ ′ ` e : κ. τ

Γ ` λx. e : κ. τ ′ → τ
(ABS)

Γ ` e1 : κ1. τ2 → τ1 Γ ` e2 : κ2. τ2

Γ ` e1 e2 : κ1 ∪ κ2. τ1

Γ |= κ1 ∪ κ2 (APPL)

Γ ` e1 : κ1. τ1 Γ, x : σ1 ` e2 : κ2. τ2

Γ ` let x = e1 in e2 : κ2. τ2

gen(κ1. τ1, σ1) (LET)

Γ ` e1 : κ1. τ1 Γ; x : σ1 ` p : κ2. τ2

Γ ` leto x = e1 in p : κ2. τ2

gen(κ1. τ1, σ1) (LETO)

Figure 2: Type system CT supporting a closed world

The support for open world in system CT is based on characterizing type assump-
tions and constraints as open or closed. Open world type assumptions and constraints
are introduced in a typing context only by means of assume clauses, and the second by
lambda, let or leto bindings (type derivation for lambda and let bound variables are done
in the same manner as for leto bound variables). We define that ow and cw filters out
open and closed world assumptions, respectively, from a typing context or a constraint-
set (Γ = ow(Γ) ∪ cw(Γ) and similarly for κ). A typing context Γ must be such that
ow(Γ) satisfies the requirements in Definition 6. Γ(x) is redefined to mean ow(Γ)(x)
if ow(Γ)(x) 6= ∅, otherwise cw(Γ)(x). The satisfiability relation Γ |=∗ V κ holds if both
Γ |=V ow(κ) and Γ |= cw(κ) hold. The instantiation relation is modified in order to use

the combined satisfiability relation:
σ ≥ ∀ᾱ. κ. τ Γ |=∗ tv(τ) κ

σ ≥Γ ∀ᾱ. κ. τ
.

clcg(x, Γ, σ) σ ≥Γ κ. τ

Γ ` x : κ. τ
(VARo)

Γ, {x : τ ′} ` e : κ. τ

Γ ` λx. e : κ. τ ′ → τ
(ABSo)

Γ ` e1 : κ1. τ2 → τ1 Γ ` e2 : κ2. τ2

Γ ` e1 e2 : κ1 ∪ κ2. τ1

Γ |=∗ tv(τ1) κ1 ∪ κ2 (APPLo)

Γ ` e1 : κ1. τ1 Γ, {x : σ1} ` e2 : κ2. τ2

Γ ` let x = e1 in e2 : κ2. τ2

gen(κ1. τ1, σ1) (LETo)

Γ ` e1 : κ1. τ1 Γ; {x : σ1} ` p : κ2. τ2

Γ ` leto x = e1 in p : κ2. τ2

gen(κ1. τ1, σ1)
ow(Γ)(x) = {σ} implies σ ≥Γ σ1

(LETOo)

Figure 3: Type system CT supporting open and closed worlds

To summarize the modifications to support also an open world: i) a modified
constraint-set satisfiability relation, on the side condition of rule APPLo, considers the
possibility of occurrence of open and closed constraints together and, for open world



constraints, defers satisfiability to when overloading is resolved, ii) a correspondingly
modified instantiation relation is used in rule VARo, and iii) a side condition in rule LETOo

restricts the type of definitions of overloaded symbols to be an instance of its principal
type, if this type is explicitly specified.

6 Type Inference
A prototype implementation of the front-end of a compiler for a language that is essen-
tially “Haskell without type classes” but with support for constrained polymorphism as
defined in system CT, is available at http://www.dcc.ufmg.br/˜camarao/CT/. The
type inference algorithm in this prototype suuports both open and closed worlds and is an
extension — to support (possibly mutually recursive) binding groups — of the algorithm
defined in Figure 6 . This algorithm is defined as a syntax-directed proof system of judge-
ments Γ ` e : (κ. τ, Γ′), where (∀ᾱ. κ. τ, Γ′) is the principal typing of e in Γ [9, 28], where
ᾱ = tv(κ. τ)− tv(Γ). The algorithm uses the following functions.

Function clcga, for computing the constrained least common generalization of the
set of types of some symbol x in a typing context Γ, is given by clcga(x, Γ) = ∀ᾱ. {x :
τ}. τ , where ∀ᾱ. τ = lcga(Γ(x)). Function lcga computes the lcg of a given set of types,
based on a function for computing the lcg of any set of simple type expressions. Finite
mappings S from type variables to pairs of simple types are used in lcg ′ to “remember”
generalizations already performed. For example, lcg applied to the set of types {α1 →
β1 → α1, α2 → β2 → α2} gives α → β → α, where α, β are fresh (and not, say, α →
β → α′). lcg ′ needs to remember generalizations only inside a pair of type expressions.
χ is used to denote a type variable or constructor.

lcga({σi}i=1..n) = ∀ᾱ. τ , where σi = ∀ᾱ.κi. τi, for i = 1, . . . , n,
(τ,S) = lcg ′({τi}i=1..n, ∅), for some S, and ᾱ = tv(τ)

lcg ′({τ},S) = (τ,S)

lcg ′({χι1
1 , χι2

2 },S) =

 (χι1
1 ,S) if χ1 = χ2 (which implies ι1 = ι2)

(α,S) if S(α) = (χι1
1 , χι2

2 ), for some α
(α′,S † {α′ 7→ (χι1

1 , χι2
2 )} otherwise, where α′ is fresh

lcg ′({τ ι1
1 τ ι2

2 , τ ι3
3 τ ι4

4 },S) =

if S(α) = (τ ι1
1 τ ι2

2 , τ ι3
3 τ ι4

4 ), for some α, then (α,S)
else if i1 6= i3 or i2 6= i4 then (α′,S † {α′ 7→ (τ ι1

1 τ ι2
2 , τ ι3

3 τ ι4
4 )}), where α′ is fresh

else (τ ι1
a τ ι2

b ,S2), where: (τ ι1
a ,S1) = lcg ′({τ ι1

1 , τ ι3
3 },S)

(τ ι2
b ,S2) = lcg ′({τ ι2

2 , τ ι4
4 },S1)

lcg ′({τ1, τ2} ∪ T ,S) = lcg ′({τ} ∪ T , id) where (τ,S ′) = lcg′({τ1, τ2}, id)

Function simplify simplifies constraint-sets, as defined in Section 3.2.

simplify(κ, Γ) = simplify(κ, Γ, ∅)
simplify(∅, Γ, κ0) = ∅
simplify({o : τ}, Γ, κ0) = if tv(τ) = ∅ then ∅ else

if o : τ ∈ κ0 then {o : τ} else
if ∃ a single ∀ᾱ.κ′.τ ′ ∈ Γ(o) s.t. Sτ ′ = Sτ , for some S

then simplify(Sκ′, Γ, κ0 ∪ {o : τ}) else {o : τ}
simplify({o : τ} ∪ κ, Γ, κ0) = simplify({o : τ}, Γ, κ0) ∪ simplify(κ, Γ, κ0)



Function sat implements a practical solution to the satisfiability problem by re-
turning a principal solution whenever one exists and by using an iteration limit to stop,
when it cannot find a solution. The definition of sat is given in [1].

Function unify implements unification2 (see e.g. [22]). We assume that all types
in outermost typing contexts are closed (otherwise unification would be needed in the
case of leto-bindings, as done for let-bindings), and also use st(x, Γ, Γ′) = {τ = τ ′ |
x : τ ∈ Γ, x : τ ′ ∈ Γ′} and Γ∗

x = {x : σi}i=1..n ∪
⋃

y:τ∈κi, for some τ,i∈{1..n} Γ∗
y, where

Γ(x) = {σi = ∀ᾱi. κi. τi}i=1..n.

∀ᾱ. {x : τ}. τ = clcga(x, Γ) κ = simplify({x : τ}, Γ)

Γ ` x : (κ. τ, Γ∗
x)

Γ ` (e : κ. τ, Γ′)
Γ ` λx. e : (κ. τ ′ → τ, Γ′ 	 x)

τ ′ =

{
τx if x : τx ∈ Γ′

α otherwise, α fresh

Γ ` e1 : (κ1. τ1, Γ1) Γ ` e2 : (κ2. τ2, Γ2)
Γ ` e1 e2 : (S ′S(κ1 ∪ κ2. α), SΓ1 ∪ SΓ2))

S = unify({τ1 = τ2 → α} ∪ st(x, Γ1, Γ2))
S ′ = sat(κ1 ∪ κ2, Γ), α fresh

Γ ` e1 : (κ1. τ1, Γ1) Γ, {x : σ1} ` e2 : (κ2. τ2, Γ2)
Γ ` let x = e1 in e2 : (S ′S(κ2. τ2), SΓ2 	 x)

S = unify(st(x, Γ1, Γ2)})
S ′ = sat(κ1 ∪ κ2, Γ)

Γ ` e1 : (κ1. τ1, Γ1) Γ; {x : σ1} ` p : (κ2. τ2, Γ2)
Γ ` leto x = e1 in p : (S(κ2. τ2), Γ2 	 x)

S = sat(κ1 ∪ κ2, Γ)
ow(Γ)(x) = {σ} implies σ ≥Γ σ1

Figure 4: Algorithm for Inference of Principal Typings

Proofs of soundness and principal typing of the type inference algorithm can be
obtained by induction on the type inference rules, using proofs of correctness of sat ,
simplify and lcga. We are unfortunately still working on small details of the proofs.

The implementation of the type inference algorithm uses the core of an algorithm
by Mark Jones [15] and is based also on other works by the authors, covering constraint-
set satisfiability and polymorphic recursion [1, 28, 9]. We have very recently “glued” our
front-end to GHC’s[19] back-end, and a compiler will thus be publicly available soon.

Our experience with our prototype implementation, with respect to whether the
iteration limit will only be exercised in rare cases in practice, is unfortunately rather lim-
ited up to now, because we have been mostly exercising the prototype with “desugared”
versions of valid Haskell programs (with type classes replaced by assume clauses and
instances becoming normal declarations).

Even if constrained types are restricted as e.g. in Haskell 98, where type classes
can only have a single parameter, time complexity of satisfiability of a constraint on x still
grows exponentially with the number of assumptions for x in the typing context [25, 30].
In cases of heavily overloaded symbols, the performance of the type inference algorithm
thus degrades if an open world approach is not used (so as to restrict satisfiability to when

2Two types σ, σ′ are unifiable if there exists a substitution S such that Sσ = Sσ′.



overloading is resolved). A typical situation occurs with the overloading of (==), which
is defined for basic values (integers, floating point numbers etc.), lists, pairs, triples etc.

Recent work has been developed in order to define suitable conditions on types of
overloaded symbols that guarantee decidability of type inference and are not too restric-
tive in practice [27, 5, 16]. However, we are reluctant at the moment to incorporate such
restrictions, because of the added complexity to the language, the abscence of a semantic
characterization for such restrictions, and because restrictions prevent nontermination but
not termination after a very long time (shouldn’t the bottom line be lower/stricter?).

7 Ambiguity
A full discussion of type ambiguity and semantics coherence in the context of type sys-
tems with support for constrained polymorphism is, in our view, a subject that has not yet
been investigated in sufficient depth. Usually, an expression e is considered ambiguous
if two distinct denotations can be obtained for it, using a semantics defined inductively
on the derivation of a type for e [22]. A so-called coherent semantics does not specify a
meaning to such ambiguous expressions. With respect to derivations in the type system,
we can translate this requirement so as to avoid the existence of two or more derivations of
the same type for e that assign distinct non-unifiable types for some subterm of e. There
is also a third, more syntactic characterization, which is the one we shall briefly consider
below (again, we are not aware of any in-depth work relating any of these).

Consider a type with constraint-set κ and simple type τ , occurring in a typing
context Γ. We can consider, in type systems for constrained polymorphism:

DEFINITION 9. κ. τ is ambiguous if there exist two distinct minimal solutions S1

and S2 to the satisfiability of κ in Γ such that S1τ = S2τ .

This definition can be relaxed, allowing a greater set of expressions to be well-
typed, if we consider instead:

DEFINITION 10. κ. τ is ambiguous if there exists a minimal solution S to the
satisfiability of κ in Γ such that all other minimal solutions S ′ are such that Sτ = S ′τ .

With Definition 10, an expression such as, for example, f x is not considered
ambiguous in a typing context containing {f : Int → Int, f : Int → Float, f : Float →
Float, x : Int, x : Float}. The motivation for Definition 10 is clear: even though there
exist two distinct type derivations for f x : Float, it can be effectively used in a context
requiring it to have type Int. It is worthwhile to note though that Definition 10 would
contradict (in the example above) a usual definition of semantics coherence.

Though we haven’t unfortunately proved it yet, we expect that ambiguity as given
in Def. 9 is sufficient to reject all derivations that would lead to semantic incoherence.

In an open world, ambiguity must be tested, as satisfiability itself, only when
the satisfiability condition indicates so. Also, the use of constraint-projection, on which
the satisfiability condition is based upon, to avoid erroneous ambiguity detection — in
Haskell, in the case of MPTCs — eliminates the need for the programmer to specify
functional dependencies (FDs), although it has the drawback of removing from the pro-
grammer the possibility of using FDs in order to close the world. With the help of con-
straint projection, the world is closed automatically when (but only when) defined by the



satisfiability-trigger condition. In our view, the use of constraint projection is an adequate
tool for closing the world, releaving the programmer from the burden of specifying FDs.
For example, the use of constraint projection would avoid the ambiguity that would be
reported if FDs are removed from the class declaration below, since the type of g would
be SM m r⇒ m a.

class SM m r | m -> r, r -> m where
{ new:: a → m(r a); read:: r a → m a; write:: ...}

g x = do { r ← new x; read r }

8 Conclusion
We provide formal characterizations, in the context of constrained polymorphism, of open
and closed worlds, constraint-set satisfiability and simplification, overloading resolution
and type ambiguity. We define a type system for supporting both open and closed world
approaches together and an algorithm for computing principal typings. Relative advan-
tages between open and closed worlds are presented and briefly discussed, which suggest
that both should be supported in a programming language. The theoretical framework and
discussions presented provide a contribution to a better understanding of concepts and to
further work and evolution of programming languages in this area.

References
[1] Carlos Camarão, Lucı́lia Figueiredo, and Cristiano Vasconcellos. Constraint-set Satisfia-

bility for Overloading. In Proc. of ACM PPDP’04, pages 67–77, 2004.

[2] K. Chen, Paul Hudak, and Martin Odersky. Parametric Type Classes. In Proc. ACM
Conf. on Lisp and Functional Programming, pages 170–181, 1992.

[3] Luı́s Damas and Robin Milner. Principal type schemes for functional programs. In
Proc. of POPL’82, pages 207–212, 1982.

[4] Fergus Henderson David Jeffery and Zoltan Zomogyi. Type Classes in Mercury. Techni-
cal Report 98/13, University of Melbourne, 1998.

[5] Gregory J. Duck, Simon Peyton Jones, Peter J. Stuckey, and Martin Sulzmann. Sound
and Decidable Type Inference for Functional Dependencies. In Proceedings of
ESOP’2004 (European Symposium on Programming), 2004.

[6] Dominic Duggan, Gordon Cormack, and John Ophel. Kinded type inference for paramet-
ric overloading. Acta Informatica, 33(1):21–68, 1996.

[7] Dominic Duggan and John Ophel. Open and closed scopes for constrained genericiy.
Theoretical Computer Science, 275(1–2):215–258, 2002.

[8] Dominic Duggan and John Ophel. Type checking multi-parameter type classes. Journal
of Functional Programming, 12(2):135–158, 2002.

[9] Lucı́lia Figueiredo and Carlos Camarão. Principal Typing and Mutual Recursion. In
Proc. WFLP’2001 (Int’l Workshop on Funct. & Logic Prog.), pages 157–170, 2001.

[10] Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Philip Wadler. Type Classes
in Haskell. ACM TOPLAS, 18(2):109–138, 1996.



[11] Fergus Henderson et al. The Mercury Project, 2003. http://www.cs.mu.oz.au/research/mercury.

[12] Mark Jones. Qualified Types. Cambridge University Press, 1994.

[13] Mark Jones. A system of constructor classes: overloading and higher-order polymor-
phism. Journal of Functional Programming, 5(1):1–36, 1995.

[14] Mark Jones. Simplifying and Improving Qualified Types. In Proc. FPCA’95: ACM Conf.
on Functional Prog. and Comp. Architecture, pages 160–169, 1995.

[15] Mark Jones. Typing Haskell in Haskell. In Proc. of Haskell Workshop’99, TR UU-CS-
1999-28, Comp. Science Dept., Utrecht Univ., 1999. http://www.cse.ogi.edu/˜mpj/thih.

[16] Mark Jones. Type Classes with Functional Dependencies. In Proc. of ESOP’2000, 2000.
Springer-Verlag LNCS 1782.

[17] Mark Jones et al. Hugs98. http://www.haskell.org/hugs/, 1998.

[18] Mark P. Jones. Dictionary-free Overloading by Partial Evaluation. In ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Prog. Manipulation, 1994.

[19] Simon P. Jones et al. GHC: The Glasgow Haskell Compiler. http://www.haskell.org/ghc.

[20] Simon P. Jones et al. Haskell 98 Language and Libraries. Cambridge Univ. Press, 2003.

[21] Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348–375, 1978.

[22] John Mitchell. Foundations for Programming Languages. MIT Press, 1996.

[23] Tobias Nipkow and Christian Prehofer. Type Reconstruction for Type Classes. Journal of
Functional Programming, 1(1):1–100, 1993.

[24] Martin Odersky, Philip Wadler, and Martin Wehr. A Second Look at Overloading. In
Proc. of ACM Conf. on Functional Prog. and Comp. Archit., pages 135–146, 1995.

[25] Helmut Seild. Haskell Overloading is DEXPTIME-complete. Information Processing
Letters, 52(2):57–60, 1994.

[26] Geoffrey Smith. Principal type schemes for functional programs with overloading and
subtyping. Science of Computer Programming, 23(2-3):197–226, 1994.

[27] Martin Sulzmann et al. Understanding functional dependencies via Constraint Handling
Rules. Journal of Functional Programming, 17(1), 2007.

[28] Cristiano Vasconcelos, Lucı́lia Figueiredo, and Carlos Camarão. Practical Type Inference
for Polymorphic Recursion: an Implementation in Haskell. Journal of Universal
Computer Science, 9(8):873–890, 2003.

[29] Dennis Volpano and Geoffrey Smith. On the Complexity of ML Typability with Overload-
ing. In Proc. ACM Symp. Func. Prog. Comp. Archit., pages 15–28, 1991. LNCS 523.

[30] Dennis M. Volpano. Haskell-style Overloading is NP-hard. In Proceedings of the 1994
International Conference on Computer Languages, pages 88–94, 1994.

[31] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In
Proc. of ACM POPL’89, pages 60–76. ACM Press, 1989.


