
From Proof Trees to Justificatory Answering

Newton José Vieira, Isabel Gomes Barbosa, and Carlos Camarão de Figueiredo

Universidade Federal de Minas Gerais,
Belo Horizonte, Minas Gerais, Brazil.

{nvieira,isabel,camarao}@dcc.ufmg.br

Abstract. In those situations in which a question asks for informa-
tion about an individual, the answer may depend on general domain
knowledge, but usually it also depends on specific characteristics of that
individual. If the specific characteristics are incomplete or even absent
from the knowledge base, the general knowledge can point to several
alternative answers. In order to decide which of them applies to that
particular individual it is necessary to complete the lacking knowledge.
In this paper we present an approach to this problem in the context of a
first-order knowledge base. The general problem here is that a question
of the form find X such that q(X), where q is a predicate symbol and X

is an n-tuple of variables, may have in the usual proof systems an answer
q(T1) ∨ . . . ∨ q(Tk), k ≥ 2, where each Ti is an n-tuple of terms; and in
some scenarios such a disjunctive answer may be considered too impre-
cise to be helpfull. Here we present a method that allows, from a proof
tree resulting from a deduction of q(T1) ∨ . . . ∨ q(Tk), the contruction of
a justificatory answer, an answer that gives conditions under which each
disjunct q(Ti) is true. Each condition of a justificatory answer gives a
“concise” justification of a disjunct resembling an abductive explanation
for the disjunct, but a special one in that each condition of a justificatory
answer is derived from an actual proof of q(T1) ∨ . . . ∨ q(Tk). As in ab-
ductive explanation, in general several alternative justificatory answers
are possible, and the choice of a “good” one depends on knowledge of
the appropriate vocabulary.

1 Introduction

Given a knowledge base expressed in a first-order language, a question of the
form find X such that q(X), where q is a predicate symbol and X is an n-tuple
of variables, may have in the usual proof systems an answer q(T1) ∨ . . . ∨ q(Tk),
where each Ti is an n-tuple of terms [7]. If k = 1, the answer is called a categori-
cal answer, and if k ≥ 2, it is termed a disjunctive answer. A disjunctive answer
is often considered less informative than a categorical answer, since it doesn’t
specify which of its disjuncts is actually a correct answer to the question. Indeed,
when a disjunctive answer is obtained to a non-disjunctive question, it usually
means that some specific information required to deduce a categorical answer
are missing from the knowledge base. If such information could be retrieved and
made available to the user, then he might be able to get a categorical answer

2 From Proof Trees to Justificatory Answering

to his question. Assuming a disjunctive answer of the form q(T1) ∨ . . . ∨ q(Tk),
k ≥ 2, one way of doing this is to find and exhibit conditions under which each
disjunct q(Ti), 1 ≤ i ≤ k, is true. An incipient manner of finding such conditions
in the context of resolution proof procedures was introduced in [5].

As an example, adapted from [5], consider the (very simple) knowledge base
defined by the clauses:

1. ¬adult(x) ∨ prescribe(x,A)
(If someone is an adult, prescribe drug A)

2. adult(x) ∨ prescribe(x,B)
(If someone is not an adult, prescribe drug B)

and the question

find x such that prescribe(John,x)
(what drug should be prescribed to John?)

with logical form “∃x prescribe(John,x)”. Most proof systems would give the
answer prescribe(John,A) ∨ prescribe(John,B). From this answer, one cannot tell
which drug, A or B, should be prescribed to John. However, if the answer were

adult(John) → prescribe(John,A)
¬adult(John) → prescribe(John,B)

and the user knew whether John is an adult or not, he would know which drug to
prescribe. This kind of answer is called a justificatory answer, as each condition
in an antecedent “justifies” the disjunct in the consequent.

The above example illustrates the general situation in which a question asks
for information about an individual and such information depends, not only on
general knowledge of the domain, but also on specific characteristics of that in-
dividual. If the specific characteristics are incomplete or even absent from the
knowledge base, the general knowledge can point to several alternative answers.
In order to decide which of them applies to that particular individual it is neces-
sary to complete the lacking knowledge (in the example, the knowledge whether
John is an adult or not).

The main purpose of this paper is to present a method that allows one to
take a proof tree derived from a knowledge base Σ and a question q(X), to
which corresponds a disjunctive answer of the form q(T1) ∨ . . . ∨ q(Tk), k ≥ 2,
and produce a justificatory answer of the form:

α1 → q(T1)
α2 → q(T2)
...
αk → q(Tk)

where Σ |= αi → q(Ti), for 1 ≤ i ≤ k. Moreover, it is assumed that each Ti

is an n-tuple of ground terms, and so the original answer is a “specific answer”
according to the classification of Burhans and Shapiro [4].

From Proof Trees to Justificatory Answering 3

Regretably, it is not always possible to have an answer of the above format,
in particular if the knowledge is intrinsically disjunctive. For example, if you ask
the question what subject does John teach, and the knowledge base contains the
fact that John teaches Mathematics or Logic, then from this fact alone it follows
immediately the statement John teaches some subject. A corresponding proof
tree does not contain information that allows the extraction of one (non trivial)
condition that implies John teaches Mathematics and another that implies John
teaches Logic.

On the other hand, there can be several justificatory answers obtainable
from a proof tree. Each one is extracted from a different answer proof graph.
The method consists of two stages: first, it shows how to construct an answer
proof graph from a proof tree; second, it specifies how to extract the justificatory
answer from an answer proof graph. An initial work in the direction of presenting
justificatory answers to a question is shown in [1].

As far as we know, the use of justificatory answers for the clarification of
disjunctive answers constitutes original work.

This paper is organized as follows. Section 2 presents a definition of proof
tree, shows how information is extracted from a proof tree and introduces im-
portant concepts to be used in next sections. Section 3 presents proof graphs, a
generalization of proof trees. A definition of answer proof graphs and a method
for constructing a justificatory answer from an answer proof graph is described
in Section 4. Finally, conclusions are presented in Section 5.

2 Proof Trees

Proof trees are essentially what in [8] are defined as clausal tableaux and in
[13] are referred to as proof trees (this last one, if suitably extended for all first
order logic). They are also what Loveland calls goal trees in his MESON system
[11][10]. Despite having a definition not entirely identical to the definitions given
in the cited works, proof trees as defined here carry the same information: the
actual unsatisfiable set of instances of clauses structured in the form of a tree.

From now on the terminology usually associated to trees will be used without
explicit definitions. These definitions can be found in standard texts on discrete
mathematics or graph theory. In particular, the concepts of root, leaf, father,
child, ancestor, descendant, and so on, are used frequently ahead. In this paper
ancestors and descendants of a node v will not include v itself.

Each node of a proof tree is labeled by a literal. In the sequel a subtree that
has a literal L as its label is denoted by LS, where S denotes the (possibly empty)
set of its children. A proof tree is constructed from a set of clauses through
application of three rules. The first rule, the codification rule, is used only to
initiate the construction of a proof tree. It corresponds to constructing an initial
chain in model elimination [9]. The other two rules, expansion and reduction,
are similar to the extension and reduction rules of model elimination [9]. There
is no rule corresponding to the contraction rule of model elimination, and this
is essentially what keeps all information used in the proof of unsatisfiability

4 From Proof Trees to Justificatory Answering

recoverable from the (final) proof tree. The structure provided by proof trees is
similar to that proposed by the MESON system of Loveland [10]. In the process
of constructing a proof tree, the set S of a subtree LS can be absent; in this
case, L is called a candidate literal. In fact, the tree that has such a subtree is
a partial proof tree. In the process of constructing a proof tree, a partial proof
tree evolves until there is no subtree LS with S absent, in other words, until
there is no candidate literal.

Two special literals will be used ahead, both not present in the knowledge
base: ⊥ (falsum), to be thought as always false, and ⊤ (verum), to be interpreted
as true, as usual. The notation L is used to refer to the complement of literal L
(L and L are said to have opposite signs), while |L| is used to refer to the atom
of literal L. It must be supposed that ⊥ = ⊤ and ⊤ = ⊥. The notation LSσ

denotes the tree obtained by applying the substitution σ to the whole tree LS.
As will be clear ahead, there are four types of literals labeling nodes in a proof
tree: ⊥ (labels the root), ⊤ (labels a leaf), expanded literal (labels a node that
is not the root neither a leaf) and reduced literal (labels a leaf).

The three rules follow.

(Codification rule) The codification of an input clause L1∨ . . .∨Ln produces
the partial proof tree ⊥{L1, . . . , Ln}. Thus, the root of every proof tree is
labeled ⊥. Literals L1, . . . , Ln labeling the n children are candidate literals.

(Expansion rule) The expansion of a partial proof tree ⊥{. . . L . . .}, where
L is a candidate literal, using an input clause M1 ∨ . . . ∨ Mn such that L

and M1 are unifiable with a most general unifier (mgu) σ, produces the tree
⊥{. . . L{M2, . . . ,Mn} . . .}σ, if n ≥ 2, or ⊥{. . . L{⊤{}} . . .}σ if n = 1. The
literal Lσ in the resulting tree is an expanded literal and M2σ, . . . ,Mnσ, if
any, are candidate literals. Each other literal Nσ inherits its type from the
corresponding literal N of the previous partial proof tree.

(Reduction rule) The reduction of a proof tree ⊥{. . . L{. . .M . . .} . . .}, where
M is a candidate literal of opposite sign to L, and |M | and |L| are unifiable
with mgu σ, produces the tree ⊥{. . . L{. . .M{} . . .} . . .}σ. The literal Mσ

in the resulting tree is a reduced literal. Every other literal Nσ inherits its
type from the corresponding literal N of the previous partial proof tree.

As said above, every deduction starts with the application of the codification
rule, which produces the initial partial proof tree. A partial proof tree without
candidate literals is what is called a proof tree. The only occurrence of ⊥ appears
at its root and each leaf is labeled with a reduced literal or ⊤; all internal nodes
except the root are labeled with expanded literals.

Example 1. Consider the set of clauses:

1. P (x) ∨R(x) ∨Q(x, y)
2. ¬Q(x, y) ∨ S(x)

3. ¬S(x) ∨ ¬Q(x, b)

4. ¬R(a)

From Proof Trees to Justificatory Answering 5

and the question find x such that P (x). As required, one first negates ∃xP (x)
to obtain the clause:

5. ¬P (x)

A proof tree generated from clauses 1-5 is represented graphically in Figure 1.
Expanded literals and ⊥ are shown inside normal rectangles and reduced literals
and ⊤ inside dashed rectangles. In that figure, to each clause used to construct

⊥

P (a)

¬R(a) ¬Q(a, b)

⊤ ¬S(a)

Q(a, b)

•(5)

•(1)

•(4) •(2)

•(3)

Fig. 1. A proof tree generated from clauses 1-5.

the tree via a rule is associated a node which links the nodes whose labels consti-
tute the antecedent to the node labeled by the consequent of the corresponding
clause instance (viewing an instance as a conditional in the usual manner).

Consistently with the discussion in Example 1, in the rest of this paper a proof
tree will be seen as a bipartite graph with two kinds of nodes: clause nodes, whose
labels are clauses from the knowledge base, and literal nodes, that have literals
as its labels. The father of a clause node v will be called its consequent node
and the children of v its antecedent nodes. The following definition introduces
the concept of support of a clause node, which when properly generalized in the
next section will be the basis for justificatory answers. A (clause or literal) node
v labeled X will be refered to as the (clause or literal) node v :X .

Definition 1. The support of a clause node v, S(v), is defined as follows.

– If v has one antecedent node labeled ⊤, S(v) = ∅;
– If v has n antecedent nodes labeled with reduced literals L1,. . . , Ln, n ≥ 1,

and no more antecedent nodes, S(v) = {L1, . . . , Ln};
– If v has n antecedent nodes labeled with reduced literals L1,. . . , Ln, n ≥ 0,

and it has k antecedent nodes labeled with expanded literals p1 : M1, . . . ,
pk :Mk, k ≥ 1, then S(v) = {L1, . . . , Ln} ∪

⋃

1≤i≤k(S(ui) − {Mi}), where
u1, . . . , uk are the clause nodes whose consequent nodes are p1, . . . , pk. �

Notice that a reduced literal is “propagated” into supports of ancestor clause
nodes until its complement is found. As an example, the support of each clause
node in Figure 1 is shown in Figure 2 at the node’s left side.

6 From Proof Trees to Justificatory Answering

⊥

P (a)

¬R(a) ¬Q(a, b)

⊤ ¬S(a)

Q(a, b)

•∅ (5)

•∅ (1)

•∅ (4) •{Q(a, b)} (2)

•{Q(a, b)} (3)

Fig. 2. Supports of clause nodes of proof tree of Figure 1.

Some important notation is introduced ahead in order to simplify the subse-
quent discussion.

Notation: Let S,R be sets of literals. Then:1

– S = {L |L ∈ S};

– conj(S) =

{

⊤ if S = ∅,
M1 ∧ . . . ∧Mn if S = {M1, . . . ,Mn}, n ≥ 1;

– disj(S) =

{

⊥ if S = ∅,
M1 ∨ . . . ∨Mn if S = {M1, . . . ,Mn}, n ≥ 1;

– R S = conj(R) → disj(S). �

It is trivial do show that R S ≡ disj(R ∪ S).
Now, the support S(v) of a clause node v and its consequent node u :L are

related, via the Theorem below, to a lemma, a usually simple formula that follows
from the knowledge base and can be expressed as S(v) {L} or disj(S(v)∪{L}).

Theorem 1. Let Σ be the set of clauses from which a proof tree T is constructed
and v be a clause node of T that has a consequent node labeled L. Then Σ |=
disj(S(v) ∪ {L}).2

Next section presents the concept of proof graph, an acyclic connected graph
that generalizes the concept of proof tree and is the starting point for obtaining
justificatory answers. But before presenting proof graphs, it is shown next how
an answer can be extracted from a proof tree.

In this paper it is supposed that a question is represented by an atomic
formula. This assumption does not restrict generality. If the logical form of the
question is a general formula ∃XF(X), where X is the n-tuple of variables that
occur free in F(X), one can add the clausal form of ∀X (F(X) → q(X)) to

1 conj(S), disj(S) and R S denote formulas. The last one denotes a conditional
whose antecedent is conj(S) and consequent is disj(S).

2 Theorem 1 follows immediately from Theorem 3, subsequently presented, since a
proof tree is a special proof graph where each clause node has a single literal as its
consequent.

From Proof Trees to Justificatory Answering 7

the knowledge base, where q is a new predicate symbol, and the question is
considered to be q(X) . This strategy is used in several works, such as [6][4].

A proof tree produced in order to process a question q(X) has the following
characteristics:

1. if there exists no node labeled q(T) or ¬q(T), where T is an instance of X ,
the knowledge base is inconsistent;

2. if there exists only one such node, then either (a) its label is positive and it
is the only antecedent of a clause node whose consequent node is the root
(labeled ⊥), or (b) its label is negative and it is the consequent of a clause
node whose antedecent is a leaf labeled ⊤;

3. otherwise, there are two possibilities: (a) the label of one of them is positive
and it is the only antecedent of a clause node whose consequent is the root
labeled ⊥, and the others have labels that are all negative and each one of
them is the consequent of a clause node whose antecedent is a leaf labeled
⊤, or (b) all of them have labels that are negative and each one of them is
the consequent of a clause node whose antecedent is a leaf labeled ⊤.

In case 1, the answer, ∀Xq(X), follows from an inconsistent knowledge base. In
case 2, the answer is categorical: q(T), where T is an n-uple of terms. Finally,
in case 3 the answer is disjunctive: q(T1) ∨ . . . ∨ q(Tk), k ≥ 2, where each Ti is
an n-tuple of terms. Then, in general an answer extracted from a proof tree has
the form q(T1) ∨ . . . ∨ q(Tk) iff for each i q(Ti) is the label of the antecedent of
a clause node whose consequent is the root or ¬q(Ti) labels the consequent of a
clause node whose antecedent is a leaf labeled ⊤.

Example 2. Consider a knowledge base containing the following set of clauses:

1. stud(x) ∨ staff(x) ∨ visit(x)
(Students, staff, visitors are eligible to borrow books)

2. ¬stud(x) ∨ under(x) ∨ grad(x)
(Students are divided into under and graduate students)

3. ¬stud(x) ∨ ¬under(x) ∨ borrow(x,4)
(Undergraduate students can borrow up to 4 books)

4. ¬stud(x) ∨ ¬grad(x) ∨ borrow(x,8)
(Graduate students can borrow up to 8 books)

5. ¬staff(x) ∨ acad(x) ∨ adm(x)
(Staff can be either academic or administrative)

6. ¬staff(x) ∨ ¬acad(x) ∨ borrow(x,8)
(Academic staff can borrow up to 8 books)

7. ¬staff(x) ∨ ¬adm(x) ∨ borrow(x,2)
(Administrative staff can borrow up to 2 books)

8. ¬visit(x) ∨ borrow(x,4)
(Visitors can borrow up to 4 books)

9. ¬under(J)
(John is not an undergraduate)

Consider the question how many books can John borrow, formulated as find y

such that borrow(J,y). The clause obtained after negating the question is:

10. ¬borrow(J,y)

8 From Proof Trees to Justificatory Answering

A proof tree is given in Figure 3 along with the supports of all its clause
nodes. Leting Σ be the set of clauses 1 to 9, Theorem 1 allow us to infer that

⊥

•

borrow(J,4)

•

visit(J)

•

¬ stud(J) ¬ staff(J)

•

¬ under(J) ¬ grad(J)

•

acad(J) ¬ borrow(J,8)

•

⊤

•

stud(J) ¬ borrow(J,8)

•

staff(J) ¬ adm(J)

•

⊤

•

⊤

•

staff(J) ¬ borrow(J,2)

•

⊤

(10)∅

(8)∅

(1)∅

(2){stud(J)} (6){staff(J)}

(9)∅ (4){stud(J)} (5){staff(J)} (10)∅

(10)∅ (7){staff(J)}

(10)∅

Fig. 3. Proof tree for Example 2.

Σ ∪ {¬borrow(J,2),¬ borrow(J,4),¬ borrow(J,8)} |= disj(∅ ∪ {⊥}), from which
followsΣ |=(¬ borrow(J,2) ∧ ¬ borrow(J,4) ∧ ¬ borrow(J,8)) → ⊥, thus justifying
the disjunctive answer:

borrow(J,2)∨borrow(J,4)∨borrow(J,8).

3 From Proof Trees to Proof Graphs

In a proof tree, a clause instance is represented as a conditional with an an-
tecedent constituted of a conjunction of one or more literals and a consequent
of a single literal. In a proof graph, a clause instance is also represented as a
conditional, but with the consequent consisting of a disjunction of literals. As
in a proof tree, each internal node is labeled with a literal of a clause instance
and between the nodes labeled with the literals of the antecedent and the nodes
labeled with the literals of the consequent there exists a node labeled with the
original clause from the knowledge base. Again, the nodes labeled with literals
are called literal nodes and those labeled with clauses are termed clause nodes.

A proof graph is a bipartite graph: a literal node labeled with a literal from an
antecedent is linked to a clause node and this is linked to a literal node labeled
with a literal from the consequent. As in a proof tree, an antecedent node is
linked to a single clause node. In addition, a consequent node is a successor of a
single clause node.

From Proof Trees to Justificatory Answering 9

Starting from a proof tree as the initial proof graph, other proof graphs can
be produced by applying the basic transformation step. The result will not ne-
cessarily be a tree, but will continue to be a directed acyclic connected (bipartite)
graph. In order to explain some details of the basic transformation step, we define
first the possible formats of a proof graph.

Definition 2. A proof graph is an acyclic connected directed graph with clause
and literal nodes in which each clause node c must be in a subgraph of one of the
following forms, where v : L means node v labeled L, and neither Li nor Mj is
⊤ or ⊥ (for any i, j):

1.
v : ⊥

•

v1 : L1 · · · vn : Ln

c : C

n ≥ 1

Node v has no successors (it is a root). Each vi
must have exactly one clause node as predeces-
sor and Li is an expanded literal. Clause C has
L1 ∨ . . . ∨ Ln as an instance.

2.
v1 : M1 · · · vk : Mk

•

v : ⊤

c : C

k ≥ 1 Node v has no predecessors (it is a leaf). Each
vi must have exactly one clause node as succes-
sor and Mi is an expanded literal. Clause C has
M1 ∨ . . . ∨Mk as an instance.

3.
v1 : M1 · · · vk : Mk

•

u1 : L1 · · · un : Ln

c : C

k ≥ 1

n ≥ 1

Each vi must have exactly one clause node as
successor and Mi is an expanded literal. Each ui

either has no predecessors (is a leaf), and in this
case Li is a reduced literal, or has exactly one
clause node as predecessor and Li is an expanded
literal. Clause C has L1∨. . .∨Ln∨M1∨. . .∨Mk

as an instance.

In a proof graph, each expanded literal v : L is shared by instances of two
clauses c1 : C1 and c2 : C2 such that (see the left side of Figure 4):

– node v is predecessor of c1 and successor of c2;
– the instance of C1 can be written as ({L} ∪ B) A, where:

• literals in A label successors of c1 (if A = ∅, there is only one successor
and it is labeled ⊥),

• literals in B label predecessors of c1 (no predecessors if B = ∅);
– the instance of C2 can be written as D (C ∪ {L}),

• literals in C label successors of c2 (no successors if C = ∅);
• literals in D label predecessors of c2 (if D = ∅, there is only one prede-
cessor and it is labeled ⊤).

The subgraph containing such information can be represented schematically as
shown on the left side of Figure 4, where [A], [B], [C] and [D] are the subgraphs
that contains nodes whose labels are in A, B, C and D. The basic transforma-
tion step changes the subgraph in a way that the label of node v becomes L.
Consistently the two instances referred to above are rearranged to become the
following logically equivalent formulas:

10 From Proof Trees to Justificatory Answering

– B ({L} ∪ A),
– ({L} ∪ D) C.

The right side of Figure 4 shows a schema of the corresponding subgraph ob-
tained via the basic transformation step as follows.

[A]

•

[B][C] L

•

[D]

c1

c2

[C]

•

[D] L [A]

•

[B]

c1

c2

@@
��

Fig. 4. Basic transformation step schema.

(Basic transformation step) Let c1 labeled with a clause that has ({L} ∪
B) A as an instance, c2 labeled with a clause that has D (C ∪ {L}) as
an instance and v labeled L be such as discussed above. Then:
1. eliminate v, reinsert it as successor of c1 and predecessor of c2 and change

its label to L;
2. if A = ∅, eliminate the successor of c1 labeled ⊥;
3. if B = ∅, create a predecessor for c1 labeled ⊤;
4. if C = ∅, create a successor for c2 labeled ⊥;
5. if D = ∅, eliminate the predecessor of c2 labeled ⊤.

Theorem 2. An application of the basic transformation step to a proof graph
results in a proof graph.

Proof. First note that with the exception of the subgraphs involving nodes c1
and c2 and its successors and predecessors, all the rest remain unmodified.

Consider first the modifications related to c1. If subgraph [A] is a single node
labeled ⊥, then Definition 2 says that c1 and its successors and predecessors
have form 1 in the original graph; step 2 of the basic step eliminates that node
and (a) if subgraph [B] is empty, step 3 creates a node labeled ⊤ turning c1
and its successors and predecessors in a subgraph of form 2, and (b) if [B] is
not empty, c1 and its successors and predecessors become a subgraph of form 3.
On the other hand, if [A] is not a single node labeled ⊥, then Definition 2 says
that c1 and its successors and predecessors have form 3 in the original graph; in
the case that (a) [B] is empty, step 3 of the basic step creates a node labeled ⊤
turning c1 and its successors and predecessors in a subgraph of form 2, but (b)
if [B] is not empty, c1 and its successors and predecessors remain a subgraph of
form 3. The instances of the clauses labeling c1 in the original and in the new
graph are the same, as ({L} ∪ B) A ≡ B ({L} ∪ A).

Similarly one can show that an application of the basic transformation step
turns c2 and its successors and predecessors in a subgraph of the form 1 or 3.

From Proof Trees to Justificatory Answering 11

Figure 5 shows the graph resulting from the application of the basic trans-
formation step to the graph of Figure 3, where c1 is the node labeled with clause
(1), c2 is the node labeled with clause (6) and v is the node labeled ¬ staff(J);
the complement of this last literal is colored gray in Figure 5.

⊥

• (10){visit(J)}

borrow(J,4) ⊥

• (8){visit(J)} • (6){staff(J)}

visit(J) staff(J) acad(J) ¬ borrow(J,8)

• (1)∅ • (5){staff(J)} • (10)∅

¬ stud(J) staff(J) ¬ adm(J) ⊤

• (2){stud(J)} • (7){staff(J)}

¬ under(J) ¬ grad(J) staff(J) ¬ borrow(J,2)

• (9)∅ • (4){stud(J)} • (10)∅

⊤ stud(J) ¬ borrow(J,8) ⊤

• (10)∅

⊤

Fig. 5. A proof graph obtained from that of Figure 3.

Figure 5 also shows the support of each clause node of the proof graph. This
concept had to be generalized accordingly to account for the possibility of more
than one consequent node. The definition follows.

Definition 3. The support of a clause node v, S(v), is defined as follows.

– If v has one antecedent node labeled ⊤, S(v) = ∅;
– If v has n antecedent nodes labeled with reduced literals L1,. . . , Ln, n ≥ 1,

and no more antecedent nodes, S(v) = {L1, . . . , Ln};
– If v has n antecedent nodes labeled with reduced literals L1,. . . , Ln, n ≥ 0,

and it has k antecedent nodes labeled with expanded literals p1 : M1, . . . ,
pk :Mk, k ≥ 1, and u1, . . . , uk are the clause nodes with consequent nodes
p1, . . . , pk, then S(v) = {L1, . . . , Ln} ∪

⋃

1≤i≤k h(pi), where

h(pi) =

{

S(ui)− {Mi}, if pi is the only consequent of ui;
{Mi}, otherwise.

�

A theorem similar to Theorem 1 holds for proof graphs.

Theorem 3. Let Σ be a set of clauses from which a proof tree T is constructed,
G be a proof graph constructed from T and N1, . . . , Nm be the labels of the
consequent nodes of a clause node v of G. Then Σ |= disj(S(v)∪{N1, . . . , Nm}).

12 From Proof Trees to Justificatory Answering

Proof. By structural induction. First, if v has an antecedent node labeled ⊤,
then S(v) = ∅. Thus, disj(S(v) ∪ {N1, . . . , Nm}) = N1 ∨ . . . ∨ Nm and this is
an instance of the clause labeling v. Therefore, Σ |= disj(S(v) ∪ {N1, . . . , Nm})
holds. Second, if v has n antecedent nodes labeled with reduced literals L1,. . . ,
Ln, n ≥ 1, and only those antecedent nodes, S(v) = {L1, . . . , Ln} and disj(S(v)∪
{N1, . . . , Nm}) = L1 ∨ . . . ∨ Ln ∨ N1 ∨ . . . ∨ Lm, a clause which is an instance
of that labeling v. Again, Σ |= disj(S(v)∪ {N1, . . . , Nm}) holds. Now consider a
subgraph in which v has n antecedent nodes labeled with reduced literals L1,. . . ,
Ln, n ≥ 0, and k antecedent nodes labeled with expanded literals p1 :M1, . . . ,
pk : Mk, k ≥ 1. In this case, S(v) = {L1, . . . , Ln} ∪

⋃

1≤i≤k h(pi), where if
u1, . . . , uk are the clause nodes whose consequent nodes are p1, . . . , pk, then
h(pi) = S(ui) − {Mi}, if pi is the only successor of ui, and h(pi) = {Mi}, if pi
is not the only successor of ui. In the former case, the inductive hypothesis says
that Σ |= disj(S(ui) ∪ {Mi}). Since S(ui) ∪ {Mi} = (S(ui) − {Mi}) ∪ {Mi} =
h(pi) ∪ {Mi} it follows that Σ |= disj(h(pi) ∪ {Mi}). As L1 ∨ . . . ∨ Ln ∨M1 ∨
. . . ∨ Mk ∨ N1 ∨ . . . ∨ Nm is an instance of the clause (from Σ) that labels v,
Σ |= L1 ∨ . . . ∨ Ln ∨ M1 ∨ . . . ∨ Mk ∨ N1 ∨ . . . ∨ Nm. Since for 1 ≤ i ≤ k,
Σ |= disj(h(pi) ∪ {Mi}) if pi is the only successor of ui (as shown above), and
h(pi) = {Mi} if pi is not the only successor of ui (by Definition 3), one can
conclude Σ |= disj({L1, . . . , Ln} ∪ h(p1) ∪ . . . ∪ h(pk) ∪ {N1, . . . , Nm}. In other
words, Σ |= disj(S(v) ∪ {N1, . . . , Nm}), as required.

Several conclusions can be drawn from Figure 5 by applying Theorem 3. In
particular, it can be seen that:

– Σ ∪{¬ borrow(J,4)} |= disj({¬visit(J)}∪{⊥}) or equivalently Σ |= ¬ visit(J)
∨ borrow(J,4).

– Σ ∪ {¬ borrow(J,2),¬ borrow(J,8)} |= disj({¬staff(J)} ∪ {⊥}) or equivalently
Σ |= ¬staff(J) ∨ borrow(J,2) ∨ borrow(J,8).

– Σ∪{¬ borrow(J,8)} |= disj(∅∪{visit(J),staff(J)}) or equivalently Σ |= visit(J)
∨ staff(J) ∨ borrow(J,8).

From these three statements the disjuntive answer follows, and it also follows
the following “tentative” justificatory answer:

visit(J) → borrow(J,4).
staff(J) → (borrow(J,2) ∨ borrow(J,8)).
¬ visit(J) ∧¬ staff(J) → borrow(J,8).

This answer has two problems: (i) it is not one of the more precise answers: there
are others that eliminate the imprecision of the second statement above; (ii) it is
not imediately recoverable from the graph: some extra reasoning was necessary
to uncover it. These problems are solved by the construction of a special proof
graph, an answer proof graph, to be introduced in the next section.

4 Arriving At Justificatory Answers

Before defining answer proof graph, a precise set of requirements for justificatory
answers are presented. Let Σ be a knowledge base, q(X) a question to answer

From Proof Trees to Justificatory Answering 13

from Σ and q(T1) ∨ . . . ∨ q(Tk) a disjunctive answer. A justificatory answer to
q(X) is a set of conditionals {αi → βi | 1 ≤ i ≤ m} satisfying the following
requirements:

– Σ |= αi → βi for 1 ≤ i ≤ m;
– each αi is a conjunction of one or more literals, none of them in {q(T1), . . . , q(Tk)};
– each βi is a disjunction of one or more literals from {q(T1), . . . , q(Tk)}; and
– the set of literals of β1, . . . , βm is {q(T1), . . . , q(Tk)}.

Next, it is presented the definition of an answer proof graph.

Definition 4. An answer proof graph is (a) a proof tree without occurrences of
the answer predicate in its labels (reflecting the unsatisfiability of the knowledge
base) or is (b) a proof graph in which every occurrence of the answer predicate
occurs in a positive literal that labels a son of a root, and no root has as its son a
node labeled with a literal that hasn’t the answer predicate as its predicate symbol.

Starting from the proof tree of Figure 3, it is possible to arrive at the answer
proof graph of Figure 6 after a certain number of applications of the basic trans-
formation step. Note that there is one root for each occurrence of the predicate
symbol borrow in the initial proof tree.

⊥

{staff(J),¬ acad(J)}• (10)

⊥

{stud(J)}

borrow(J,2)

{staff(J),¬ acad(J)}• (10) • (7)

borrow(J,8)

{stud(J)}

⊥

{visit(J)}

adm(J)

{staff(J),¬ acad(J)}

staff(J) ⊥

{borrow(J,8)}• (4) • (10) • (5) • (10)

stud(J) grad(J)

{stud(J)}

borrow(J,4)

{visit(J)}

staff(J) ¬ acad(J)

{staff(J)}

borrow(J,8)

• (2) • (8) • (6)

¬ under(J)

∅

stud(J) visit(J) staff(J)

• (9) • (1)

⊤ ⊤

∅

Fig. 6. Example of answer proof graph with supports.

From the supports of the clause nodes whose consequent nodes have labels
with the predicate symbol borrow in the proof graph of Figure 6, taken from
left to right, one can state the following consequences of the knowledge base of
Example 2:

1. stud(J) → borrow(J,8)
2. visit(J) → borrow(J,4)
3. staff(J) ∧¬ acad(J) → borrow(J,2)
4. staff(J) → ¬ acad(J) ∨ borrow(J,8)

14 From Proof Trees to Justificatory Answering

The first three consequences are exactly in the format stated in the requirements.
The last one can be put in that format by using one of its contrapositives:

4’. staff(J) ∧ acad(J) → borrow(J,8)

This is always possible, obviously, when the consequent has only one literal with
the occurrence of the answer predicate. Let G be an answer proof graph of the
kind described in Definition 4(b). Let v be a clause node that has at least one
consequent node whose label is a literal on the answer predicate. Then, for each
such clause node v, the following “answer” follows from the knowledge base:

S(v) ∪ {M1, . . . ,Mk} {q(T1), . . . , q(Tl)}

where M1, . . . , Mk, q(T1), . . . , q(Tl) are labels of all consequent nodes of v, the
first k don’t contain the answer predicate q, k ≥ 0, and the rest contain occur-
rences of q, l ≥ 1. According to Theorem 3, Σ |= disj(S(v) ∪ {M1, . . . ,Mk} ∪
{q(T1), . . . , q(Tl)}), and this last formula is equivalent to S(v)∪{M1, . . . ,Mk}
{q(T1), . . . , q(Tl)}. These answers have exactly the required form for a justifica-
tory answer.

5 Conclusion

There are situations in which a question asks for information about an individual,
but the answer to this question depends on the specific characteristics of that
individual that are incomplete or even absent from the knowledge base. Usually
in such situations, only disjunctive answers can be obtained.

In this paper, we addressed this problem in the context of a first-order know-
ledge base. We considered questions of the form find x such that q(X), where q is
a predicate symbol and X is an n-tuple of variables, that result in a disjunctive
answer q(T1) ∨ . . . ∨ q(Tk), k ≥ 2, where each Ti is an n-tuple of terms. A
disjunctive answer of this form, although correct, may not be informative enough.
The reason is that, when supplied with such answer, the user may not be able
to determine which disjunct q(Ti), 1 ≤ i ≤ k, is the appropriate answer to
his question.

As a solution, we presented a method that allows, from a proof tree cor-
responding to a deduction of a disjunctive answer q(T1) ∨ . . . ∨ q(Tk), k ≥ 2,
the construction of a justificatory answer, an answer that gives conditions un-
der which each disjunct q(Ti) is true. Our method first transforms the specified
proof tree into an answer proof graph and, then, from the resulting answer proof
graph, it extracts a justificatory answer.

Several answer proof graphs can be produced from the same proof tree. Each
answer proof graph may generate a different justificatory answer to the question.
Thus, we must make here a last remark regarding the quality of answers, as it
could be possible that it is not the same for all answer proof graphs. It could
be the case that some of them supply answers more meaningful than others.
In reality, the meaningfulness of an answer could depend on characteristics of
the user not present in a proof tree (and consequently not in an proof graph).

From Proof Trees to Justificatory Answering 15

Typically, one would try to capture such characteristics in a user model. Any
way, the method presented in this paper will not exclude any of the possibly
meaningful justificatory answers.

As future work, we intend to generalize our method to the other classes of
answers (generic and hypothetical answers).

References

1. Barbosa, Isabel G., Vieira, N.J.: Extracting case-based answers from closed proof-
trees. In: Proceedings of the 2nd International Conference on Agents and Articial
Intelligence, Volume 1, 2010.

2. Brachman, R., Levesque, H.: Knowledge Representation and Reasoning (The Mor-
gan Kaufmann Series in Artificial Intelligence). Morgan Kaufmann, Amsterdam;
Boston, 2004.

3. Bruynooghe, M.: The Memory Management of Prolog Implementations. In K. L.
Clark, S.-A. Tarnlund, eds.: Logic Programming, pp. 83-98, Academic Press, Lon-
don, 1982.

4. Burhans, D.T. , Shapiro, S.C.: Defining Answer Classes Using Resolution Refuta-
tion. J. Applied Logic, 5(1):70-91, 2007.

5. Chang, C.-L., Lee, R.C.-T.: Symbolic Logic and Mechanical Theorem Proving. Aca-
demic Press, Inc., Orlando, FL, USA, 1973.

6. Demolombe, R.: A Strategy for the Computation of Conditional Answers. In: ECAI
92: Proceedings of the 10th European Conference on Artificial intelligence, pp. 134-
138, New York, NY, USA, 1992.

7. Green, C.: The Application of Theorem Proving to Question-Answering Systems.
PhD thesis, Department of Electrical Engineering, Stanford University, 1969.

8. Letz, R., Stenz, G.: Model Elimination and Connection Tableau Procedures. In:
Robinson, A., Voronkov, A., eds.: Handbook of Automated Reasoning. Volume II.
pp. 2015-2112, Elsevier Science, 2001.

9. Loveland, D.W.: A Simplified Format for the Model Elimination Theorem-Proving
Procedure. Journal of the ACM, 16(3):349-363, 1969.

10. Loveland, D.W.: Automated Theorem Proving: A Logical Basis. North-Holland,
1978.

11. Loveland, D.W., Stickel, M.E.: A Hole in Goal Trees: Some Guidance from Reso-
lution Theory. In: IJCAI 73: Proceedings of the 3rd International Joint Conference
on Artificial intelligence, pp. 153-161, Stanford, CA, USA, 1973.

12. Luckham, D., Nilsson, N.J.: Extracting Information from Resolution Proof Trees.
Artificial Intelligence, 2:27-54, 1971.

13. van Emden, M.H.: An Interpreting Algorithm for Prolog Programs. In J.A. Camp-
bell, ed.: Implementations of Prolog, pp. 93-110, Ellis Horwood, 1984.

14. Vieira, N.J.: Máquinas de Inferência para Sistemas Baseados em Conhecimento.
PhD thesis, PUC/RJ, 1987 (in Portuguese).

