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Abstract—Software maintenance is an important problem
because software is an evolving complex system. To make
software maintenance viable, it is important to know the real
nature of the systems we have to deal with. Little House is a
model that provides a macroscopic view of software systems.
According to Little House, a software system can be modeled
as a graph with five components. This model is intended to be
an approach to improve the understanding and the analysis
of software structures. However, to achieve this aim, it is
necessary to determine its characteristics and its implications.
This paper presents the results of an empirical study aiming
to characterize software evolution by means of Little House
and software metrics. We analyzed several versions of 13
open source software systems, which have been developed
over nearly 10 years. The results of the study show that
there are two main components of Little House which suffer
substantial degradation as the software system evolves. This
finding indicates that those components should be carefully
taken in consideration when maintenance tasks are performed
in the system.

Keywords-software metrics; software evolution; complex net-
works;

I. INTRODUCTION

It is estimated that about 70% of the total cost of a
software system is due its maintenance, and a large amount
of the effort in this phase is spent in program comprehension.
Many factors contribute to making software maintenance
laborious and costly. Among them is the evolutive nature
of software structures, which is characterized by declining
quality and increasing complexity [1]. It is widely known
that as a software system evolves, its structure becomes
more rigid, its complexity tends to grow, and the software
maintenance may become a very difficult task.

Concerning this issue, many works have been carried
out in order to provide a better comprehension about the
software evolution process. Many of them have investigated
software evolution by means of size and complexity, us-
ing mainly LOC (lines of code) and McCabe or Halstead
complexity metrics. However, especially for object-oriented
software, those metrics may not provide a proper assessment
of software evolution, and many other software metrics have
been proposed in the last years. An emerging research area
has considered software system as a Complex Network. It
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is a consensus in the works carried out in this field that
the software system networks exhibit the main characteristic
of a Complex Network, the node degree distributions are
modeled by a power-law [2]. In spite of the notable efforts in
order to understand the nature of software systems structures
and their evolution, the knowledge about the characteristics
of the real software systems we have to maintain is still
deficient.

Aiming to improve the insight into the process of software
structures evolution, this work presents the results of an
experimental study about object-oriented software evolution
by using a novel approach. The evolution of software
systems is analyzed by means of a model, called Little
House [3], and the thresholds of six object-oriented software
metrics, namely number of afferent couplings, LCOM, COR
(Cohesion of Responsibility) [4], DIT, number of public
fields and number of public methods. Little House is defined
in a previous published work of the authors in order to
provide a macroscopic view of software structures. This
model is based on the well-known Bow-Tie model, which is
used to represent the Web graph. According to Little House,
classes of an object-oriented system can be grouped in five
components, named In, Out, LSCC, Tendrils and Tubes. In
the present work, we investigate how the components of
Little House evolve in terms of software metrics, regarding
the thresholds of such metrics.

The remaining of this paper is organized as follows.
Section II discusses the related work. Section III describes
the software metrics used in this work, as well as their
thresholds. Section IV describes the method used to per-
form the data gathering and analysis. Section V shows and
discusses the results of the study. Section VI brings the
conclusion and indications of future work.

II. RELATED WORK

The Lehman’s laws postulate that software system evo-
lution has the following main characteristics: continuing
change, increasing complexity, continuing growth and de-
clining quality [1]. Koch [5] analyzed the growth of a large
sample of open source software systems, concluding that the
mean growth rate of a software system is linear or tends to
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decrease over time. Herraiz et al. [6] studied the evolution of
Eclipse by means of software metrics and found evidences
of continuing growth and increasing complexity. Israeli and
Feitelson [7] used software metrics in order to analyze the
Linux kernel evolution. The results of their study support
most of Lehman’s laws. Xie et al. [8] evaluated the evolution
of seven open source software systems, and have found that
the following Lehman’s laws are applicable to open-source
software systems: continuing change, increasing complexity,
self regulation and continuing growth.

Recently, the concepts of Complex Networks have been
applied to characterize software systems. A system can be
represented by a graph in which modules are the nodes, and
the relationship between two modules are the edges. In an
object-oriented system, the classes can be taken as the nodes.
An important metric in this case is the in-degree of the node,
which indicates the number of other classes that depend
upon a given class. Many researchers have identified that the
in-degree distribution in software system networks follows a
power-law [9], [10], [11]. In a power-law distribution, there
is a large number of occurrences of low values, and there
is a very few occurrences of high values. In an object-
oriented software, this means that there are few classes
with high in-degree, while most of the classes have very
low in-degree. Some studies have used Complex Network
in order to evaluate software structures. Zimmermann and
Nagappan [12] found that measures from network analysis,
such as centrality and closeness, can predict defects for a
software system. Jenkins and Kirk [13] evaluated software
evolution by using complex network theory. Their study was
performed over some released versions of a component from
the Sun Java2 Runtime Environment (rt.jar), and concluded
that the degree distribution in the network of software class
dependencies follows a power law. They propose an instabil-
ity metric that they claim to be conformed with the growth
process of the software system. Although these studies have
revealed important features of software structures and of
software evolution process, the knowledge we have so far on
this subject is still incipient. The research described in this
paper aims to characterize the software evolution process
by detailing how the degradation of the software structures
occurs. For this purpose, a new approach is used.

The present work is based on a recent published work of
the authors [3] in which the software evolution is character-
ized by means of software metrics and Complex Networks
concepts. One of the main contributions of that work is
the definition of Little House, a model for the macroscopic
structure of object-oriented software systems. In the present
work, the evolution of software systems is analyzed accord-
ing to the Little House model. This model, which is detailed
in Section II-A, is a “picture” of the software system. The
aim of the present study is to investigate how this “picture”
evolves by means of software metrics.

Figure 1. Little House — The macroscopic structure of software networks

(b)

Figure 2.
version 3.5.1

Hibernate modeled by Little House (a) version 3.0 and (b)

A. The Little House Model

Little House [3] is a macroscopic view of software system
structures. Its definition was based in the Bow-Tie model
[14], which represents the way pages in Web are connected
one to another. Bow-Tie provides a macroscopic view of the
Web, and reveals that there is a giant group of pages that
are strongly connected one to another.

(a) (b)

Figure 3.
4.8.1

JUnit modeled by Little House (a) version 3.4 and (b) version



(®)

Figure 4. JGNash modeled by Little House (a) version 1.10.0 and (b)
version 2.30.0

Little House is a graph composed by six nodes, and each
of them corresponds to a distinct group of classes. The model
is depicted in Figure 1. The components of Little House are
described following.

e LSCC: is the largest strongly connected component
of the software system. In this component, any class
can reach all the other classes of LSCC. LSCC plays a
central role in the system since its classes are strongly
connected one to another, what might make this com-
ponent hard to be understood, tested and maintained.

o In: classes from In can use any other class of the
software system, but they are not used by classes from
the other components.

o Out: classes from Out can be used by any other class
of the software system, but they use only classes which
are in this component.

o Tendrils: classes from Tendrils use only classes from
this component or from Out. Besides, a class from
Tendrils can be used only by classes from Tendrils,
Tubes or In.

o Tubes: classes from Tubes use only classes from this
component, Out or Tendrils. Besides, a class from
Tubes can be used only by classes from Tubes or In.

« Disconnected: a class in this component has no con-
nection with classes of the other components.

Figures 2, 3 and 4 show the depicted figure of Little
House of Hibernate, JUnit and JSNash, in their first and last
versions analyzed in this work. This model is intended to im-
prove tasks such as program analysis, program visualization,
testing, refactoring and maintenance. However, to achieve
this aim, it is necessary to investigate the characteristics
and implications of the model. The present research is
concerned on investigating how each component of Little
House evolves as the system grows.
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III. THE SOFTWARE METRICS SET

Six object-oriented software metrics were considered in
this research. They are chosen because they evaluate im-
portant factors of software quality. Moreover, there are
thresholds proposed for them in the literature [15]. The
software metrics are described following.

o # Afferent Couplings (AC): this metric is the number of
incoming couplings of a class, providing an indicator
of the number of classes that depend upon a given
class. To compute this metric, the following types of
connections between two classes were considered:
inheritance, use of public fields and method call. In
the case of inheritance, when a class A is a superclass
of B, then there is a directed coupling from B to A,
i.e., an incoming coupling in A.

o Lack of Cohesion in Methods LCOM [16]: this metric
has been widely considered as a flawed way to measure
class cohesion. Nevertheless, LCOM is implemented
in a large number of tools [17]. Due to this, LCOM is
considered in this work.

o Cohesion of Responsibility (COR): this metric is
defined and evaluated in a recent published work of
the authors [4]. COR is given by 1/C, where C is
the number of disjointed sets of methods within the
class. Each set consists of methods which are similar.
Two methods of a class A are similar when they use
common fields or common methods of A. If a method
a is similar to a method b, and b is similar to a
method ¢, then a is also similar to ¢. For instance, if
there are two sets of similar methods in a class, COR
will result in 0,5. This indicates that the class has 2
responsibilities. If there is only one set in the class,
COR will result in 1, indicating a high cohesion degree.

e Depth of Inheritance Tree (DIT) [16]: this metric
gives the maximum distance of a class from the root
class in the inheritance tree of the system. Although
inheritance is a powerful technique for software reuse,
its immoderate use makes software design more
complex [18]. Therefore, DIT may be used as an
indicator of the difficulty of understanding a class.

o # Public Fields (PF): is the number of public fields
defined in a class. Avoiding public fields in programs
is widely considered as a good practice because the
use of public fields can reduce the modularity of the
program [19], [20].

o # Public Methods (MF): is the number of public
methods defined in a class. This metric is an indicator
of the interface size of a class. Large classes are



Table I
THE SOFTWARE METRICS THRESHOLDS

Level Metric Reference Values

System| COF Good: up to 0.02 - Regular: 0.02 to 0.14 - Bad: greater than 0.14

Class # Afferent couplings Good: up to 1 - Regular: 2 to 20 - Bad: greater than 20

Class # Public fields Good: 0 - Regular: 1 to 10 - Bad: greater than 10

Class # Public methods Good: 0 to 10 - Regular: 11 to 40 - Bad: greater than 40
Class DIT Typical value: 2

Class LCOM Good : 0 - Regular: 1 to 20 - Bad: greater than 20

Class COR Good: 1 - Regular: 0,2 to 0,5 - Bad: less than 0,2

considered as a code smell because they are harder to
understand and maintain [19].

A. The Software Metrics Thresholds

Ferreira et al. [15] have proposed and evaluated thresholds
for object-oriented software metrics, defining three ranges
of reference values for the metrics: good, which refers to
the most common values of the metric; regular, which
is an intermediate range of values with a low but not
irrelevant frequency; and bad, that refers to values with quite
rare occurrences. These thresholds were derived empirically,
having as basis the metric values of 26,000 classes from
open-source programs. The purpose of these thresholds is to
establish a benchmark for the evaluation of software systems
based on what is done in practice.

In the present research, the metric thresholds are applied
to evaluate classes within a given component of Little
House. Table I shows the thresholds of the software metrics
considered in the present research.

IV. METHODS

Data from the first and the last versions of 13 open-
source software systems developed in Java were analyzed
in this study. The last version considered for each software
is up to 2009/2010. Table II shows the data of the set of
programs. They are developed in Java, they have at least
5 versions or releases, and they are 4 years old at least.
Another criterion of the sample selection was the availability
of the bytecodes of the programs because the tool used to
perform the measurements has as input the bytecodes.

The measures and the graph of the software systems were
gathered by a tool called Connecta [21], which generates
graphs representing the software networks and exports them
as a file in an appropriate input format for Pajek [22], a
network analysis tool. Using Pajek, the software network
was fitted to the Bow-Tie model [14] and, then, the result
of this fitting was processed in order to be adapted to Little
House.

After identifying the classes for each component of Little
House, the following steps were performed:
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Table II

SOFTWARE SYSTEMS ANALYZED IN THE STUDY
Name Category downloads/week Age #elasses #versions
DBUnit Database 448 2002 - 2009 198 - 369 25
FreeCol Game 7.452 2003 - 2010 112 - 5902 27
Hibernate Database 12,906 2004 - 2010 956 - 2446 53
JasperReports Development 5.542 2001 - 2010 525 - 5304 50
Java Groups Cooperation 465 2003 - 2009 696 - 1137 40
JGNash Financial 822 2002 - 2010 782 - 3603 40
Java msn li- Communication | 271 2004 - 2010 494 - 872 10
brary
Jsch Security 2,304 2004 - 2009 202 - 271 29
JUnit Development 1,834 2000 - 2009 78 - 230 8
Logisim Education 1,590 2005 - 2009 908 - 1185 28
MeD’s Movie Storage 1,169 2003 - 2010 64 - 517 60
Manager
Phex Network 1,084 2001 - 2009 393 - 1352 26
Squirrel sql Database 7270 2006 - 2010 424 - 1223 26

o for each metric, the percentile of classes in the com-
ponent whose measures fall in the good range of the
metric threshold was computed;

o the first and the last version was compared in order to
compute the difference between the percentiles. When
the result is positive, it means that in the last version,
the percentile of classes having good measures is larger
then in the first version, i.e., the proportion of such
classes increases within the component as the system
evolves. On the other hand, when the result is negative,
it means that the component in the last version has
a lower percentile of classes with good measures,
indicating that the component has degraded over the
evolution of the system.

The purpose of such analysis is to observe how the Little
House components evolve. It is expected to identify if there
is a single component or a group of components that suffer
a higher level of degradation comparing with the other ones.

V. RESULTS

To assess the evolution of a Little House component in
a program, we computed the difference of percentiles of
good classes between the last and the first versions in the
component, for each software metric. Tables III-VIII show
the resulting data gathered in the experiment. For example,
as shown in Table III, in the case of AC metric this difference
in LSCC of DBUnit is -39,58. This means that the ratio
of the good classes in LSCC of DBUnit decreased as the
program increased. Empty entries in the tables are used to
indicate that the first version of the program does not have
the corresponding component. For instance, the first version
of Freecol does not have Tubes.

For each component and for each software metric, we
have computed the median, the mean, the standard deviation
and the 90% confidence interval of the mean for the sample.
The data are shown in Tables III-VIIL. The results indicate



that the Little House components evolve according to the
following patterns.

o Disconnected: in general, there is a very few variation
in the quality of classes in this component as the
system evolves. The use of inheritance is an aspect in
which a degradation was observed because the rate of
classes evaluated as good decreased by 1.5 in the final
version. In 62% of the programs from the sample,
the rate of classes with DIT up 2, that is the typical
values of this metric, decreased. The rate of classes
with good values of PM decreased by 1.8.

o In: the proportion of classes evaluated as good by all
metrics increased with the growth of the system. A
possible explanation for this behavior is that as the
classes from In are not used by any other component
of Little House, they might have a high level of
stability.

o Tubes: the rate of classes with good values of COR
decreased by 7.2, while the rate of classes evaluated as
good by the other metrics increased. A peculiarity about
Tubes is that the first versions of some programs do
not have this component, but the latest versions have it.

o Tendrils: the rate of classes with good values of AC
decreased by 3, while the rate of classes evaluated as
good by the other metrics increased. Tendril is the
component that can work as a bridge between In and
Out and also between Tubes and Out. Perhaps for
this reason, the number of AC of its classes tends to
increases.

e LSCC: according to LCOM and COR, the ratio of
classes with good cohesion in LSCC increased over
the system growth. The ratio of classes with DIT up
to 2 increased by 3.5. That is, in terms of the aspects
evaluated by DIT, LCOM and COR, the evolution of
LSCC leads to an increase on the proportion of classes
evaluated as good in this component. However, the
opposite occurs with the level of connectivity of the
component. The proportion of classes with good values
of AC decreased by 11, indicating that the role of the
classes from LSCC becomes even more critical as the
system evolves. The rate of classes with good values
of PF and PM decreased by 5.5 and 5.2, respectively.
Hence, classes from LSCC tends to have even more
public methods and public fields as the system grows.
This enlargement in size of the interfaces of classes
can be a direct cause of increasing the connectivity
degree of LSCC.

e Out: this is the only component of Little House in
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Table III
THE EVOLUTION OF LITTLE HOUSE COMPONENTS ACCORDING TO AC
(#AFFERENT COUPLINGS)

Program Disc. | LSCC In Out | Tubes | Tendr.
DBUnit 0,00 | -39,58 0,67 19,37 35,71 12,50
FreeCol 0,00 1,21 | -23,08 9,64 - -8,33
Hibernate | -0,38 -3,57 7,82 -6,77 -3,93 | -15,19
Jasper 0,00 32,67 10,00 10,34 14,81 -8,74
JGroups 4,63 | -73,50 74,72 | -13,49 51,85 -8,29
JGNash -0,86 | -15,62 | -20,83 | -10,78 | -69,52 | -12,13
Jml 0,00 | -19,61 21,34 | -10,10 2,78 | -17,05
Jsch -1,89 | -12,50 6,48 11,67 50,00 31,43
Junit 0,00 | -13,13 | -29,09 | -36,54 - | 2347
Logisim 0,26 -2,38 -6,04 1,65 - -4,23
Med’s - -5,33 -6,67 22,83 - 50,00
Phex 0,00 6,12 5,33 13,49 90,00 | -14,55
Squirrel 2,04 1,94 | -19,51 -9,05 -4,17 | -22,00
Median 0,00 -5,33 0,67 1,65 14,81 -8,74
S 1,62 25,01 26,63 16,53 45,47 21,73
Mean 0,32 | -11,02 1,63 0,17 18,62 -3,08
CI (90%) | -091 | -4299 | -17,62 -8,42 | -3337 | -13,82

1,14 4,45 15,02 7,02 42,27 6,74

which the rate of class with good values of COR and
LCOM decreased, by 6.2 and 10, respectively. This
result shows that, in general, the internal cohesion of
classes from Out degrades. The rate of classes with
good values of PF decreases in 7.7. Classes from Out
are used by other components, but do not use classes
from other components. Hence, a reasonable cause for
this result is that new services and public fields are
grafted in these classes, so that their internal cohesion
decreases.

These findings show empirically that LSCC and Out are
the two main critical components in Little House. Although
the sample was not large, the results expose a tendency of the
pattern formation of the software structures throughout its
evolution. In this study, we investigated how the components
of Little House evolve by means of software metrics. Al-
though this work is not concerned on determining the causes
of the observed phenomenon, this is a relevant question to
be further studied. For instance, it is important to know why
and how the internal cohesion of classes from Out declines
over the system growth. Determining these causes may make
Little House a powerful approach of software evaluation.

VI. CONCLUSION

Understanding software system structures is essential to
achieve effective software maintenance. However this issue
is extremely difficult to tackle due to the high complexity
of software systems. Aiming to improve the understanding
and the maintenance of software, the Little House model
was defined in a recently published work of the authors.
Little House is a model for the macroscopic topology of
structures of object-oriented software systems. According
to this model, a software system can be depicted as a



Table IV
THE EVOLUTION OF LITTLE HOUSE COMPONENTS ACCORDING TO DIT

Table VI
THE EVOLUTION OF LITTLE HOUSE COMPONENTS ACCORDING TO COR

Program | Disc. | LSCC In Out Tubes | Tendr. Program Disc. | LSCC In Out | Tubes | Tendr.
DBUnit -0,65 0,00 0,00 36,01 0,00 2,08 DBUnit -0,06 25,00 | -10,60 | -35,23 | -68,57 | -28,92
FreeCol -7,14 31,03 38,46 19,17 | -100,00 | -70,83 FreeCol -5,36 27,10 30,77 18,95 - 8,33
Hibernate | -0,38 0,00 0,00 -0,83 0,00 -1,28 Hibernate -1,46 471 10,97 17,08 -9,79 14,02
Jasper -0,37 0,00 0,00 0,16 0,00 2,73 Jasper 4,76 | -15,00 30,00 | -36,09 | -20,22 -8,09
JGroups -1,16 3,42 96,50 | -26,19 100,00 -3,62 JGroups 2,73 -2,56 46,58 -0,79 44,44 10,98
JGNash -6,76 -2,20 0,00 5,39 93,33 -2,93 JGNash -4,07 -6,08 -4,76 | -12,61 | -66,67 7,06
Jml 0,00 0,00 14,29 1,58 0,00 0,00 Jml 13,93 9,80 -3,44 18,71 19,44 16,37
Jsch 0,00 0,00 0,00 5,00 0,00 5,71 Jsch -38,54 12,50 -5,37 6,67 0,00 2,86
Junit 0,00 4,55 -1,82 -5,77 - 89,47 Junit 75,00 73,23 23,03 50,00 - 44,74
Logisim 0,80 -2,39 5,65 -1,90 - 4,29 Logisim 4,63 -7,08 | -15,46 -2,55 - -2,70
Med’s - 6,89 | -20,00 -8,87 - | -28,57 Med’s - 26,44 30,00 | -49,06 - 71,43
Phex -2,74 -4,80 -8,58 5,12 90,00 -7,27 Phex -0,82 5,74 28,64 0,03 20,00 18,18
Squirrel -0,08 8,78 -2,44 -0,63 20,83 38,00 Squirrel -0,15 22,87 56,10 11,80 16,67 27,00
Median -0,38 0,00 0,00 0,16 0,00 0,00 Median -0,11 9,80 23,03 0,03 0,00 10,98
S 2,67 9,11 29,39 14,40 60,62 35,78 S 25,57 22,67 23,00 27,06 39,08 24,59
Mean -1,54 3,48 9,39 2,17 20,42 2,14 Mean 4,22 13,59 16,65 -1,01 -7,19 13,94
CI (90%) | -5,13 -3,86 -6,16 -9,61 -39,70 | -33,25 CI (90%) -3,43 -6,93 0,87 | -25,81 | -62,95 | -11,33
0,07 7,79 23,47 5,30 53,43 20,01 17,35 22,81 28,50 14,31 20,48 26,33
Table V Table VII
THE EVOLUTION OF LITTLE HOUSE COMPONENTS ACCORDING TO THE EVOLUTION OF LITTLE HOUSE COMPONENTS ACCORDING TO PF
LCOM (# PUBLIC FIELDS)

Program Disc. | LSCC In Out | Tubes | Tendr. Program Disc. | LSCC In Out | Tubes | Tendr.
DBUnit 10,61 33,33 10,38 | -39,92 | -42,86 | -16,05 DBUnit 0,59 2.08 3,94 4,70 | -14,29 0,98
FreeCol -536 | 1158 | 46,15 | 3,32 -] 833 FreeCol | -12,50 | 2113 | -7.69 | -9.95 -1 000
Hibernate -1,27 7,24 10,13 15,72 -4,26 11,84 Hibernate 2,61 4,22 -7,30 23,34 | -14,23 -6,54
Jasper 5,13 333 | 3250 | -10,10 | -12,50 | -897 Jasper 1527 | -1,33 | -10,00 | -24,05 | 29,63 | -20,94
JGroups 6,20 | 16,24 | 49,60 476 | 8519 | 11,22 JGroups 330 | -53.85 | 9237 556 | 66,67 5,82
JGNash -6,43 -3,57 -8,93 | -14,86 26,67 0,34 JGNash -1,79 5,18 4,17 27,86 | -22.86 9,75
Jml 13,93 0,22 6,11 9,94 | -11,11 23,85 Jml 4,64 | -22,22 10,67 -0,99 27,78 -8,70
Jsch -20,49 -6,25 -5,37 -1,67 50,00 | -31,43 Jsch 1,28 -6,25 2,59 0,00 50,00 5,71
Junit 0,00 | -13,13 | -61,82 | -21,15 - | -17,51 Junit 22,63 0,00 0,00 | -21,15 - 96,49
Logisim 3.92 | 780 | -526 | -3.46 - -153 Logisim 2,33 542 361 | -041 - 0,21
Med’s - 23,56 23,33 | -41,89 - 71,43 Med’s - -8,00 -6,67 | -19,81 - 0,00
Phex 5,13 5,82 28,64 4,79 20,00 20,00 Phex -7,07 4,05 -5,88 | -11,73 0,00 -9,09
Squirrel 0,00 33,64 56,10 14,25 | -41,67 19,00 Squirrel 32,96 22,59 244 | -10,94 0,00 | -14,00
Median 1,96 5,82 10,38 -1,67 -4,26 8,33 Median 1,81 -2,59 -3,94 -7,86 0,00 0,00
s 9.01 | 1512 | 31,40 | 18380 | 42,13 | 2545 S 1150 | 1746 | 2694 | 972 | 33.68 | 29.13
Mean 095 | 802 | 1397 | 617 | 772 | 696 Mean 325 | -546 | 470 | 7,69 | 7,05 | 3,09
CI (90%) -3,55 2,09 6,47 | -21,09 | -29.93 -7,28 CI (90%) -5,32 | -25,04 | -19,57 | -13,79 | -36,95 | -12,03
4,82 12,33 28,66 5,30 34,16 20,44 9.10 3,64 17,96 22,97 28,48 17,56

graph with five components, that are also graphs representing
groups of classes.

This work carried out an experimental study in order to
expose characteristics of software evolution by means of
Little House and software metrics. Six software metrics were
analyzed in this work, namely: number of afferent couplings,
LCOM, COR, DIT, number of public fields and number of
public methods. In particular, the study evaluated how the
rates of classes having good measures into each Little House
component evolve over the system growth.

The analysis of the results suggests that there are two
components of Little House that are more critical, not only
due to the way they evolve, but also due to their central
role in the system: LSCC and Out. LSCC is the strongly
connected component of the system. As the system grows,
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the ratio of classes with high values of AC in LSCC tends to
increase. This might make modifications and error in classes
from LSCC more impacting on the system as it evolves.
All the components of Little House depend upon Out. This
feature makes Out a fundamental component in the system.
The results show that the system evolution causes a slight,
but not negligible, degradation of the internal quality of
classes from Out.

Further works are needed in order to achieve an even more
detailed knowledge about Little House. For example, it is
important to verify if there is any correlation between the
components of Little House and error proneness or change
propagation. Another important issue to be investigated is
the qualitative characteristics of classes within each compo-
nent of Little House. We envision that answering questions



Table VIII

THE EVOLUTION OF LITTLE HOUSE COMPONENTS ACCORDING TO PM

(# PUBLIC METHODS)

Program Disc. | LSCC In Out Tubes | Tendr.
DBUnit -0,65 -2,08 -3,05 -8,22 -8,57 97,01
FreeCol 7,14 6,02 | -11,54 33,47 - 0,00
Hibernate 8,78 0,26 11,78 11,14 2,13 7,68
Jasper 1,38 5,33 65,00 -4,61 22,38 -0,15
JGroups -10,00 | -46,15 75,20 12,70 | 100,00 9,52
JGNash -1,12 -8,58 | -12,50 -6,92 51,43 | -12,95
Jml -12,38 | -10,46 -2,50 -2,48 -5,56 -4,01
Jsch 0,00 -6,25 -1,11 1,67 50,00 0,00
Junit 0,00 -6,57 -3,64 -5,77 - 92,11
Logisim -0,64 -1,80 | -10,20 0,28 - -1,32
Med’s - 1,78 0,00 | -10,38 - 0,00
Phex -6,16 10,93 -9,90 8,96 90,00 -5,45
Squirrel -8,16 0,16 45,12 -6,20 | -12,50 -6,00
Median -0,64 -2,08 -2,50 -2,48 22,38 0,00
S 6,40 13,85 30,29 12,14 42,88 36,40
Mean -1,82 -5,15 10,97 1,82 32,15 13,57
CI (90%) -3,98 | -21,84 -1,77 -5,50 -2,84 | -12,29

1,76 2,43 25,40 8,07 56,24 20,47

like those will lead to a more deeper comprehension about
software structures, what may make Little House a robust
approach to understanding, maintenance, testing and visual-
ization of software systems.
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