A Mixed Approach for Bulldlng Extensible

Parsers

Leonardo Vieira dos Santos Reis!, Vladimir Oliveira Di Iorio?,
and Roberto S. Bigonha?

nrtamento de Computagao e Sistemas, Universidade Federal de Ouro Preto,
Joao Monlevade, Brazil
leo@decsi.ufop.br
nrtamento de Informatica, Universidade Federal de Vigosa, Vigosa, Brazil
vladimir@dpi.ufv.br
“partamento de Ciéncia da Computagao, Universidade Federal de Minas Gerais,
Belo Horizonte, Brazil
bigonha®dcc.ufmg.br

Abstract. For languages whose syntax is fixed, parsers are usually built
with a static structure. The implementation of features like macro mech-
anisms or extensible languages requires the use of parsers that may be
dynamically extended. In this work, we discuss a mixed approach for
b ui]dmg efficient top-down dynamically extensible parsers. Our view is
based on the fact that a large part of the parser code can be statically
compiled and only the parts that are dynamic should be interpreted for
~n more efficient processing. We propose the generation of code for the
base parser, in which hooks are included to allow efficient extension of
the underlying grammar and activation of a grammar interpreter when-
- over it is necessary to use an extended syntax. As a proof of concept, we
present a prototype implementation of a parser generator using Adapt-
uble Parsing Expression Grammars (APEG) as the underlying method
{or syntax definition. We show that APEG has features which allow an
officient implementation using the proposed mixed approach.

ntroduction

I generators have been used for more than 50 years. Tools like YACC [10]
itomatically build a parser from a formal definition of the syntax of a lan-
o, usually based on context-free grammars (CFG). The main motivation for
nilic parser generation is compiler correctness and recognition complete-
#ince with manual implementation it is very difficult to guarantee that all
s in a given language will be correctly analysed. The parsers that are
ted from the language formal definition usually consist of a fixed code
A parse table. Different languages are associated with distinct parse
top-down parsers, it is common to produce the code directly as a
i prcgram instead of using parse tables.

! impose new challenges to automatic parser generation,
(ly extensions of their own concrete syntax,

2 L.V.S. Reis, V.O. Di Iorio, and R.S. Bigonha

requiring that the parser must be dynamically updated. If these changes are
frequent, the use of interpretation techniques may be less time-consuming than
to reconstruct the parser. Thus, at first, instead of building a fixed code for the
parser, it may be interesting to use an interpreter for parsing the input based on a
suitable representation of the syntax of the language, which may be dynamically
updated. However, this solution is not entirely satisfactory. A mixed approach,
compilation and interpretation, offers the best of both worlds.

For automatically building a parser, either using code generation or inter-
pretation, it is necessary to use a formal model that is powerful enough to ap-
propriately describe the syntax of the language, including possible on-the-fly
modifications. Adaptable Parser Expression Grammar (APEG) [17,18] is a new
formal model that satisfies these requirements. It is based on PEG (Parsing Ex-
pressions Grammars) (7], a formalism similar to CFG which formally describes
a recursive descent parser. APEG extends PEG with the notion of adaptability,
which is implemented by means of operations that allow the own syntax of the
language to be extended. In previous work [19], we have shown that a prototype
interpreter for APEG allows the implementation of extensible parsers which are
more efficient than the traditional approaches used by other tools.

In this work, we discuss a mixed approach for building extensible parsers.
Our view is based on the fact that a large part of the syntax of an extensible
language is stable, so it is appropriate for a parser whose code can be statically
generated. The parts of the syntax specification that are dynamically extended
may use grammar interpretation for a more efficient processing. We propose
the generation of code for the base syntax, including hooks that may allow an
efficient extension, activating an interpreter whenever it is necessary to use the
extended syntax. As a proof of concept, we present a prototype implementation
of a parser generator for APEG. We show that APEG has features which allow
an efficient implementation using the proposed mixed approach.

Section 2 presents a definition of the APEG model to help understanding
the concepts used in the following sections. Section 3 discusses our approach in
detail, showing how it works with the APEG model. In Section 4, we describe
some efficiency tests with parsers generated using the mixed approach. Section 5
lists some works similar to ours. Section 6 presents our final conclusions and
discusses future works.

2 Adaptable Parsing Expression Grammar

Parsing Expression Grammar (PEG) [7] is a model for describing the syntax
of programming languages using a recognition-based approach instead of the
generative system typical of context-free grammars (CFG). Similar to CFG,
formally a PEG is a 4-tuple (Vy,Vr, R, S), where VN ls the sot of nontermi-
nal symbols, Vo s the set of termmal symbals an iihol,

A Mixed Approach for Building Extensible Parsers 3

checks whether the input string matches some syntax, without consuming it, thus
allowing unrestricted lookahead. The prioritized choice lists alternative patterns
to be tested in order.

Adaptable PEG (APEG) [18] is an adaptable model based on PEG. It also
uses the idea of attributes of Attributes Grammars [27] to guide parsing. The
attributes of APEG are L-Attributed and its purporse is syntactic and not se-
mantics as in attributes grammars. APEG possesses a special attribute called
language attribute, which represents the set of rules that are currently used. Lan-
guage attribute values can be defined by means of embedded semantic actions
and can be passed to different branches of the parse tree. This allows a formal
representation of a set of syntactic rules that can be modified on-the-fly, i.e.,
during the parsing of an input string. APEG allows to extend the grammar by
addition of new choices at the end of an existing list of choices of the definition
rule of a given nonterminal or by addition of new nonterminal definitions.

As a concrete example, Figure 1 shows a PEG definition of a toy block struc-
tured language in which a block consists of a list of declarations of integer variables,
followed by a list of assignment statements. An assignment statement consists of a
variable on the left side and a variable on the right side. For simplicity, the whites-
paces are not considered.

block < { dlist slist }
dlist < decl decl*
slist < stmt stmt*

decl <+ int id ;
stmt <+ id = id ;
id < alpha alpha™

Fig. 1. Syntax of block with declaration and use of variables (simplified)

~ Suppose that the context dependent constraints of this language are: a variable
tannot be used if it has not been declared before, and a variable cannot be
sclared more than once. Using APEG, we implemented these context dependent
raints as shown in Figure 2. As mentioned before, every nonterminal has
cial inherited attribute, the language attribute, which is a representation
rammar. In Figure 2, this attribute is always the first one and it has type
ar. The inherited attributes of a nonterminal are enclosed in the symbols
“|” occurring after the name of the nonterminal, and the synthesized
utes are specified after the returns keywords. For example, line 20 defines
6 nonterminal 4d with one inherited attribute of type Grammar named as
I8 the language attribute) and one synthesized attribute named as s of
string. To refer to a nonterminal on a parsing expression, we use the name
nonterminal followed by the list of inherited attributes and synthesized
n ’61‘11! order, enclgged in the symbols ‘<’ and “>", As an example, in -
, (o the arminal alpha followed by its attributea

4 LVE Rels, V.OU DI Torlo, and

eapression assigns the input string matehed by il toa varinble,
It is used on line 24 of Figure 2 to assign to variable ¢ e af tho character
matched by the given parsing expression. An update expression is enclosed by

the symbols “{” and “}” and it is used to assign the value of an expression to an
attribute. The parsing expression {g = g1;} in line § of Figure 2 is an example

of an update expression.

In this example, the idea of implementing the context dependent constraints
is to adapt the nonterminal var on the fly in order to allow only declared vari-
ables to be recognized. Note that, in the beginning, the nonterminal var does
not recognize any symbols (lines 11-12). However, when a variable is declared
(nonterminal decl, defined in lines 7-9), a new grammar rule is produced by the
addition of a new choice in the definition of nonterminal var, which allows the
recognition of the new variable name. The resulting new grammar is passed ag
the language attribute, in the definition of the nonterminal block, to the nonter-
minal slist, and, in the sequel, to stmt. As a result, the nonterminal stmt now
can recognize the declared variable.

1/ block [Grammar g]:

2 ’{’ dlist<g, gl> slist<gl> *}’ 1.;

3

4| dlist[Grammar g] returns[Grammar gll:

5| decl<g, gi> {g = gil;} (decl<g, gi> {g = gl;})x*;
6

7| decl [Grammar g] returns[Grammar gi]:

8 B@ nt R var)Nt TeN 4 <s SR

9 {gl = g + ’var:,\'? + 8 + *\!' lalpha<gy ch>: oo
10

11| var [Grammar g]:

i {? false };

13

14| slist [Grammar g]:

15 stmt <g> stmt<g>*;

16

17| stmt [Grammar g]:

18 var<g> ‘=2 yar<g> S

19

20| id[Grammar g] returns[String s]:

21 alpha<g, chil> {s = ch1;} (alpha<g, ch2> {s = s + ch2;})%
22

23| alpha[Grammar g] returns[String ch]:

24 ch=[a-zA-Z20-9_];

Fig. 2. Example with the set of production i

A Mised Approach for Duilding Extensible Parsors b

i example, suppose the lnput string {int ayint b;a=b;b=a;}. The recogni-
3F thin atring starts with the nonterminal block and its language attribute

At in Figure 2. After recognizing the first symbol, {, the parser

to recognize a list of declarations (nonterminal dlist), passing down the
tainimar o8 the language attribute to the nonterminal dlist. During the
Hion of the nonterminal dlist, it first tries to match a variable declaration
{the nonterminal decl, passing to it the same language attribute. The
il decl first checks if the variable is already declared using the parsing

I('int ' var). The not-lookahead operator, !, succeeds if the expres-
Hod in parentheses fails, and it does not consume any symbol from the
arder to check whether the variable “a” has already been declared,
i expression enclosed in parentheses matches the “int” string, but the
| var does not recognize the variable “a”, because it does not have
¢ for it yet. In the sequel, the parsing expression ‘int ' 1d(s) ;" recognizes
Atntion of variable ‘a’. Note the use of the nonterminal id instead of the
itinl var. The nonterminal id is used here to recognize any valid variable
il is a new one. Then, a new grammar is built from the current
' the addition of a new choice, var : 'a' lalpha(ch);, on the definition
nal var. This new grammar becomes the value of the synthesized

ar synthesized by the nonterminal decl is used in the nonterminal
tiage attribute of other calls of the nonterminal decl. Proceeding, the
¢ declaration will be recognized, and the nonterminal dlist synthe-
W prammar with these two choices, in this order, var : 'a' lalpha(ch);
 'b! lalpha(ch);, for the nonterminal var. This new grammar is used
titerminal block to pass it as the language attribute of the nonterminal
L tesult, the two statements, a = b and b = a, can be recognized, be-
tonterminal var in the language attribute passed to the nonterminal
tilos to recognize the variables ‘a’ and ‘b’

1 parser generators for PEG produce a top-down recursive descent
6ry nonterminal is implemented by a function whose body is a code
g expression. The return value of each function is an integer value
the position on the input that it has got moved on or the value
It is straightforward to extend this idea to include attributes: the
attributes become parameters of functions and synthesized attributes
filues. For example, Figure 3 shows the code generated for the non-
of Figure 2. The function var has one parameter, the language
d returns an object of type Result, which must contain fields rep-
ortion of the input consumed and the values of the synthesized
o1 specified.

1§ with this scheme arise when the base grammar is dynamically
ing parsing. When new choices are added to the var nonterminal,
of Figure 3 does not represent anymore the correct code for this
 then this function must be updated. However, it is cumbersome
all the parser code on th My to reflect these small changes. In

§ LVE, Rels, V.O. Di Torio, and R.S. Bigonha
I|Result var (Grammar g) {

2| if (false) {

3 // do mnothing

4 } else

5 return new Result(-1); // a fail result
6|}

Fig. 3. Example of code generated by a PEG

cases where the grammar changes several times, as in extensible languages, the
on-the-fly regeneration of all the parser is very expensive [17]. An alternative
solution is to interpret the whole grammar directly. However, this may cause a
great loss in parsing efficiency. So, we propose, in this paper, an approach to
efficiently adapt the grammar. We propose to generate the code from the base
grammar and include hooks to jump from the generated code to interprete the
parts that have been added dynamically.

3 Mixing Code Generation and Interpretation

Since APEG only allows changes in the definition of nonterminal symbols by in-
sertion of new choices at the end of the rules [19], we generate a recursive descent
parser from an APEG grammar, so there is a function for each nonterminal and,
whenever necessary, we place at the end of the body of these functions a call to
the interpreter.

Figure 4 shows a scratch of the code generated for the grammar of Figure 2. As
shown, we generate a Java class which has a function to each nonterminal defini-
tion on the grammar. The generated class extends the predefined class Grammar

that has the implementation of standard functions, such as the function inter-
pretChoice to interpret an AST and functions to add rules to the grammar or

to clone the grammar itself.

The vector adapt (line 3 in Figure 4) stores a possible new choice for each
nonterminal. Notice the hook at the end of the function body of each nonterminal
(lines 29 and 40) to call the interpreter with its possible choice. This hook will be
reached only if its preceding code fails, indicating that we must interpret the new

choice. For example, if the code representing the parsing expression {'dlist<g,

g1> slist<gl> '}’ on lines 6 to 24 fails, then we call the interpreter passing its
new choice. So, the action of adapting a grammar i8 just an action of including
a new choice rule on the vector adapt.
Using this strategy, all the base code f
piled, and only the choices that are addé

strategy is based on the assumptio
¥

ol and co
) b’di 0 .vf”

pected to be large and used many {
a fagter parser than the inte

- will &till :‘,"_a i eflicient i

A Mixed Approach for Building Extensible Parsers

iblic class BlockLanguage extends Grammar {
// wector of new choices
private CommonTree [] adapt

new CommonTree [8];

b
public Result block (BlockLanguage g) {
- BlockLanguage gl; // local attribute
Result result;
int position g.match("{",
if (position > 0) {
g.currentPos position;
result gadliist (g)5;
if (result.isFail()) {
gl (BlockLanguage) result.getAttribute (0);
gl.currentPos result.getNext_pos ();
result Bilo LS () g
if (!result.isFail()) {

currentPos);

position = g.match("}", result.getNext_pos ());
if (position > 0) {
char ch = g.read(position);

if (APEGInputStream .isEOF (ch))
return new Result (position);

¥
iy
B)
}
lEnvironment env;
‘. // set the environment to start the interpreter

// interpreter the choice of block (indez 0)
‘faturn g.interpretChoice (adapt [0], env);

iblic Result var(BlockLanguage g) {
if (false) {
// do nothing

Environment env;
// set the environment to start the interpreter

‘" interpreter the choice of wvar (indez 3)
taturn g, interpretChoice (adapt[3], env);

other functions

Mg, 4. Generated code for the block language

L.V.S. Rels, V.O. DI Iorio, and RW

In the APEG model, a parsing expression of a nonteriinal is fetched from
its language attribute. Using different language attributes, it is possible to get
different parsing expressions for the same nonterminal, thus effectively adapting
the grammar. To have this behaviour, each function generated from a nontermi-
nal has the language attribute as a parameter. The type of this parameter is the
type of the grammar generated. In our example, Figure 4 shows the language
attribute, whose type is BlockLanguage, of the functions block (line 5) and var
(line 32).

We use the dot notation to call a nonterminal function associated with its
correct language attribute. For example, the nonterminals dlist and slist on the
definition of the function block are called as g.dlist(g) (line 11) and g1.slist(g1)
(line 15). Note that, as the language attribute passed to each nonterminal is
different, we call each nonterminal function from a different language attribute.
We must call slist from the object g1 instead of g because the vector adapt of
g1 has a different value of choices for the function var. So, the interpreter is
called, the new choice is passed, allowing the use of the variables that have been
declared.

A restriction to this approach is that as we use the generated class as the
language attribute type, e.g. the BlockLanguage type in Figure 4, it is not pos-
sible to pass a different grammar which is not subtype of the generated class,
as the language attribute. For example, suppose a grammar with other defini-
tions for the same nonterminals presented in Figure 4. One may want to pass
as the language attribute this grammar in a specific context on the definition of
the block language of Figure 4. However, as this grammar is not a subclass of
BlockLanguage, there will be a type error. Instead of using the generated class as
the language attribute, we could use the base type, Grammar, as the language
attribute and use reflection on runtime to invoke the nonterminal functions.
However, as the use of reflection may result in a slower program than the use of
the dot notation to call functions, we avoid this solution.

During the interpretation process of a parsing expression, it is possible to en-
counter a reference to a predefined nonterminal. In this case, the interpreter must
execute the function code of this nonterminal. For example, suppose an input to
the block language example of Figure 2 which adds the choice var : 'a' lalpha{ch);
to the definition of the nonterminal war. The nonterminal referenced in this
choice, alpha, is the one defined in Figure 2 and has a code generated for it.
So, when the interpreter reaches this nonterminal, it must stop interpreting and
invoke the function of this nonterminal. We implemented this feature using the
reflection mechanism of the Java language. Whenever interpreting a nontermi-
nal, the interpreter checks whether the nonterminal is a method of the language
attribute object, and if so, the interpreter invokes the method code by reflection,
Otherwise, it continues the interpretation. '

The code presented in Figure 4 was not automatical
test our approach, we first produced handwritten cod
fications, such as the one presented in Figure 2 an
Section 4. For the interpretation, v :

o modied

A Mixed Approach for Building Extensible Parsers

)

wlaped in a previous work [19]. One of the main modifications was the code
i calling, from the interpreter, functions on the generated code. This feature
48 dinplemented using reflection in the Java language, as previously discussed.
ur mixed approach proposal be proved useful, we will write the code
tator to automatically produce a recursive descent parser from an APEG
ificntion.

0l nluation of the Mixed Extensible Parser

e performed preliminary experimental tests to evaluate whether our
| ipproach is feasible. We were interested in the performance of the mixed
40, the cost of switching to the interpreter and turning back to the
6l code. So, we built tests which exercises these features. We used two
definitions to evaluate our approach: the block language presented in
2 and a version of a data dependent language presented in [9]. The syn-
e data dependent language is an integer followed by the same number
Actors enclosed by the symbols “[” and “|”. The input 3/abc/ is an exam-
flid string of this language. Figure 5 shows an APEG grammar for this
6, Note that it adds a new choice to the nonterminal strN with exactly
or of characters given by the integer value just read, e.g, for the input
¢ nonterminal strN is extended with the rule strV — CHAR CHAR

al [Grammar g]:
ber <n>

Bl = g + ’strNy:,’ + concatN(’CHAR,.’, n) + ’;°
L' strN<g1> °]°

g I

'EGrammar gl: {? false } ;

ber returns[int r]: t=[0-9]+ { r = strToInt(t); } ;

'
i

Fig. 5. APEG grammar for a data dependent language

il these APEG grammars because they are simple and demand switch-
aon the compiler and the interpreter. The data dependent example will
i6 grammar once and force the interpreter to return to the code of the
unotion many tmes, Lhe block language example adapts the grammar

{ il the interpreter to the compiler code ey-

i

NEe pertor|n NEeNnes 111

10 L.V.S. Rels, V.O, Di Torio, and RS, Higonhna
the Eclipse environment. We have repeated the execution 10 times in a row and
computed the average execution time.

Table 1 shows the result for the data dependent language. The inputs used
were automatically generated by setting an integer number and then randomi-
cally generating this set of characters. The first column shows the value of the

integer used in the input string; in this case, the size of the input is propor-

tional to this value. The second column shows the time for parsing the input
string, using a prototype interpreter we have developed in a previous work. We
have shown that this interpreter presents better performance than similar works,
when used for languages requiring extensibility [19]. The third column presents
the time for parsing the same input string using our new approach, mixing code
generation and interpretation. This result shows that, even though using reflec-
tion to switch between interpreter and compiled code is expensive, the efficiency
of the compiled code compensates it.

Table 1. Time in milliseconds for parsing data dependent programs. The performance
of the interpreter and the mixed approach are compared.

Size |Interpreter‘Mixed approach

1000 258 276
10000 1615 2584
100000| 68744 36015
150000| 181338 86576
200000| 445036 164041

Table 2 shows the results of parsing programs of the block structure language
of Figure 2. The first column shows the number of variables declared and the
second column shows the number of assignment statements in the programs used
as input string. These programs were also automatically generated by creating
a set of variables and formed assignment statement by chosing two variables
of this set. The third and the fourth columns present the time for parsing the
programs using the prototype interpreter and using a mixed approach, respec-
tively. The results show that the mixed approach executes slightly faster than
the interpreter.

Table 2. Time in milliseconds for parsing block language programs. The performance
of the interpreter and the mixed approach are compared.

Variable|Statements Interpreter|Mixed approach
100 1 176 176
500 il 754 08
1000 il 912
100 100 232
100 500 448 ;
100 1000 b6

HyWf

T

Hb

1

AAME;IZ—@%T;;(% for ﬁ\]ilﬁng Extensible Parsers

o exnmples force the uge of the slow mechanism of reflection several times.
| camen, wo expoct the activation of interpretation and reflection is not too
, thus the performance of the parser using the mixed approach would be
(Lei, S0, our preliminary experiments indicate that the mixed approach
y diprove the APEG performance.

n:f ated Work

[, hased on data from empirical studies, Knuth [12] observed that most
npend the majority of time executing a minority of code. Using these
us, Dakin and Poole [4] and Dawson [5] (both works published in a
tinl issue) independently proposed the idea of “mixed code”. The term
lie implementation of a program as a mixture of compiled native code,
for the frequently executed parts of the program, and interpreted
i the less frequently executed parts of the program. Their main moti-
i [0 save memory space with little impact on the execution speed of
T'he interpreted source code is usually smaller although slower than
d native code. Although with different motivations, this approach
dlimilarities to our work in the sense that the native code is statically
[(In our case, code for a large part of the parser is statically generated)
tation is also used.

[15] proposes the use of a mixture of compiled and interpreted code
lmprove programming efficiency during software development. His
{0 reduce the time spent in the “make” process, considering that pro-
peatedly use the cycle edit-make-execute when developing software.
" stands for the compilation of files that have been changed, com-
#8 dependent on the ones which have been changed, and linking of
ompiled objects into an executable image. The increasingly use of
commpiler optimizations causes the make process to take longer. A so-
e the use of interpretation for prototyping, during the development
1 turn off optimizations until a final release is to be produced. Plezbert
I alternative approach which he calls “continuous compilation”. After
yram, the execution phase can immediately start using interpreta-
“make” phase is performed concurrently with program execution.
ted code is gradually replaced by natively-executable code. Perfor-
o5 until, eventually, the entire program has been translated to a
el native form. In our work, extensions for the parser are always in-
could benefit from the “continuous compilation” approach if code
generated for extensions, without stopping the parsing process.
and compiled, it could replace the in-
' ation is necessary, but we believe
parsing are smaller then the ones

. 3
ra

12 1, V.5, Rels, V.0, Di Torlo, and RS, Bigonha

execution. JIT is a means to improve the time and space elficiency of programs,
using the benefits of compilation (compiled programs run faster) and interpreta-
tion (interpreted programs are typically smaller, tend to be more portable and
have more access to runtime information). Thompson’s paper [23] is frequently
cited as one of the first works to use techniques that can be considered JIT
compilation, translating regular expressions into IBM 7094 code.

The success of Java has increased the attention to JIT compilation, highlight-
ing the tradeoff between portability of code and efficiency of execution. Several
Java implementations have been developed using JIT, such as the ones provided
by Sun [3], IBM [22] and the Harissa environment [13,14]. Several improvements
to JIT have been proposed, extending the possibilities of mixing interpretation
and compilation. For example, Plezbert has shown that good results could be
achieved combining JIT compilation with his approach of “continuous compi-
lation”, which he called “smart JIT” [16]. Dong Heon Jung et alli [11] add to
JIT the approaches of “ahead-of-time compilation” and “idle-time compilation”,
building a hybrid environment in order to increase the efficiency on a Java-based
digital TV platform. It should be noted that our approach is the reversal of
the traditional JIT in the sense that we perform a “just-in-time interpretation”
during the execution of a compiled code. However, we share the objective of
improving execution speed.

All the works discussed so far in this section use a combination of interpreta-
tion and code generation, having goals such as performance gain and portability,
but not specifically involving parsing. The works discussed in the following are
related to improvements on the parsing process, when extensions are considered.

Parsers using a bottom-up approach are usually built as a small, fixed code
that is driven by a large parse table, generated from a formal specification of a
language. When an extension to the language is required, the entire parse table
must be recalculated, which is an expensive process. Several works propose tech-
niques for generating small parse tables for the extended parts of the language,
and combining them with the table originally generated for the base language.
As an example, Schwerdfeger and Van Wyk [21,20] define conditions for com-
posing parsing tables while guaranteeing deterministic parsing. The algorithm
described by Bravenboer and Visser [2] for parse table composition supports
separate compilation of grammars to parse table components, using modular
definition of syntax. A prototype for this algorithm generates parse tables for
scannerless Generalized LR (GLR) parsers [24], with input grammars defined
in SDF [25]. The use of GLR imposes no restrictions on the input grammars,
allowing a more natural definition for the syntax than methods based on PEG,
such as our approach. On the other hand, GLR does not guarantee linear time
processing for the generated parsers. In [17], we have shown that a prototype in-
terpreter using APEG may present better performance results than works based
on GLR, when dynamic parser extensions are required, even uot o
the improvements provided by mixing interpretation with
obvious reason is that these works are not designed

A Mixed Approach for Duilding Extensible Parsers

14

asan mportant gonl, A digndvantage of the current version of APICGH i that it
toes not offer facilities for modular specifications.

OMeta [26] is a fully dynamic language extension tool, allowing lexically
scoped syntax extensions. Similarly to our work, it is based in Parsing Expres-
slon Grammar, but it can make use of a number of extensions in order to handle
‘bitrary kinds of data (not limited to processing streams of characters). Also
milarly to our work, OMeta extends PEG with semantic predicates and se-
nnbic actions, which can be written using the host language. Programmers
ny create syntax extensions by writing one or more OMeta productions in-
o {}s. This creates a new parser object (at parsing time) that inherits from
o current parser. In current implementations, everything is processed during
ing time, so they have more in common with our previous work, using only
iilerpretation.

Hansen [8] designed a dynamically extensible parser library and two new al-
sithms: an algorithm for incremental generation of LL parsers and a practical
orithm for generalized breadthfirst top-down parsing. This work is similar to
1 in the sense that the parsers produced may be modified on-the-fly, during
1 time, and it also uses top-down parsing methods. Although the algo-
5 proposed by Hansen have an exponential worst-case time complexity, the
thor showed that they may work well in practice. Our approach is based on
[(1, 50 it always produces parsers with linear-time processing, provided by the
- ol memoization. It may be interesting to implement the examples used by
[inon (a Java grammar and several extensions) in APEG and compare the per-
innnce of the two approaches, for parser generation and for parser execution.

Clonclusion and Future Work

Loiintic generation of an extensible parser is difficult because extensions on
Viibax may invalidate the generated parser code. In order to ameliorate this
, in this paper, we propose a novel mixed approach to generate an exten-
tser, which combines compilation with interpretation, using Adaptable
[xpression Grammars (APEG) as the underlying formal model. The
. virtue of this proposal is its simplicity, which comes from the APEG

8,
eliminary experiments indicate that the mixed approach can improve the
unce of the APEG parser. Our goals in the experiments were to evaluate
od code, thus we used languages and examples that exercise this feature.
L gteps are to evaluate the performance of the mixed extensible parser in
tions, such as parsing programs of extensible languages like SugarJ [6].
logy 18 based on the assumption that the code for the base grammar is
il to be large and used many times than the extensions. We still have to

A | A , Building Bxtensible Paraers 16

14 L.V.E Rels, V.O. Di Torlo, and RS, Blgonha

Pleghert, M.P., Cytron, .1 Dae ‘gﬂéﬁ in time” = “better late than never”?

- it Proceedings of the 24th AOM BIGPLAN-SIGACT Symposium on Principles of

Programming Languagos, PORL 1007, pp. 120131, ACM, New York (1997)

7. Rels, L.V.S., Di larlo, V.0, Bigonha, R.5.: Defining the syntax of extensible lan-

gliagon. In: Proceedings of the 20th Annual ACM Symposium on Applied Comput-
[SAC 2014, pp. 157015676 (2014)

antos Reis, L.V., da Silva Bigonha, R., Di Iorio, V.O., de Souza Amorim, L.E.:

aptable parsing expression grammars. In: de Carvalho Junior, F.H., Barbosa,

tsg (ecs.) SBLP 2012. LNCS, vol. 7554, pp. 72-86. Springer, Heidelberg (2012)

in, 1..V.S., Bigonha, R.S., Di Torio, V.O., Amorim, L.E.S.: The formalization and

lementation of adaptable parsing expression grammars. Science of Computer

ramming (to appear, 2014)

wordfeger, A., Van Wyk, E.: Verifiable parse table composition for deterministic

ng. In: van den Brand, M., GaSevié, D., Gray, J. (eds.) SLE 2009. LNCS,

« 6069, pp. 184-203. Springer, Heidelberg (2010)

werdfeger, A.C., Van Wyk, E.R.: Verifiable composition of deterministic gram-

15, In: Proceedings of the 2009 ACM SIGPLAN Conference on Programming

punge Design and Implementation, PLDI 2009, pp. 199-210. ACM, New York

(00)

uma, T., Ogasawara, T., Takeuchi, M., Yasue, T., Kawahito, M., Ishizaki,

omatsu, H., Nakatani, T.: Overview of the ibm java just-in-time compiler.

Syst. J. 39(1), 175-193 (2000)

iipson, K.. Regular expression search algorithm. Commun. ACM 11(6),

D 422 (1968)

ita, M.: Efficient Parsing for Natural Language: A Fast Algorithm for Practical

toms. Kluwer Academic Publishers, Norwell (1985)

, 1. Syntax Definition for Language Prototyping. PhD thesis, University of

erdam (1997)

I, A., Piumarta, I.: OMeta: An Object-oriented Language for Pattern Match-

Iin: Proceedings of the 2007 Symposium on Dynamic Languages, DLS 2007,

11-19. ACM, New York (2007)

t, D.A., Madsen, O.L.: Extended attribute grammars. Comput. J. 26(2),

19163 (1983)

1, G.V.: Extensible programming for the 21st century. Queue 2(9), 48-57

As explained in Section 3, we have not developed yet a codo penerator that
may automatically produce a recursive descent parser for the static part of the
language specification written in APEG. The examples used in this paper were
handwritten and served only for a preliminary tests of the proposed approach.
Our next steps include the implementation of this code generator, which will
make possible to test for the entire syntax of real extensible languages. Several
optimizations on the generated parsers may also be introduced. For example, we
can apply techniques to generate code for rules that are used more frequently
during interpretation.

References

1. Aycock, J.: A brief history of just-in-time. ACM Comput. Surv. 35(2), 97-113
(2003)

2. Bravenboer, M., Visser, E.: Parse Table Composition — Separate Compilation and
Binary Extensibility of Grammars. In: Gasevié, D., Lammel, R., Van Wyk, E.
(eds.) SLE 2008. LNCS, vol. 5452, pp. 74-94. Springer, Heidelberg (2009)

3. Cramer, T., Friedman, R., Miller, T., Seberger, D., Wilson, R., Wolczko, M.: Com-
piling java just in time. IEEE Micro 17(3), 36-43 (1997)

4. Dakin, R.J., Poole, P.C.: A mixed code approach. Comput. J. 16(3), 219-222 (1973)

5. Dawson, J.L.: Combining interpretive code with machine code. Comput. J. 16(3),
216-219 (1973)

6. Erdweg, S., Rendel, T., Késtner, C., Ostermann, K.: Sugarj: library-based syntactic
language extensibility. In: Proceedings of the 2011 ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA
2011, pp. 391-406. ACM, New York (2011)

7. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
SIGPLAN Not. 39(1), 111-122 (2004)

8. Hansen, C.P.: An Efficient, Dynamically Extensible ELL Parser Library. Master’s
thesis, Aarhus Universitet (2004)

9. Jim, T., Mandelbaum, Y., Walker, D.: Semantics and algorithms for data-
dependent grammars. In: Proceedings of the 37th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2010,
pp. 417-430. ACM, New York (2010)

10. Johnson, S.C.: Yacc: Yet Another Compiler Compiler. In: UNIX Programmer’s
Manual, vol. 2, pp. 353-387. Holt, Rinehart, and Winston, New York (1979)

11. Jung, D.-H., Moon, S.-M., Oh, H.-S.: Hybrid compilation and optimization for java-
based digital tv platforms. ACM Trans. Embed. Comput. Syst. 13(2s), 62:1-62:27
(2014)

12. Knuth, D.E.: An empirical study of fortran programs. Software — Practice and
Experience 1(2), 105-133 (1971)

13. Muller, G., Moura, B., Bellard, F., Consel, C.: Harissa: A flexible and efficient java
environment mixing bytecode and compiled code. In: Proceedings of the 3rd Con-
ference on USENIX Conference on Object-Oriented Technologies (COOTS 1997),
vol. 3, p. 1. USENIX Association, Berkeley (1997)

14. Muller, G., Schultz, U.P.: Harissa: A hybrid approach to java execution. [EEE
Softw. 16(2), 44-51 (1999) fiati o

Plezbort, M.: Continuous Compilation fi

ster’s thesi fon U

3

1B ill=

-

