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Abstract. Complexity analysis is an important activity for software
engineers. Such an analysis can be specially useful in the identification
of performance bugs. Although the research community has made sig-
nificant progress in this field, existing techniques still show limitations.
Purely static methods may be imprecise due to their inability to capture
the dynamic behaviour of programs. On the other hand, dynamic ap-
proaches usually need user intervention and/or are not effective to relate
complexity bounds with the symbols in the program code. In this pa-
per, we present a hybrid technique that solves these shortcomings. Our
technique uses a numeric method based on polynomial interpolation to
precisely determine a complexity function for loops. Statically, we deter-
mine: (i) the inputs of a loop, i.e., the variables that control its iterations;
and (ii) an algebraic equation relating the loops within a function. We
then instrument the program to plot a curve relating inputs and number
of operations executed. By running the program over different inputs,
we generate sufficient points for our interpolator. In the end, the com-
plexity function for each loop is combined using an algebra of our own
craft. We have implemented our technique in the LLVM compiler, being
able to analyse 99.7% of all loops available in the Polybench benchmark
suite, and most of the loops in Rodinia. These results indicate that our
technique is an effective and useful way to find the complexity of loops
in high-performance applications.

1 Introduction

Complexity analyses show how algorithms scale as a function of their inputs.
Its importance stems from the fact that such a technique helps program devel-
opers to uncover performance bugs which are hard to find. In addition to this,
complexity analysis supports the decision of offloading or not computation to
the cloud or GPU. Finally, this kind of technique has implications to the the-
oretical computer science community, as it provides data that corroborate the
formal asymptotic analysis of algorithms. Given this importance, it comes as no
surprise that, since the 70s [20], large amounts of effort have been spent in the
design and improvement of empirical methodologies to infer code complexity.

Over the time, different static approaches were proposed to analyze programs
in functional [20, 15, 6] and imperative [11, 13, 12] languages. Although the static



approaches have the benefit of running fast and may give correct upper bounds,
this methodology has shortcomings. Static analyses may yield imprecise – or
even incorrect – results. This imprecision happens due to the inherently inabil-
ity of purely static approaches to capture the dynamic behavior of programs. In
order to circumvent this limitation of static approaches, the programming lan-
guage community has resorted to profiling-based methodologies [9, 22, 4]. How-
ever, even these dynamic techniques are not free of limitations.

The main drawback of a profiling-based complexity analysis is the fact that it
is usually ineffective to relate the symbols in the program text to the result that
it delivers. For instance, the state-of-the-art tool in this field is aprof [4]. Aprof
furnishes programmers with a table that relates input sizes with the number of
operations performed. This modus operandi has two problems, in our opinion.
First, the input is provided as a number of memory cells read during the exe-
cution of a function. This number may not be meaningful to the programmer,
as we will clarify in Section 2. Second, it works at the granularity of functions.
However, developers are often more interested in knowing the computational
complexity of small regions within a function. Such regions can be, for instance,
performance-intensive loops. This paper addresses these two limitations of input
sensitive profiling.

The main contribution of our work is a novel hybrid technique to perform
complexity analysis on imperative programs, which we describe in Section 3.
Our technique is hybrid because it combines static analysis with dynamic profil-
ing. First, we use static analysis to determine loop inputs and to find algebraic
relations between these loops. Then, we use a dynamic profiler, plus polynomial
interpolation, to infer the complexity of each loop in a function. Our technique
is capable of generating symbolic expressions that denote the complexity of each
loop, instead of the whole function. Furthermore, we combine and simplify these
expressions to make them even more meaningful to the software engineer. We
believe that this granularity can help developers to have a deeper understand-
ing of a function’s behaviour; hence, it provides them with the means to detect
and solve performance bugs more efficiently. We also show that our technique is
simpler than previous work while producing more useful results.

We have designed, tested, and implemented a tool on top of the LLVM com-
pilation infrastructure [14] to infer, automatically, the complexity of loops within
programs. We ran our tool over the Polybench [19] and Rodinia [3] benchmark
suites. Section 4 reports our findings. Our results indicate that we are capable of
correctly inferring the complexity of 99.7% of the Polybench loops and 69.18%
of the Rodinia loops. All the equations that we output, as explained in detail in
Section 2, are written as functions of the symbols, i.e., variable names, present
in the program code – that is an improvement on top of aprof and similar tools.
Moreover, we have found that 38% of all functions in the benchmarks that we
analyzed have at least two independent loops. In this case, tools that only report
complexity information for entire functions may miss important details about
the asymptotic behaviour of smaller regions of code.



1 : void mult ip ly ( int ∗∗matA, int ∗∗matB , int n){
2 : int i , j , k , sum ;
3 : int ∗∗ r e s u l t = ( int ∗∗) mal loc (n ∗ s izeof ( int ∗ ) ) ;
4 : for ( i = 0 ; i < n ; i++)
5 : r e s u l t [ i ] = ( int ∗) mal loc (n ∗ s izeof ( int ) ) ;
6 :
7 : for ( i =0; i < n ; i++) {
8 : for ( j =0; j < n ; j++) {
9 : sum = 0 ;
10 : for ( k=0; k < n ; k++) {
11 : sum += matA [ i ] [ k ] ∗ matB [ k ] [ j ] ;
12 : }
13 : r e s u l t [ i ] [ j ] = sum ;
14 : }
15 : }
16 :
17 : j = 0 ;
18 : for ( i = 0 ; i < n ; ) {
19 : i f ( j >= n) {
20 : j = 0 ;
21 : i ++;
22 : p r i n t f ( ”\n” ) ;
23 : } else {
24 : p r i n t f ( ”%8d” , r e s u l t [ i ] [ j ++]);
25 : }
26 : }
27 : p r i n t f ( ”\n” ) ;
28 : }

Fig. 1: Matrix multiplication – the running example that we shall use to explain
our contributions.

2 Overview

In this section we give an overview of the challenges this paper addresses. Figure 1
shows the example we will use to illustrate our technique. Function multiply
is a routine that performs matrix multiplication of two square matrices. For
pedagogical purposes, our function does not return the resulting matrix; instead,
it prints the result. We chose to implement the function in such a way to show
how our technique behaves on functions with multiple loops.

As developers, we would like to know the computational cost to execute this
function. For instance, knowing the complexity of each part of the target func-
tion, we can find out performance bottlenecks and improve its implementation.
Looking at the multiply function we can easily identify the linear behavior of
the loop on line 4 and the cubic behavior of the nested loops beginning at line



index % time    self  children   name   
[1]    100.0    0.00    0.03     main [1] 
                0.03    0.00     multiply(int**, int**, int) [2] 
                0.00    0.00     initArray(int**, int, int) [9] 
                0.00    0.00     free_all(int**, int**, int) [10] 
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 
                0.03    0.00     main [1] 
[2]    100.0    0.03    0.00     multiply(int**, int**, int) [2] 
­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ 

Fig. 2: Gprof output for a simple program containing our example function.

Input size  Average Cost 
138  1111 

174  3324 

286  12007 

367  18576 

463  26694 

575  36394 

701  47749 

846  60781 

1007  75587 
 

Fig. 3: The output produced by the aprof input sensitive profiler.

7. However, a quick visual inspection on the loop at line 18 may not capture its
quadratic complexity.

We can use profilers to find out where the program is spending most of its
resources. However, traditional tools lack the ability to show how the program
scales as a function of its inputs. For instance, Figure 2 shows the output that
Gprof [10] – the most well-known profiler in the Unix systems – produces for our
example. This profiler does not give us any information regarding the asymptotic
complexity of the program in Figure 1. Instead, it produces a table describing
where the program spends more time during its execution.

There exist profilers that have been designed specifically to provide develop-
ers with an idea about the asymptotic complexity of programs [9, 22, 4]. Never-
theless, aprof [4], the state-of-the-art approach in this field, is also not very use-
ful in this example. For instance, only looking at Figure 2, which shows aprof’s
results for the function multiply, the user may not fully understand about the
function behaviour: this table shows numbers, but do not relate these numbers
with symbols in the program text. Moreover, the complexity curve seems to be
linear, since aprof considers the whole matrices as inputs (n2) – usually, devel-
opers describe asymptotic complexity in terms of the matrices dimentions (n).
Finally, the result generated by aprof describes the whole function. We believe
that this granularity is too coarse, because it makes it very difficult for the user
to verify the behavior of particular parts of the function.



We can do better: the technique that we describe in this paper produces one
polynomial for each loop in the function. These polynomials range on symbols
defined in the program text, e.g., the names of variables. Therefore, we claim
that our output is clearer to the developer. For instance, considering the loop
in line 7, we will state – automatically – that its complexity polynomial is:
n+ 1. Furthermore, considering the loop nest starting in line 18, we produce the
following equation to denote its complexity polynomial: n2 + n+ 1.

Our result is on a finer granularity, so we can combine them to generate an
equation that expresses the asymptotic behavior of the whole target function.
For the function in the Listing 1, our approach generates the following simplified
equation, in big O, to denote the function’s complexity:

O(n3)

We claim that this notation, which uses the names of variables present in the pro-
gram, is more meaningful to the application developer than the output produced
by traditional profilers, such as gprof or aprof.

3 Complexity Analysis

We can describe our technique in four main steps: (1) static analysis, (2) code
instrumentation, (3) dynamic information extraction and (4) polynomial inter-
polation. In this section we describe each one of these steps. However, before
delving into the details of our technique, we shall introduce some notation, which
will guide our explanations henceforth.

Loop Jargon. Let S be a subset of nodes of a control flow graph G. S contains a
special node H, which we shall call header, or entry point. Following Appel and
Palsberg [2, pp.376], we say that S is a natural loop if, and only if, it presents
the following three properties:

1. there exists a path from any node in S to H;
2. there exists a path from H to any node in S;
3. there is no path from a node of G to a node of S that does not go across H.

The last property defines S as a single-entry region, following Ferrante’s nomen-
clature [8]. An edge between any node in S to H is called a back-edge. We adopt
Wolfe’s definition of trip count [21, pp.200]: the number of times any back-edge
of a natural loop has been traversed by the program flow within a single execu-
tion of the loop. Hence, a loop that exits the first time it is executed has a trip
count of zero. The number of times H is visited is one more than the trip count
of the loop. We estimate the complexity of a loop as the product of its trip count
by the number of operations in its longest path.

We call a node L ∈ S a latch, or exit point, if there exists an edge from L to
a node N , N ∈ G, N /∈ S. We say that L is a natural latch if one of these two
conditions applies:



– L = H. In this case we have a while loop;
– L 6= H, and any edge from L either leaves S or leads to H. In this case we

have a repeat loop.

If S contains only one latch, then we call it single exit. In this work we consider
multiple exit loops featuring only one natural latch. Code generated from typical
programming language constructs, i.e., for, while and repeat has this property,
as long as the command goto is not used.

Any latch contains a stop condition: a boolean expression whose evaluation
either keeps the program flow in S or leads away from it. If the natural latch
contains a stop condition that uses only one operator, which can be either <,
≤, > or ≥, then we call S an interval loop. We let the operands of the stop
condition be the limits of the interval. For instance, in the interval loop for(i =

0; i < N; i++), we have the stop condition i < N, whose limits are i and N.
Our technique handles any loop with only one input, and interval loops with up
to two inputs i1 and i2. In this case, we consider as the input size the difference
|i1 − i2|.

3.1 Input Analysis

We start the process of inferring the complexity of code with a static analysis
phase. The static analysis determines the inputs of each loop in the function.
We qualify as loop input any data that:

– influences the stop condition of the loop; and,
– is not defined within the loop.

For instance, the loop at line 7 in Figure 1 is controlled by i < n. Variable i
has two definitions: one outside the loop, which we shall call i0, and another
inside, which we shall call i1. The former is initialized with the constant zero,
which is thus considered a loop input. Variable n is a parameter of the function;
hence, it is considered a symbolic input. Therefore, the two inputs of the loop
that exists at line 7 are {0, n}. Concretely, we detect inputs through a backward
analysis, that starts at the variables used in the loop’s stop condition, and ends
at the definitions of variables that lay outside the loop body. To determine the
complexity of a loop, we will plot the number of operations executed by the loop
for each value bound to one of its inputs that we have observed during a profiling
step. We shall describe this profiling in Section 3.3

3.2 Loop Dependence Analysis

Our profiler outputs the complexity of all the loops within a program. We must
combine this information to have a snapshot of the program’s complexity. How-
ever, combining the complexity of all the loops that constitute a program is not
a straightforward problem. One of the main difficulties that we face in this case
is how to deal with loops that may, or may not, execute, depending on the path
that the program follows. In order to provide meaningful answers to the user,



1 : void printDups ( std : : vector<std : : s t r i ng> l i n e s , s td : : s t r i n g key ) {
2 : std : : vector<std : : s t r i ng> r e s u l t ;
3 : for ( int i =0; i < l i n e s . s i z e ( ) ; i++) {
4 : i f ( l i n e s [ i ] . f i n d ( key ) != std : : s t r i n g : : npos ) {
5 : r e s u l t . push back ( l i n e s [ i ] ) ;
6 : }
7 : }
8 :
9 : i f ( r e s u l t . empty ( ) ) return ;

10 :
11 : // f i nd dups in a naive way
12 : for ( int i =0; i < r e s u l t . s i z e ()−1; i++) {
13 : for ( int j=i +1; j < r e s u l t . s i z e ( ) ; j++) {
14 : i f ( i != j && r e s u l t [ i ] == r e s u l t [ j ] )
15 : std : : cout << r e s u l t [ i ] << std : : endl ;
16 : }
17 : }
18 : }

Fig. 4: A function to print duplicate lines containing a given key. The second
loop has a conditional execution.

we propose an algebra to simplify the equations that we produce. Our algebra
has three operators: plus (+), times (×) and expander (⊕). The plus and times
operators have the usual semantics of asymptotic analysis. The expander was
proposed by us as an alternative to describe the complexity of code that may or
may not execute, depending on the program’s flow. Its semantics is defined in
the equations 1 and 2:

O(xa ⊕ yb) = O(xa) +O(xb), {a, b} ∈ N (1)

Ω(xa ⊕ yb) = Ω(xa), {a, b} ∈ N (2)

As a reminder, the big-Omega notation indicates a lower asymptotic bound:
Ω(f) denotes a function whose growth is less than or equal to the growth of f .
Expansion denotes the complexity of code that executes conditionally. Figure 4
provides an example of a situation where the expander operation is useful. The
function printDups prints the duplicate lines containing a given substring in a
naive way. Because of the conditional branch in line 9, the loop starting on line
12 may or may not execute. Because of this, the complexity of this function is
Ω(n) - best case, when no line contains the key - and O(n2), where n is the size
of the vector. If C(L) denotes the asymptotic complexity of a given code region,
then we let C(printDups) = C(L3−7) ⊕ C(L12−17) = O(n ⊕ n2), where L3−7 is
the loop at lines 3 to 7 in Figure 4, and L12−17 is the loop at lines 12 to 17.

As usual, addition and multiplication in the big-O notation are associative
and commutative. Multiplication is also distributive with regard to addition. On



the other hand, expansion is only associative, due to Equation 2. These proper-
ties let us use typical simplification rules to provide users of our tool with more
palatable results. Notice, once again, that expansion is non-commutative, and
simplification only applies if the first operand has higher complexity than the
second:

C(L) = O(xa) +O(xb), a ≥ b
C(L) = O(xa)

C(L) = O(xa) +O(xb), a < b

C(L) = O(xb)

C(L) = O(xa)×O(xb)

C(L) = O(xa+b)

C(L) = O(xa)⊕O(xb), a ≥ b
C(L) = O(xa)

The simplification process is guaranteed to terminate, as it always reduces
the size of the resulting expression. Looking back to Figure 1 it is easy to see that
the complexity is C(multiply) = C(L4−5)+C(L7−15)×C(L8−14)×C(L10−12)+
C(L18−26), which gives us: O(n+ n ∗ n ∗ n+ n2). Using the above equations we
can recursively simplify this expression. Firstly, we can simplify n ∗ n with n2.
We have now O(n + n2 ∗ n + n2) and we can use the same rule to simplify the
remaining multiplication, resulting in n3. It is easy to see that we can use the
two rules of plus to simplify the two additions. Then, the resulting complexity
is O(n3), as expected. Notice that n is a symbol produced by the input analysis
of Section 3.1.

3.3 Code Instrumentation

We infer the complexity of code by analyzing profiling data. We produce this
data through code instrumentation. To be able to extract dynamic informa-
tion, we instrument the target program to output: (i) the values of the loop
inputs immediately before the loop execution and (ii) the number of operations
performed by each loop. Loop inputs are determined by the analysis seen in Sec-
tion 3.1. The execution cost is measured in terms of instructions executed. We
have implemented this instrumentation framework within the LLVM compiler
infrastructure.

Care must be taken with regard to loops with multiple paths. Different paths
may yield different costs, a fact that could hinder our interpolator from finding
a perfect polynomial fit. Figure 5 illustrates this shortcoming. The program seen
in part (a) of the figure contains two loops, at lines 2 and 4. The loop at line 4
contains two execution paths. Let’s assume that during execution, our profiler
has observed that for M = 1, that loop executed 44 instructions, and for M = 2,
it always took the cheapest path; hence, executing 3+3 operations. These points,
(1, 42), (2, 6) would confuse our interpolator, which expects more operations for
larger inputs. To avoid this problem, we consider that the cost of a loop is
determined by its path of highest cost, which we estimate statically. To obtain a
conservative estimate of this path, we resort to a modified version of Dijkstra’s
algorithm, to solve the single-source largest path problem for an acyclic graph
with non-negative weights assigned to edges [7]. To build an acyclic graph, we
consider all the paths from the loop header H to its natural latch L.



void search(char** book, int N, int M) {
    for (i = 0; i < N; i++) {
        char* line = book[i];
        for (j = 0; j < M; j++) {
            if (line[j] == '\0') {
                break;
            } else {
                match(line, pattern);
            }
        }
    }
}

1
2
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12

2

4

6 8

9

10

8

3

42

2 2

1

2

2

2

4

cost(L2) = 8 + cost(L4) + 2 + 2

cost(L4) = 2 + 42 + 3

(a) (b) (c)

Fig. 5: (a) Program with a multi-path loop. (b) The cost-graph of the program.
Nodes represent program points and the edges’ weights represent the number of
executed instructions between two points. (c) The cost of each loop iteration.

Once we have determined – statically – the cost of a loop iteration, we in-
strument it. To this end, we create a counter variable at the loop’s header, and
increment it by the estimated cost. Notice that incrementing this counter at the
loop header will account for one more iteration than the real execution. Never-
theless, it will not affect our cost analysis. We chose to do it like this because
the loop header is unique, and is always executed, independent on the way the
program flows within the loop body. Figure 5 (c) shows the cost expressions that
we create for each loop. In the figure, edges represent paths within the loop, and
the nodes are the headers of those loops. Each one of these values is added once
per iteration of the loop. Once we have instrumented the program, we execute
it. As mentioned before, each execution of an instrumented program outputs
the values of each loop input, together with the number of operations executed
within that loop.

3.4 Polynomial Interpolation

We log the output of our profiler and parse it to extract pairs: input value ×
execution cost. With these points, we execute a polynomial interpolation method
to find the curve that best fits into this set. Our interpolation works as follows: we
test different polynomials, starting from a line (degree 1) upwards until n − 1,
where n is the number of points available. At step i we need i + 1 points to
determine a polynomial. Any group of i + 1 different points fits this purpose.
We call this group of points the guiding set. We use the points that are left
to check if we have found the correct polynomial. These remaining points are
called the verification set. We stop interpolation if, upon finding a polynomial
p, of degree k, k < n− 1, we notice that the n− k points in the verification set
fit perfectly into p. Our interpolation only works for single-variable polynomials,
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Fig. 6: (a) Polynomials found for the loop at lines 18-25 of Figure 1. (b) Poly-
nomials found for the loop nest at lines 7-15. In each figure, the first curve that
fits the points in the verification set is marked in gray.

but we can infer the complexity of nests of loops by multiplying symbolically
their individual complexities.

Figure 6 illustrates this process for the program seen in Figure 1. The figure
has two blocks of loops; thus, we produce two polynomials. Let us take a deeper
look into the polynomial that we produce for the loop that exists at lines 18-25
of Figure 1. This curve is shown in Figure 6 (a). In this example, we assume that
we have obtained, after profiling the program with eight different inputs, the
following pairs of size × cost: (13, 183), (50, 2,551), (72, 5,257), (80, 6,481), (98,
9,704), (115, 13,341), (139, 19,461). To derive a polynomial that describes the
complexity of this loop, we try to interpolate a line across those points using, as
our guiding set, only the first two pairs, e.g., (13, 183) and (50, 2,551). This line
does not contain the other six points, which form the verification set. Thus, we
move on to try a polynomial of degree two, this time, adding also the pair (72,
5,257) to our guiding set. The new polynomial, n2+n+0.8 contains the points in
our verification set. Hence, we let it denote the computational cost of the loop.
The complexity of the loop is then O(n2), where n is the only symbolic input
of the loop under analysis, as we have explained in Section 3.1. We perform
similar process to discover the polynomial that characterizes the loop nest at
lines 7-15 of Figure 1. However, this time our search stabilizes in a third-degree
polynomial. Figure 6 (b) shows this curve.

4 Experiments

To examine the real applicability of our technique, we have implemented it as a
prototype tool. We have used the LLVM compilation infrastructure to perform
the static analysis and code instrumentation phases mentioned in Sections 3.1,
3.2 and 3.3. All the experiments that we shall present in this section have been
run on an Intel Xeon processor, with 16GB of RAM, running Linux Ubuntu.
The main goals of these experiments are: (1) to find out how effective is the
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Fig. 7: Percentage of loops per benchmark of Rodinia that we could analyze. The
correctness of all these results have been checked manually.

n2

n

n3

≥ n4

27.7%

49.7%

20.3%

2.3% 0.9%

10.7%

29.7% 58.7%

POLYBENCH RODINIA

Fig. 8: Distribution of complexities. In this chart we ignore the difference between
variables - we consider that n×m is equals to n2, for instance.

technique when applied to the loops found in real-world programs; and (2) to
provide a taxonomy of the loops found in real-world systems.

Effectiveness To achieve our first goal – to probe the effectiveness of our tool –
we have executed it on the Polybench [19] and Rodinia [3] benchmark suites. We
have checked, manually, the answers produced by our tool for every loop in these
benchmarks. This exercise shows that we are able to correctly analyze 99.7% of
the loops in Polybench. The remaining 0.3% is due to a single loop which is
constant for the first two points, and varies for larger inputs. This behavior
makes it impossible for us to get a perfect polynomial match. For Rodinia – a
much bigger and general benchmark suite – our tool correctly analysed 63.58%
of the loops. However, the execution flow never reached some functions during
our profiling phase so we could not generate data for them. If we ignore those
functions, our success rate increases to 69.18%.



Fig. 9: Quality of the approximation heuristic seen in Section 3.3. Each slice
groups a range of loops for which our approximation yielded similar results. For
instance, for 78.6% of the loops the approximation yields a result that is within
[0, 1/3] of the observed value.

Our results are worse for Rodinia because of three reasons: (1) some loops are
not polynomial, but we use a polynomial interpolation; (2) some loops iterate
over structures that our technique does not handle, such as strings or files; and
(3) some loops have 3 or 4 inputs that bound their execution. In this case, we do
not generate pairs of input vs time for the loop. Figure 7 shows the percentage
of loops that we could analyze per Rodinia benchmark. We do not show a chart
for Polybench, because we believe that this chart is not interesting. It would
have almost only bars at 100% of precision.

Given all the machinery that we now have in place, we thought that it would
be interesting to categorize the loop nests that we have found in our benchmarks.
Figure 8 shows the distribution of complexities found in both benchmark suites.
The majority of loop nests in Rodinia are linear, and only a handful of them
are O(N4) or higher. In Polybench, the picture is slightly different. Most of the
loop nests in that collection are quadratic. This happens because Polybench has
been designed to test optimizations built over the polytope model. Linear loops
are simply not challenging enough to the current state-of-the-art polyhedron
techniques.

The Topology of Loops. To better understand the power and limitations of the
technique that we advocate in this paper, we chose to analyze in greater detail
the topology of loops found in real-world programs. In addition to Rodinia and
Polybench, this time we chose to study also the loops present in SPEC CPU
2006, to have a larger body of samples.

We have counted the number of independent loops within functions. We
say that two loops, L1 and L2, are independent if one is not nested within



the other. We saw that 21.8% of the functions have at least two independent
loops in Polybench, 40.4% in Rodinia, and 38.1% in SPEC. These numbers let
us conclude that it is important, from a software engineering point of view, to
output complexity results in a finer grain than functions, as aprof does. We do
it at the loop level. This finer granularity gives developers more information to
understand a function’s behaviour. We have also counted the number of loops
that are executed conditionally within a function. We found 92 control-flow
breaks (e.g. returns or exit calls) in the 99 functions that we have analyzed.
This data shows that if we ignore conditional execution, then we may output
incomplete – or incorrect – results. That is why we use the expander operator.

The last metric that we have studied is the number of loops with multiple
paths. We saw that 51.2% of the loops in SPEC have multiple paths. We also
would like to know how far from the exact number of instructions we stay when
using the approximation seen in Section 3.3. In that case, we approximate the
cost of a loop as the cost of its longest path. By profiling the actual number
of instructions executed in our benchmarks, we got that, most of the time, our
approximation is within 33% of the actual result. This metric shows that using
the heuristic from Section 3.3 increases the applicability of our analysis with-
out compromising its results. Figure 9 shows a distribution of how distant our
approximation is from the real program behavior.

5 Related Works

Recent work has attempted to improve the state of the art on complexity anal-
ysis. Particularly, profiler-based approaches have been able to give interesting
results. Goldsmith et al. [9] proposed a technique which consists in executing
the target program over workloads with different orders of magnitude and track-
ing how many times each program location was executed. They use polynomial
regression to fit the data into a linear or power-law model. However, the user
has to specify, for each workload, the value of features - a feature is an input
property which affects the algorithm execution, e.g. the size of an array or the
height of a tree. Our technique is able to automatically infer loops’ inputs; hence,
it does not require this type of user intervention.

Zaparanuks et al. [22] proposed the concept of algorithmic profiler. Their
approach consists in grouping the basic blocks of a loop and the functions which
make a cycle in the call-graph into the so called repetition nodes. Those nodes are
then combined in units that they have named algorithms. The technique is able to
identify if an algorithm is modifying or traversing a list or an array, for example.
In order to estimate the complexity of an algorithm, they retrieve the size of the
inputs and some performance metrics for each execution of the repetition nodes.
This modus operandi leads to a significant overhead, since the analyzer iterates
over the entire data structure to calculate its size. The automatic reconstruction
of data-structures is still an incipient area of research. Therefore, Zaparanuks et
al. have implemented a prototype which, up to this point, can analyze only toy
examples. We cannot reconstruct recursive data-structures as Zaparanuks does;



however, our approach is able to infer the complexity of most of the loops in a
real-world benchmark suite.

The work that is the most related to ours is Coppa et al.’s input sensitive
profiler [4]. This work has materialized itself into aprof tool. Core to aprof’s
work is the notion of Read Memory Size (RMS). This metric represents the
number of memory locations which are read before they have been written inside
a function. Aprof was implemented as a Valgrind [17] extension. We believe that
aprof is the most practical tool available nowadays to infer the complexity of
general purpose programs. Nevertheless, it has the shortcomings which we have
described in Section 1: (i) the granularity of results is at the function, not at the
loop, level; (ii) users have to fit equation by hand in aprof’s results to find the
complexity of a function; and (iii) results are given in terms of RMS, which may
not be significant to the developer. Our technique is capable of addressing these
drawbacks.

There exists a plethora of work related to the static estimation of complexity
of code [1, 5, 11, 13, 16]. Our work is essentially different from these approaches,
because our results are based on program behavior observed at runtime. In other
words, our approach is dynamic: we execute and profile the program to infer its
computational complexity. The downside of our approach is that we are not able
to prove properties about the program’s complexity: there are no guarantees
that we will be able to observe every possible execution path within the pro-
gram code. The upside is precision: our approach is able to reason about typical
programming language features such as dynamically allocated memory, multiple
paths in loops, non-structured control flow graphs and pointer arithmetics. So
far, these real-world constructs have been challenging adversaries to the purely
static analyses.

6 Conclusion

This paper has presented a new technique, based on a combination of profiling
and static analysis, to infer the complexity of code. Static analysis gives us the
names of variables that bound the trip count of loops. Profiling lets us associate
these variables with the number of operations in the loops that they control.
We believe that our approach, whenever applicable, yields results that are more
meaningful to the application developer than the state-of-the-art tools that are
currently available. A tool that implements the technique is publicly available1

for use. There are several ways in which such a tool can be employed. Our
immediate goal is to use it to help in the automatic placement of code in non-
uniform memory access architectures. In this scenario, it is worthwhile to migrate
processes of high computational cost closer to the memory banks that contain
the data that said processes use. A totally static solution has been devised to this
problem by Piccoli et al. [18]. Our intention is to add to this solution a dynamic
component based on this paper’s ideas, in hopes to increase its precision.

1 http://demontiejr.github.io/asymptus
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