
	

	

18th	
 Brazilian	
 Symposium	
 on	
 Formal	
 Methods	

SBMF	
 2015	

Belo	
 Horizonte,	
 MG,	
 Brazil	

September	
 21-­‐22,	
 2015	

	

	

	

	

	

Pre-­‐proceedings	

	

Preface

This volume (pre-proceedings) contains the papers expected to be presented at
SBMF 2015: the 18th Brazilian Symposium on Formal Methods. The conference
was held in Belo Horizonte, Brazil, from September 21 to September 22 colo-
cated with CBSoft 2015, the 6th Brazilian Conference on Software: Theory and
Practice.

The Brazilian Symposium on Formal Methods (SBMF) 2015 is the eighteenth
of a series of events devoted to the development, dissemination and use of for-
mal methods for the construction of high-quality computational systems. It is
now a well-established event, with an international reputation. The first edition
occurred in 1998.

The conference included two invited talks given by Adenilso Simão (ICMC/USP,
São Carlos, SP, Brazil) and Sumit Gulwani (Microsoft Research, WA, USA), who
also taught at CBSoft tutorial ”Programming by Examples”.

A total of 11 papers were expected to be presented at the conference. They
were selected from 25 submissions that came from 10 different countries: Brazil,
Canada, France, Germany, Luxembourg, Netherlands, South Africa, Sweden,
United Kingdom, and United States of America. The Program Committee was
composed by 41 members from the national and international community of
formal methods. Each submission was reviewed by at least 3 program commit-
tee members. The process of submissions by the authors, paper reviews, and
deliberations of the Program Committee were all assisted by EasyChair.

We are grateful to the Program Committee, and to the additional reviewers,
for their hard work in evaluating submissions and suggesting improvements.
In particular, special thanks go to Christiano Braga, Juliano Iyoda and Rohit
Gheyi, co-chairs of previous editions of SBMF, who were always available to
help us and to share his experience and wisdom. We are very thankful to the
general chairs of CBSoft 2015, Eduardo Figueiredo (UFMG), Fernando Quintão
(UFMG), Kecia Ferreira (CEFET-MG), and Maria Augusta Nelson (PUC-MG),
who made everything possible for the conference to run smoothly.

SBMF 2015 was organized by Universidade Federal de Minas Gerais, Centro
Federal de Educação Tecnológica de Minas Gerais, and Pontif́ıcia Universidade
Católica de Minas Gerais, promoted by the Brazilian Computer Society (SBC),
and sponsored by the following organizations, who we thank for their gener-
ous support: CAPES, CNPq, FAPEMIG, Google, RaroLabs, Take.net, Thought-
Works, AvenueCode, Avanti Negócios e Tecnologia.

September 2015
Belo Horizonte

Márcio Cornélio
Bill Roscoe

v

Table of Contents

Applications of Formal Methods to Data Wrangling and Education 1
Sumit Gulwani

To Test or not to Test: That is a formal question . 2
Adenilso Simao

Towards Reasoning in Dynamic Logics with Rewriting Logic: the
Petri-PDL Case . 4

Christiano Braga and Bruno Lopes

Evaluating the Assignment of Behavioral Goals to Coalitions of Agents . . 20
Christophe Chareton, Julien Brunel and David Chemouil

Hard-wiring CSP Hiding: Implementing Channel Abstraction to
Generate Verified Concurrent Hardware . 36

Francisco Macario and Marcel Vinicius Medeiros Oliveira

Refinement strategies for Safety-Critical Java . 52
Alvaro Miyazawa and Ana Cavalcanti

Automatic generation of test cases and test purposes from natural
language . 68

Sidney C. Nogueira, Hugo L. S. Araujo, Renata B. S. Araujo, Juliano
Iyoda and Augusto Sampaio

A Mechanized Textbook Proof of a Type Unification Algorithm 84
Rodrigo Ribeiro and Carlos Camarão

Time Performance Formal Evaluation of Complex Systems 99
Valdivino Alexandre De Santiago Júnior and Sofiène Tahar

Test Case Generation from Natural Language Requirements using CPN
Simulation . 115

Bruno Cesar F. Silva, Gustavo Carvalho and Augusto Sampaio

Verifying Transformations of Java programs using Alloy 131
Tarciana Silva, Alexandre Mota and Augusto Sampaio

Instantiation Reduction in Iterative Parameterised Three-Valued Model
Checking . 147

Nils Timm and Stefan Gruner

Mobile CSP . 163
Jim Woodcock, Andy Wellings and Ana Cavalcanti

vi

Program Committee

Aline Andrade Universidade Federal da Bahia
Wilkerson L. Andrade Federal University of Campina Grande
Luis Barbosa Universidade do Minho
Christiano Braga Universidade Federal Fluminense
Michael Butler University of Southampton
Ana Cavalcanti University of York
Simone André Da Costa
Cavalheiro

Universidade Federal de Pelotas

Márcio Cornélio Centro de Informática - UFPE
Andrea Corradini Dipartimento di Informatica, Università di Pisa
Jim Davies University of Oxford
David Deharbe Universidade Federal do Rio Grande do Norte - De-

partamento de Informatica e Matematica Aplicada
Ewen Denney SGT/NASA Ames
Clare Dixon University of Liverpool
Adalberto Farias UFCG
Rohit Gheyi Department of Computing Systems - UFCG
Rolf Hennicker Ludwig-Maximilians-Universitt Mnchen
Juliano Iyoda Centro de Informática, Universidade Federal de Per-

nambuco
Peter Gorm Larsen Aarhus University
Bruno Lopes Pontif́ıcia Universidade Católica do Rio de Janeiro
Anamaria M. Moreira Federal University of Rio de Janeiro
Patricia Machado Federal University of Campina Grande
Narciso Marti-Oliet Universidad Complutense de Madrid
Tiago Massoni Universidade Federal de Campina Grande - UFCG
Ana Melo University of Sao Paulo
Alvaro Moreira Federal Univeristy of Rio Grande do Sul
Alexandre Mota Universidade Federal de Pernambuco
Arnaldo Moura IC/UNICAMP
Leonardo Moura Microsoft Research
Peter Müller ETH Zürich
David Naumann Stevens Institute of Technology
Jose Oliveira Universidade do Minho
Marcel Vinicius Medeiros
Oliveira

Universidade Federal do Rio Grande do Norte

Leila Ribeiro Universidade Federal do Rio Grande do Sul
Bill Roscoe University of Oxford
Augusto Sampaio Federal university of Pernambuco
Leila Silva Universidade Federal de Sergipe
Adenilso Simao ICMC/USP
Sofiene Tahar Concordia University

vii

Leopoldo Teixeira Informatics Center, Federal University of Pernam-
buco

Heike Wehrheim University of Paderborn
Jim Woodcock University of York

viii

Additional Reviewers

A

Aguirre, Luis
B

Bonifácio, Adilson
D

Daghar, Alaeddine
H

Hachani, Ahmed
L

Lopes, Bruno
M

Macedo, Nuno
Madeira, Alexandre
P

Pita, Isabel
S

Santiago Júnior, Valdivino
Soares, Gustavo
T

Tavares, Cláudia

ix

Applications of Formal Methods to Data
Wrangling and Education

Sumit Gulwani

Microsoft Research, Redmond, WA, USA
sumit@microsoft.com

Abstract. Data is locked up in semi-structured formats such as spread-
sheets, text/log files, webpages, pdf documents. Getting data out of these
documents into structured formats that allow the data to be explored and
analyzed is challenging. While data scientists spend 80% of their time
cleaning data, programmatic solutions to data manipulation are beyond
the expertise of 99% of end users who do not know programming. Pro-
gramming by Examples (PBE) can make data wrangling a delightful
experience for the masses. The first part of this talk will describe how
formal methods can be used to address two key challenges in PBE: (a)
efficient search algorithms to explore the huge state space of programs to
find those that match the user-provided examples, and (b) effective am-
biguity resolution techniques to deal with the inherent ambiguity in the
examples. The second part of this talk will describe how formal methods
can help automated two key tasks in Education, namely (a) problem
generation and (b) feedback generation. I will illustrate this using recent
research results that have been applied to various STEM subject domains
including mathematics, programming, logic, and automata theory. These
results advance the state-of-the-art in intelligent tutoring, and can play
a significant role in enabling personalized and interactive education in
both standard classrooms and MOOCs.

1

To Test or not to Test: That is a formal question

Adenilso Simao

Universidade de São Paulo, São Carlos, Brazil
adenilso@icmc.usp.br

Abstract. The demand of highly dependable software has greatly mo-
tivated the research of two important areas of software engineering,
namely, formal methods and software testing. Both areas have matured
considerably in the last years, to the point of being mainstream ap-
proaches in the development of critical systems. However, despite some
fruitful exchange of ideas between them, formal methods and software
testing have advanced somehow isolated from each other. In this talk,
we review the achievements related to the combination of formal meth-
ods and software testing. We will discuss, for instance, how testing can
be formal and how formal methods can be aided by testing. The main
goal of this talk is to identify opportunities to strengthen the exchange
between these two exciting and important areas.

Keywords: Formal Methods, Software Testing

1 Context

We currently live in the so-called information age; the capacity to gather, treat
and share data is higher than ever. More and more tasks are delegated to auto-
mated systems. Our dependency on these systems increases accordingly. Thus,
it is more important than ever to have systems we can depend on, i.e., systems
which provide the correct result (perform the expected tasks, as requires), in a
timely manner.

However, the relevant question is how to obtain systems with the required
level of quality, considering the constraints on cost and time available to build
them. Several techniques and methods having been proposed for tackling this
problem. In this talk, we focus on two such techniques, which are complementary
to each other in a sense, but have not been integrated enough: formal methods
and testing.

On one hand, formal methods employ mathematical techniques to improve
the development of high-quality systems. The mathematical background is em-
ployed to provide a sound reasoning about the correctness of the artifact pro-
duced during the development. The ambiguity, which is common in natural lan-
guage requirements and informal design techniques, is greatly avoided. Thus, the
precise syntax and semantics of the notation are used to solidly build the soft-
ware. This approach is more optimistic about the potentiality of human capacity

2

(aided by automated tools). There is, however, a semantic gap between the in-
formal, messy “real” world and the formal, neat models. The gap will always be
there.

On the other hand, testing techniques exercise the real system with real
inputs, to identify possible bugs. It is more of a pragmatic activity, trying to
figure out what could go wrong and how to force the system to go wrong, if it
could. In a sense, this approach is pessimistic; to do a good job, the tester should
doubt everything and trust nobody. Finding the balance out of this paranoiac
view is a practical skill, which comes with experience. The research in this area
is usually a bit too informal, too common sense.

2 Objective of the Talk

We consider that both approaches start from too opposite ends with the same
goal. Somehow, the ideal situation is somewhere in the middle. The mathematical
basis of formal methods can aid the testing activities to solve many problems,
especially the selection of test inputs and the definition of oracle for test cases.
The testing activities can also be included in the formal methods to help to
bridge the semantic gap.

In this talk, we show the approaches that already merge formal and testing
techniques. We discuss and illustrate, e.g., Model-Based Testing [1], IOCO The-
ory [4], Formal Testing [2] and Concolic Testing [3]. We then conclude with some
open issues, research opportunities and future work.

References

1. Brinksma, E., Grieskamp, W., Tretmans, J. (eds.): Perspectives of Model-Based
Testing, 5.-10. September 2004, Dagstuhl Seminar Proceedings, vol. 04371. IBFI,
Schloss Dagstuhl, Germany (2005), http://drops.dagstuhl.de/portals/04371/

2. Gaudel, M.C.: Testing can be formal, too. In: International Joint Conference, Theory
And Practice of Software Development. Lecture Notes in Computer Science, vol. 915,
pp. 82–96. Springer-Verlag (1995)

3. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. In:
Sarkar, V., Hall, M.W. (eds.) Proceedings of the ACM SIGPLAN 2005 Conference
on Programming Language Design and Implementation, Chicago, IL, USA, June 12-
15, 2005. pp. 213–223. ACM (2005), http://doi.acm.org/10.1145/1065010.1065036

4. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Soft-
ware - Concepts and Tools 17(3), 103–120 (1996)

3

Towards Reasoning in Dynamic Logics with
Rewriting Logic: the Petri-PDL Case

Christiano Braga and Bruno Lopes?

Instituto de Computação,
Universidade Federal Fluminense, Niterói, Brazil

cbraga@ic.uff.br, bruno@ic.uff.br

Abstract. Safety is a desired property in software to ensure that no un-
foreseen scenarios will be achieved and in concurrent systems the variety
of scenarios increase the complexity. Dynamic Logics (DL) present a large
body of techniques to reason about systems and certify systems. Mod-
elling and assessing concurrent systems with a formal semantics leads to
the possibility of proving that they comply with their specification. Petri
nets fulfill the requirements as a formal modelling language comprising a
wide body of tools and an intuitive graphical interpretation. Petri-PDL
puts together DL with Petri nets, providing a theoretical background
to reason about Petri nets, inheriting their properties with all the tech-
niques available for DL. This work presents a prototype implementation,
in the Rewriting Logic language Maude, of a bounded model checker for
Petri-PDL. The Petri-PDL model checker is formally designed following
the representation of Kripke models as rewrite theories defined for the
Linear Temporal Logic model checker available in Maude.

1 Introduction

Concurrency is ubiquitous in modern systems and uncertified software may lead
to unforeseen scenarios. Formal methods should ensure that systems behave as
expected by verifying the presence or absence of given properties. To state that
some property is certified corresponds to present a proof of the given property.
Proof theory, model theory and their automation play an important role to this
end.

Logic is about proofs and proof theory is its branch that deals with proofs
as mathematical objects. A program execution may denote a transition in a
discrete state system, that is, with satisfied preconditions, a program is executed
and a resulting configuration is achieved. Based on this idea, Dynamic Logics [6]
present a family of logic systems to reason about programs.

Propositional Dynamic Logic (PDL, [5]) combines classical Propositional
Logic with Dynamic Logics, a family of modal logics where each program cor-
responds to a modality [6]. The PDL formula 〈α〉p denotes that a propositional

? The author thanks to CNPq, CAPES and FAPERJ for partially supporting this
work.

4

property p holds after some execution of a program α. PDL may be extended in
a “logic engineering” way. Each α-language (the language for α programs) gives
rise to a different Dynamic Logic. Let us keep that in mind for a moment.

Petri nets are an expressive and widely used formalism to specify concur-
rent systems [2,12,15]. They offer a formal semantics with an intuitive graphical
interpretation. It leads not only to precision to model but also to easiness and
readiness.

Returning our focus to PDL, in [9] the second author replaced the program
α in PDL with a marked Petri net “s, π”, where s corresponds to the marking
of the Petri net π, giving rise to Petri-PDL. This new PDL is a sound, complete
and decidable [9,11] logic system to reason about Petri nets. Moreover, in other
Dynamic Logic-based approaches to reason about Petri nets, it is sometimes
required to translate the net to another language, usually without a bijection
between Petri nets and the target language [14]. Petri-PDL represents Petri nets
quite naturally without requiring such a translation.

The semantics of Dynamic Logics is usually denoted by a Kripke frame [6],
i.e., a tuple with a set of worlds (states) and a relation among these worlds.
Given a frame F and a property ϕ, to verify if ϕ holds in a state w from F is
to verify the satisfaction relation F ,w
 ϕ. Therefore, to verify if ϕ holds, it is
necessary to look for a path on the structure induced by F beginning in w that
satisfy ϕ. Such a relation may be naturally represented as a rewrite relation in
a suitable term-rewriting system.

The main contribution of this work is a prototype implementation of a
bounded model checker for Propositional Dynamic Logics (PDL). These are
the first steps towards a framework to implement model checkers for Dynamic
Logics in Maude. The prototype now focuses on Petri-PDL and by associating
a rewrite theory in Maude to a given Petri-PDL net.

Plan of the paper. Section 2 recalls basic definitions for Propositional Dy-
namic Logic. In Section 3 we briefly discuss Rewriting Logic and the Maude
language. Section 4 shows how we can apply the mapping from Kripke struc-
tures to rewrite theories in order to represent PDL as rewrite theories. Section 5
shows how PDL is extended to allow the specification and reasoning of Petri
nets. Section 6 is the main contribution of the paper discussing a prototype im-
plementation of a model checker for Petri-PDL in Maude, exploring the metapro-
gramming facilities of Rewriting Logic and Maude. Section 7 acknowledges some
related work and finally Section 8 concludes this paper.

2 Propositional Dynamic Logic

The usual approach to Dynamic Logic is reflected in Propositional Dynamic
Logic (PDL) [5,6]. This section presents its syntax and semantics.

Definition 1 (PDL language). The PDL language consists of a set Φ of
countably many proposition symbols, a set Π of countably many basic programs,
the boolean connectives ¬ and ∧, the program constructors ;, ∪ and ? and a

5

modality 〈π〉 for every program π. Let p ∈ Φ and a ∈ Π, formulas are defined as

ϕ ::= p | > | ¬ϕ | ϕ1 ∧ ϕ2 | 〈π〉ϕ, with π ::= a | π;π | π ∪ π | π?.

The standard abbreviations are valid: ⊥ ≡ ¬>, ϕ ∨ φ ≡ ¬(¬ϕ ∧ ¬φ), ϕ →
φ ≡ ¬(ϕ ∧ ¬φ) and [π]ϕ ≡ ¬〈π〉¬ϕ.

Definition 2 (PDL frame). A frame for PDL is a tuple F = 〈W,Rπ〉 where

– W is a non-empty set of states;
– Rπ is a binary relation over W , for each basic program π ∈ Π;
– We can inductively define a binary relation Rπ, for each non-basic program
π, as follows
• Rπ1;π2 = Rπ1 ◦Rπ2 ,
• Rπ1∪π2

= Rπ1
∪Rπ2

,
• Rπ? = R?π, where R?π denotes the reflexive transitive closure of Rπ.

Definition 3 (PDL model). A model for PDL is a pair M = 〈F ,V〉, where
F is a PDL frame and V is a valuation function V : Φ→ 2W .

Definition 4 (PDL satisfaction notion). Let M = 〈F ,V〉 be a model. The
notion of satisfaction of a formula ϕ in a model M at a world w, notation
M, w
 ϕ, can be inductively defined as follows:

– M, w
 p iff w ∈ V(p);
– M, w
 > always;
– M, w
 ¬ϕ iff M, w 6
 ϕ;
– M, w
 ϕ1 ∧ ϕ2 iff M, w
 ϕ1 and M, w
 ϕ2;
– M, w
 〈π〉ϕ iff there is w′ ∈W such that wRπw

′ and M, w′
 ϕ.

3 Rewriting logic

In this Section we recall the logical foundations of Maude. Rewriting logic,
Maude’s underlying logical framework, is parameterized by an equational logic.
In Section 3.1 we discuss membership equational logic [1], a generalization of
equational logic. Section 3.2 discusses Rewriting Logic. Section 3.3 discusses
Maude, a concrete syntax for Rewriting Logic.

3.1 Membership equational logic

Membership equational logic (MEL) [1] is an expressive version of equational
logic. MEL supports sorts, subsorts, and operator overloading. Errors and par-
tiality are specified through kinds and conditional membership axioms.

A signature in membership equational logic is a triple (K,Σ, S) (just Σ in
the following), with K a set of kinds, Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-
kinded signature, and S = {Sk}k ∈ K a pairwise disjoint K-kinded family of
sets of sorts. The kind of a sort s is denoted by [s]. Notation TΣ,k and TΣ,k(−→x)

6

denotes respectively the set of ground Σ-terms with kind k and of Σ-terms with
kind k over variables in −→x , where −→x = {x1 : k1, . . . , xn : kn} is a set of K-kinded
variables. The notation t(−→x) makes explicit the set of variables that appear in
the term t. Atomic formulas in MEL are either equations t = t, where t and t
are terms of the same kind, or membership assertions of the form t : s, where
the term t has kind k and s ∈ Sk. Sentences are Horn clauses on these atomic
formulas, i.e., sentences of the form (∀−→x)A0 if A1 ∧ . . . ∧ An, where each Ai
is either an equation or a membership assertion, and −→x is a set of K-kinded
variables that contains all the variables occurring in A0, A1, . . . , An.

A theory in membership equational logic is a pair (Σ,E), where E is a
finite set of sentences in membership equational logic over the signature Σ.
Properly typed terms are those that can be proved to have a sort. If there is
not such a proof then a term is ill-sorted: it has a kind but not a sort. For
example, assuming sum +, difference − and integer division / operators with
the appropriate declarations, 3 + 2 : Nat and 34 : Int , but 7/0 is a term of
kind [Int] with no sort. Fig. 1 presents the calculus for MEL, where θ is the
substitution function.

t ∈ TΣ(−→x)

(∀−→x)t = t
Reflexivity

(∀−→x)t′ : s (∀−→x)t = t′

(∀−→x)t : s
Membership

(∀−→x)t′ = t

(∀−→x)t = t′
Symmetry

(∀−→x)t1 = t2 (∀−→x)t2 = t3

(∀−→x)t1 = t3
Transitivity

f ∈ Σk1...kn,k(∀−→x)ti = t′i ti, t
′
i ∈ TΣ,ki(∀−→x) 1 ≤ i ≤ n

(∀−→x)f(t1, . . . , tn) = f(t′1, . . . , t
′
n)

Congruence

(∀−→x)A0 if A1 ∧ . . . ∧An ∈ E
θ : −→x → TΣ(−→y) (∀−→y)θ(Ai) 1 ≤ i ≤ n

(∀−→y)θ(A0)
Replacement

Fig. 1. Deduction rules for membership equational logic.

A theory (Σ,E) in MEL has an initial model, denoted TΣ/E , whose elements
are equivalence classes [t]E of ground terms. In the initial model, sorts are in-
terpreted as the smallest sets satisfying the axioms in the theory, and equality
is interpreted as the smallest congruence satisfying those axioms.

3.2 Rewriting logic

Concurrent systems are axiomatized in Rewriting Logic by means of rewrite the-
ories of the form R = (Σ,E,R). The set of states is described by a membership
equational theory (Σ,E) as the algebraic data type TΣ/E,k associated to the
initial algebra TΣ/E of (Σ,E) by the choice of a kind k of states in Σ. The

7

system’s transitions are axiomatized by the conditional rewrite rules R which
are of the general form

λ : (∀−→x)t→ t′ if
∧

i∈I
pi = qi ∧

∧

j∈J
wj : sj ∧

∧

l∈L
tl → t′l,

with λ a label, pi = qi and wj : sj atomic formulas in MEL for i ∈ I and j ∈ J ,
and for appropriate kinds k and kl, t, t

′ ∈ TΣ,k(−→x), and tl, t
′
l ∈ TΣ,kl(

−→x) for
l ∈ L. Unbounded variables are allowed in the conditions provided that they are
added incrementally [3] in terms of variables in the left-hand side of the rule and
in the conditions as well.

Deduction rules for Rewriting Logic are given in Fig. 2. Given two states
[u], [v] ∈ TΣ/E,k, [v] can be reached from [u] by some possibly complex concurrent
computation iff it can proven that u −→ v in the logic.

t ∈ TΣ(−→x)

(∀−→x)t −→ t
Reflexivity

(∀−→x)t1 −→ t2 (∀−→x)t2 −→ t3

(∀−→x)t1 −→ t3
Transitivity

E ` (∀−→x)t = u (∀−→x)u −→ u′ E ` (∀−→x)u′ = t′

(∀−→x)t −→ t′
Equality

f ∈ Σk1...kn,k(∀−→x)ti −→ t′i ti, t
′
i ∈ TΣ,ki(−→x) 1 ≤ i ≤ n

(∀−→x)f(t1, . . . , tn) −→ f(t′1, . . . , t
′
n)

Congruence

(∀−→x)λ : t→ t′ if
∧
i∈I pi = qi ∧

∧
j∈J wj : sj ∧

∧
l∈L tl → t′l ∈ R

θ : −→x → TΣ(−→y) (∀−→y)θ(tl) −→ θ(t′l) l ∈ L
E ` (∀−→y)θ(pi) = θ(qi) i ∈ I E ` (∀−→y)θ(wj) : sj j ∈ J

(∀−→y)θ(t) −→ θ(t′)
Replacement

Fig. 2. Deduction rules for Rewriting Logic.

3.3 Maude language

Now that we have discussed MEL and Rewriting Logic, it is easier to talk about
Maude as it is a concrete syntax for Rewriting Logic. In order to model a sys-
tem in Rewriting Logic, that is, to specify such a system in Maude, its static
part (state structure) and its dynamics (state transitions) are distinguished. The
static part is specified by means of an equational theory (many-sorted, order-
sorted or MEL), while the dynamics are specified by means of rules. Computation
in a transition system is then precisely captured by the term rewriting relation
using those rules, where terms represent states of the given system.

The distinction between the static part and the dynamic part is reflected
in Maude by means of functional and system modules. Functional modules in

8

1 fmod AUTOMATON is
2 sort Alphabet Alphabet∗ InitialState FinalState State Configuration .
3 subsort InitialState FinalState < State .
4 subsort Alphabet < Alphabet∗ .
5 subsort State Alphabet∗ < Configuration .
6

7 op epsilon : → Alphabet∗ .
8 op : Alphabet∗ Alphabet∗ → Alphabet∗ [assoc id: epsilon] .
9 op , : Configuration Configuration → Configuration [assoc comm] .

10 endfm

Listing 1. AUTOMATON functional module.

Maude correspond to membership equational theories (Σ,E) which are assumed
to be Church-Rosser (confluent and sort decreasing) and terminating. Equations
are used to define functions over static data as well as properties of states.
Usually the equations E is the union of a set A of structural axioms (such as
associativity, commutativity, or identity), also known as equational attributes,
for which matching algorithms exist in Maude, and a set E′ of equations that
are Church-Rosser and terminating modulo A.

System modules in Maude correspond to rewrite theories (Σ,A∪E′, R) where
rewriting with R is performed modulo the equations A∪E′. Moreover, the rules
R must be coherent with respect to the equations E′ modulo A. Coherence means
that the interleaving of rewriting with rules and rewriting with equations will
not loose rewrite computations, that is, failing to perform a rewrite that would
otherwise have been possible before an equational deduction step was taken. By
assuming coherence, Maude always reduces to canonical form using E before
applying any rule in R.

A Maude example. In the following example, we illustrate the syntax of Maude
modules by representing the computations of a non-deterministic automaton in
terms of associative-commutative-identity rewriting. Module AUTOMATON in
Listing 1 declares sort Alphabet* for words in an alphabet with an homonymous
sort, constructed with an associative and commutative juxtaposition operation
(line 8) with identity given by constant empty of sort Alphabet*. Configurations
of an automaton are given by the current state of the automaton together with
a subword of the input word. Configurations are constructed with an associative
comma operator (line 9).

Listing 2 gives an example of a non-deterministic automaton that represents
computations of an automaton that accepts words that have “aa” or “bb” as
subwords of a given word over the alphabet {a, b}. After including the functional
module AUTOMATON, module AA-BB-SUBWORD declares (in lines 4 and 5)
‘a’ and ‘b’ to be constants of sort Alphabet, and ‘q0’, ‘q1’, ‘q2’, and ‘qf’ to
be constantes of sort State. Moreover, constants ‘q0’ and ‘qf’ are declared to
be of sorts InitialState and FinalState, respectively, by means of membership
equational axioms (in lines 7 and 8). Finally, rules (in lines 12 to 17) specify the
transition rules of the automaton that check if a given word has “aa” or “bb” as
subwords.

9

1 mod AA−BB−SUBWORD is
2 ex AUTOMATON .
3

4 ops a b : → Alphabet .
5 ops q0 q1 q2 qf : → State .
6

7 mb q0 : InitialState .
8 mb qf : FinalState .
9

10 var sigma : Alphabet . var W : Alphabet∗ .
11

12 rl q0 , sigma W ⇒ q0 , W .
13 rl q0 , a W ⇒ q1 , W .
14 rl q0 , b W ⇒ q2 , W .
15 rl q1 , a W ⇒ qf , W .
16 rl q2 , b W ⇒ qf , W .
17 rl qf , sigma W ⇒ qf , W .
18 endm

Listing 2. AA-BB-SUBWORD system module.

1 ==
2 search in AA−BB−SUBWORD : q0,a b b a ⇒∗ epsilon,F:FinalState .
3

4 Solution 1 (state 10)
5 states: 11 rewrites: 17 in 0ms cpu (0ms real) (93406 rewrites/second)
6 F:FinalState −→ qf
7

8 No more solutions.
9 states: 11 rewrites: 17 in 0ms cpu (0ms real) (79812 rewrites/second)

10 ==
11 search in AA−BB−SUBWORD : q0,a b a ⇒∗ epsilon,F:FinalState .
12

13 No solution.
14 states: 7 rewrites: 10 in 0ms cpu (0ms real) (196078 rewrites/second)

Listing 3. Word acceptance by an automaton as search.

Now, given a term of sort Configuration representing the initial configuration
of a given automaton, acceptance can be implemented by searching for a term
of sort Configuration that contains a FinalState and the empty word epsilon.
Listing 3 exemplifies that word “a b b a” is accepted by the automaton whose
computations are specified in module AA-BB-SUBWORD since the final state
‘qf’ is reached with the empty word. (All symbols were read.) Since there is no
solution for a search starting from configuration ‘q0, a b a’ it means that the
word “a b a” is not accepted by the automaton.

An example of metaprogramming in Maude. Maude modules can be treated as
terms in META-LEVEL, a predefined Maude module that represents an uni-
versal theory of meta-represented modules. The module META-LEVEL defines
many data structures to manipulate terms and modules at the meta-level. The
so-called descent functions in such data structures allow for performing different
meta-level computations.

Listing 4 illustrates the same search done at object level (as opposed to meta-
level) in Listing 3 for the initial configuration ‘q0 , a b b a’ calling metaSearch

10

1 mod META−LEVEL−EXAMPLE is
2 pr META−LEVEL . pr AA−BB−SUBWORD .
3 endm
4 ==
5 reduce in META−LEVEL−EXAMPLE :
6 metaSearch(upModule(’AA−BB−SUBWORD, false), upTerm(q0,a b b a),
7 upTerm(epsilon,F:FinalState), nil, ’∗, 4, 0) .
8 rewrites: 19 in 0ms cpu (0ms real) (34608 rewrites/second)
9 result ResultTriple:

10 {’ ‘, [’epsilon.Alphabet∗,’qf.FinalState],’Configuration,
11 ’F:FinalState ← ’qf.FinalState}
12 ==
13 reduce in META−LEVEL−EXAMPLE :
14 downTerm(getTerm(metaSearch(upModule(’AA−BB−SUBWORD, false),
15 upTerm(q0,a b b a), upTerm(epsilon,F:FinalState), nil, ’∗, 4, 0)),
16 error:[Configuration]) .
17 rewrites: 22 in 0ms cpu (0ms real) (194690 rewrites/second)
18 result Configuration: epsilon,qf

Listing 4. Word acceptance by an automaton as metaSearch.

in the context of a module that includes modules META-LEVEL and AA-BB-
SUBWORD. Function metaSearch has a number of parameters: (i) the meta-
module where the meta-search will be performed, (ii) the meta-level represen-
tation of the initial state of the search, (iii) the meta-level representation of a
pattern denoting the states to be reached, (iv) a condition for the meta-seach
(which in Listing 4 is empty), (v) an identifier denoting the rewriting relation
to be used (’* is used in Listing 4 denoting zero or more rewrites), (vi) a bound
for the search, denoting the maximum depth of the search and (vii) the solu-
tion number. The result of metaSearch is a term of sort ResultTriple with a
meta-term denoting a reachable state, its meta-represented type and a set of
substitutions with respect to the pattern in parameter (iii).

Functions upModule and upTerm, also used in Listing 4 are also meta-
functions. Not surprisingly, they produce the meta-level representations of a
given module and a given term, respectively. The output of metaSearch can
be brought to object level using functions getTerm and downTerm. The former
projects the first component out of a ResultTriple (the output of metaSearch)
and downTerm produces the object level representation of a meta-term or its
second argument when it fails to produce the object level representation of the
first argument.

4 Associating DL models to rewrite theories

In this Section, we discuss how to associate a DL model, according to Defi-
nition 3, to a rewrite theory. As a PDL model M = 〈W,Rπ,V〉 is a Kripke
structure, we may apply the mapping from Kripke structures to rewrite theo-
ries defined in [3,4], a technique to represent Kripke structures in the Maude
language.

The semantics of PDL (Definition 4) is defined by the satisfaction relation
M,w
 ϕ for w ∈M. A rewrite theory is a tuple R = 〈(Σ,E), R〉 where (Σ,E)

11

is an equational theory such that Σ is a set of functional symbols and E is a
set of equations, and R is a set of rewriting rules. To associateM to R we need
to specify the kind for states of M (i.e. W) in Σ and Φ (i.e. the set of atomic
propositions — V as state predicates).

For a module M specifying the behavior of a system, the state predicates are
defined in an extension of M that equationally defines the satisfaction predicate.
A sort in M must be declared as a subsort of sort State. The syntax of the state
predicates is defined by means of operators of sort Prop and the semantics is
defined by means of a set of equations that specify for which states a given state
predicate evaluates to true.

Let k be the kind of states and Π the set of state predicates defined as
equations D, an extension of M. The definition of the set of atomic propositions
in R given Π is

ΦΠ = {θ(p) | p ∈ Π, θ ground substitution},
where θ(p) is the simplified notation for θ(p(x1, . . . , xn)). This defines a labelling
function LΠ on the set of states TΣ/E,k, assigning to each [t] ∈ TΣ/E,k the set
of atomic propositions

LΠ([t]) = {θ(p) ∈ ΦΠ | (E ∪D) ` (∀∅)t |= θ(p) = true}.
The Kripke structure K(R, k)Π = 〈TΣ/E,k, (→1

R)•, LΠ〉 is composed, where
(→1
R)• denotes the total relation extending the one-step R-rewriting relation

→1
R among states of kind k ([t]→1

R [t′] holds iff there are u ∈ [t], u′ ∈ [t′] such
that u′ is the result of applying one of the rules in R to u at some position).

Thus, to verify if a PDL model M satisfies the formula ϕ in a state t, it is
necessary to implement a procedure to verify the relation

K(R, k)Π ,[t]
 ϕ.

Section 5 describes Petri-PDL, an extension of PDL to specify and reason
about Petri nets. Section 6 discusses a Maude implementation of a bounded
model checker for Petri-PDL.

5 Petri-PDL

This section recounts the basic definitions of Petri-PDL, including the restric-
tions over the Petri net model [9]. In Petri-PDL, the language of Petri nets is
restricted to only three types of transition that may be composed. Section 5.1
defines the syntax and semantics of Petri-PDL and Section 5.2 illustrates a spec-
ification in the Petri-PDL logic.

5.1 Petri-PDL syntax and semantics

The language of Petri-PDL consists of

Propositional symbols: p, q. . . , where Φ is the set of all propositional symbols

12

Place names: e.g.: a, b, c, d . . .
Petri net composition symbol: �
Multiset of names: S = {ε, s1, s2, . . .}, where ε is the empty marking. The no-

tation s ≺ s′ denotes that all names occurring in s also occur in s′, regardless
its order.

Definition 5 (Petri-PDL program). Let π denote a Petri net program and
s a multiset of names (the marking of π). The transitions may be from three
types, T1 : xt1y, T2 : xyt2z and T3 : xt3yz, each transition has a unique type.

Basic programs: πb ::= at1b | abt2c | at3bc where ti is of type Ti, i = 1, 2, 3
Composed Petri net programs: π ::= πb | π � π
Marked Petri net programs: πm ::= s, π

These basic Petri nets in Definition 5 are illustrated in Fig. 3.

X Y

(a) Type 1 : t1

X

Y

Z

(b) Type 2 : t2

X
Y

Z

(c) Type 3 : t3

Fig. 3. Basic Petri nets

Definition 6 (Petri-PDL formula). A formula is defined as

ϕ ::= p | > | ¬ϕ | ϕ ∧ ϕ | 〈s, π〉ϕ.

The standard abbreviations ⊥ ≡ ¬>, ϕ∨φ ≡ ¬(¬ϕ∧¬φ), ϕ→ φ ≡ ¬(ϕ∧¬φ)
and [s, π]ϕ ≡ ¬〈s, π〉¬ϕ are valid.

Definition 7 (Firing relation). The firing relation f : S × π → S is defined
as follows.

– f(s, at1b) =

{
s1bs2 if s = s1as2

ε if a 6≺ s
– f(s, abt2c) =

{
s1cs2s3 if s = s1as2bs3 or s = s1bs2as3

ε if a 6≺ s or b 6≺ s
– f(s, at3bc) =

{
s1s2bc if s = s1as2

ε if a 6≺ s
– f(ε, π) = ε, for all Petri nets programs π.

13

Definition 8 (Petri-PDL frame). A frame for Petri-PDL is a tuple F =
〈W,w0, Rπ,M〉, where

– W is a non-empty set of states;
– w0 is the initial state;
– M :W → S;
– Rπ is a binary relation over W , for each basic program π, satisfying the

following condition. Let s = M(w)
• if f(s, π) 6= ε, wRπv iff f(s, π) ≺M(v)
• if f(s, π) = ε, wRπv iff w = v

Definition 9 (Behaviour of R over composed Petri Net programs). The
behaviour of the relation Rπ is inductively defined, for each Petri Net program
π = π1 � π2 � . . .� πn, as

Rπ = {(w, v) | for some πi,∃u such that si ≺M(u) and wRπi
u and uRπv}

where si = f(s, πi), for all 1 ≤ i ≤ n and s = M(w).

Definition 10 (Petri-PDL model). A model for Petri-PDL is a pair M =
〈F ,V〉, where F is a Petri-PDL frame and V is a valuation function V:W →
2Φ.

Definition 11 (Petri-PDL satisfaction notion). Let M = 〈F ,V〉 be a
model. The notion of satisfaction of a formula ϕ in a model M at a state w,
notation M, w
 ϕ, can be inductively defined as follows:

– M,w
 p iff w ∈ V(p);
– M,w
 > always;
– M,w
 ¬ϕ iff M,w 6
 ϕ;
– M,w
 ϕ1 ∧ ϕ2 iff M,w
 ϕ1 and M,w
 ϕ2;
– M,w
 〈s, η〉ϕ iff there exists v ∈W , wRηv, s ≺M(w) and M,v
 ϕ.

IfM,v
 A for every state v then A is valid in the modelM, denotedM
 A.
And if A is valid in all M then A is valid, denoted
 A. Petri-PDL is proved to
be sound, complete and decidable regarding its semantics [8,9].

5.2 A Petri-PDL example

As a Petri-PDL example, already discussed in [9], take the Petri net of Fig. 4. It
models a “Rock-Paper-Scissors”. When a token is placed into the “input” (i.e.
the place “C” has a token), a transition may fire and the place “G1” and “G2”
will have a token. Now each player can select one of the options. If the user wins,
a token will be placed at “W1; if he loses, at the place “W2” or at “D” if there
is a draw match.

Modelling this situation in a Petri-PDL program we have π = ct3g1g2 �
g1t1r1 � g1t1s1 � g1t1p1 � g2t1r2 � g2t1s2 � g2t1p2 � r1s2t2w1 � r1p2t2w2 �
r1r2t2d � s1r2t2w2 � s1s2t2d � s1p2t2w1 � p1r2t2w1 � p1s2t2w2 � p1p2t2d. Let
p, q ∈ Φ, two propositional symbols where p holds iff G1 wins (i.e. there is a
token in W1) and q holds iff G2 wins (i.e. there is a token in W2). To verify
if, after the game, there will be always a winner is equivalent to verify if the
formula ¬〈(c), π〉¬(p ∨ q) holds in this model.

14

R1 S2 P1 R2 S1 P2

W1

W2

D

G1 G2

C

Fig. 4. Petri Net for “Rock-Paper-Sicissors” game

6 A prototype model checker for Petri-PDL in Maude

We have prototyped a bounded model checker for Petri-PDL by extending the
mapping from Kripke structures to Rewriting Logic, recalled in Section 4, to
Petri-PDL. It is available for download from http://www.ic.uff.br/∼cbraga/petri-
pdl-sbmf15.maude.

In module PETRI-PDL (see Listing 5) we define the syntax of Petri-PDL
programs (see Definition 5). Markings of a Petri net are represented by terms of
sort Places. Program composition (“�” in Petri-PDL) is denoted by operation +.
The firing relation (see Definition 7) is specified by the rules of module PETRI-
PDL. They describe how Petri nets (terms of sort Net, composed by places and
a program) evolve by the non-deterministic evaluation of basic programs.

The module PETRI-PDL-MODEL-CHECKER (see Listing 6) includes mod-
ules PETRI-PDL and META-LEVEL (that implements Maude’s metaprogram-
ming API). It declares, among other auxiliary data structures, functions

modelCheck : Formula Nat PlacesListSet→ PPDLModel,
ppdlNStepRewTrace : NetNat→ PlacesListSet

and predicate
holdsIn : Formula Places → Bool.

Function modelCheck is equationally defined in lines 32 to 36 of Listing 6. It
is responsible for the implementation of the satisfaction predicate in Defini-

15

1 mod PETRI−PDL is
2 sort Place Places BasicProg Prog Net .
3 subsort Place < Places .
4 subsort BasicProg < Prog .
5 ops epsilon a b c d e l m x y c g1 g2 s1 s2 r1 r2 p1 p2 w1 w2 : → Place .
6 op : Places Places → Places [prec 20 assoc comm id: epsilon] .
7 op t1 : Place Place → BasicProg [prec 30] .
8 op t2 : Place Place Place → BasicProg [prec 30] .
9 op t3 : Place Place Place → BasicProg [prec 30] .

10 op + : Prog Prog → Prog [assoc comm prec 40] .
11 op , : Places Prog → Net .
12 op getPlaces : Net → Places .
13

14 vars A B C : Place . var W : Places . var P : Prog .
15

16 eq getPlaces(W, P) = W .
17

18 rl [t1] : A W , A t1 B ⇒ B W , A t1 B .
19 rl [t2] : A B W , A B t2 C ⇒ C W , A B t2 C .
20 rl [t3] : A W , A t3 B C ⇒ B C W , A t3 B C .
21

22 rl [t1] : A W , A t1 B + P ⇒ B W , A t1 B + P .
23 rl [t2] : A B W , A B t2 C + P ⇒ C W , A B t2 C + P .
24 rl [t3] : A W , A t3 B C + P ⇒ B C W , A t3 B C + P .
25 endm

Listing 5. Excerpt of PETRI-PDL Maude module.

tion 11. It is inductively defined on the syntax of Petri-PDL language. Func-
tion ppdlNStepRewTrace is equationally defined in lines 42 to 48, considering
its auxiliary function. It implements relation Rπ in Definitions 8 and 9. Pred-
icate holdsIn is equationally defined in line 39. Intuitively, it produces a set of
traces (terms of sort PlacesListSet) by, roughly, stepping ppdlOneStepRewTrace
n times, for each term in depth n − 1, where n is the bound in the call to
function modelCheck. Function ppdlOneStepRewTrace essentially calls function
ppdlSearch that, by invoking Maude’s metaSearch function, returns the set of
reachable states from an initial one on a given depth. Finally, predicate holdsIn,
equationally defined in line 39, verifies if a given formula holds in a marking
(a term of sort Places). It invokes function metaReduce, from Maude’s reflexive
API, on operation valuation, on a given marking, equationally defined in mod-
ule VALUATION. Such a reduction produces a set of atomic propositions that
function applyValuation uses to check if a given formula holds or not on a given
marking.

In summary, given a PDL modelM = 〈W,Rπ,V〉, sort Places represents set
W . Relation Rπ is implemented by function ppdlNStepRew, which encapsulates
a call to metaSeach function from Maude meta-level API. Function modelCheck
is responsible for the implementation of Petri-PDL’ satisfaction predicate. The
valuation function V is defined in module VALUATION that provides equations
for operation valuation defining which atomic propositions hold on Places.

Listing 7 gives the valuation function for the Petri-PDL example in Sec-
tion 5.2 where w1, w2 and d denote the situations where the first player wins,
the second player wins, and when there is a draw, respectively. The valuation

16

1 mod PETRI−PDL−MODEL−CHECKER is inc PETRI−PDL . inc META−LEVEL .
2 sort PlacesList . subsort Places < PlacesList .
3 op mt−placeslist : → PlacesList .
4 op −> : PlacesList PlacesList → PlacesList [assoc id: mt−placeslist] .
5

6 sort PlacesListSet . subsort PlacesList < PlacesListSet .
7 op mt−placeslistset : → PlacesListSet .
8 op ;; : PlacesListSet PlacesListSet → PlacesListSet [assoc comm id: mt−placeslistset] .
9

10 sort PPDLModel .
11 op ppdlModel : Bool PlacesList → PPDLModel .
12 op modelCheck : Formula Nat PlacesListSet → PPDLModel .
13 op holdsInTrace : Formula PlacesListSet → PPDLModel .
14

15 sort PDLFormula . subsort PDLFormula < Formula .
16 op < , > : Places Prog Formula → PDLFormula .
17 op valuation : Places → FormulaSet .
18 op holdsIn : PDLFormula Places → Bool .
19

20 op ppdlNStepRewTrace : Net NzNat → PlacesListSet .
21 op ppdlNStepRewTrace−aux : Prog NzNat PlacesListSet → PlacesListSet .
22 op ppdlOneStepRewTraces : Net PlacesList → PlacesListSet .
23 op ppdlOneStepRewTraces−aux : Net Nat PlacesList PlacesListSet → PlacesListSet .
24 op ppdlSearch : Net Nat Nat → [Places] .
25 op no−solution : → [Places] . op error : → [Net] .
26

27 vars BOUND SOL N : Nat . var W W1 W2 : Places . var P : Prog . var E : Net .
28 vars PDLF PDLF1 PDLF2 : PDLFormula . vars A F F1 F2 : Formula . var Q : Qid . var FS :

FormulaSet .
29 var PL PL1 PL2 : PlacesList . var PLS PLS1 PLS2 : PlacesListSet . var B : Bool . var

PPDLM : PPDLModel .
30

31 −−− PPDL model checking
32 eq modelCheck(¬ PDLF, N, PLS) = not modelCheck(PDLF, N, PLS) .
33 eq modelCheck(PDLF1 \/ PDLF2, N, PLS) = if isTrue?(modelCheck(PDLF1, N, PLS)) then

modelCheck(PDLF1, N, PLS) else modelCheck(PDLF2, N, PLS) fi .
34 eq modelCheck(PDLF1 /\ PDLF2, N, PLS) = if isTrue?(modelCheck(PDLF1, N, PLS)) then

modelCheck(PDLF2, N, PLS) else modelCheck(PDLF1, N, PLS) fi .
35 eq modelCheck(< W, P > F, N, PLS) = include(PLS, modelCheck(F, sd(N,1),

ppdlNStepRewTrace((W,P), N))) .
36 ceq modelCheck(F, N, PLS) = holdsInTrace(F, PLS) if PLS =/= mt−placeslistset [owise] .
37

38 −−− holdsIn: Checks if a given propositional formula holds in a marking.
39 eq holdsIn(F, W) = applyValuation(F, downTerm(getTerm(metaReduce(upModule(’

VALUATION, false), ’valuation[upTerm(W)])), formula−set−error)) .
40

41 −−− ppdlNStepRewTrace: Implements R n relation, that is, produces all the traces after n
steps from a given Net.

42 eq ppdlNStepRewTrace((W,P), 0) = W .
43 eq ppdlNStepRewTrace((W,P), N) = ppdlNStepRewTrace−aux(P, N, W) .
44

45 eq ppdlNStepRewTrace−aux(P, 0, PLS) = PLS .
46 eq ppdlNStepRewTrace−aux(P, N, mt−placeslistset) = mt−placeslistset .
47 ceq ppdlNStepRewTrace−aux(P, N, ((PL −> W) ;; PLS)) =
48 ppdlNStepRewTrace−aux(P, sd(N, 1), ppdlOneStepRewTraces((W,P), PL) ;;

ppdlNStepRewTrace−aux(P, 1, PLS)) if N > 0 .
49

50 −−− ppdlSearch: Searches for the SOLth soultion, in BOUND depth, from a given Net.
51 eq ppdlSearch((W, P), BOUND, SOL) =
52 if downTerm(getTerm(metaSearch(upModule(’PETRI−PDL, false), upTerm((W, P)), ’N:

Net, nil, ’+ , BOUND, SOL)), error) == error
53 then no−solution
54 else getPlaces(downTerm(getTerm(metaSearch(upModule(’PETRI−PDL, false), upTerm((

W, P)), ’N:Net, nil, ’+ , BOUND, SOL)), error))
55 fi .
56 . . .
57 endm

Listing 6. Excerpt of PDL-MODEL-CHECKER Maude module.

17

1 mod VALUATION is
2 inc PETRI−PDL−MODEL−CHECKER .
3 ops c g1 g2 s1 s2 r1 r2 p1 p2 w1 w2 d : → Place .
4 ops p q : → Formula .
5 eq valuation(w1) = p . eq valuation(w2) = q . eq valuation(d) = ((¬ p) (¬ q)) .
6 endm

Listing 7. Excerpt of VALUATION Maude module.

1 reduce in VALUATION : modelCheck(¬ < c,(g1 t1 r1 + g1 t1 p1 + g1 t1 s1 + g2 t1 r2 + g2 t1
p2 + g2 t1 s2 + (((((((

2 s1 s2 t2 d + s1 p2 t2 w1) + s1 r2 t2 w2) + p1 s2 t2 w2) + p1 p2 t2 d) + p1 r2 t2 w1) + r1 s2
t2 w1) + r1 p2

3 t2 w2) + r1 r2 t2 d) + c t3 g1 g2 > (¬ (p \/ q)), 4, mt−placeslistset) .
4 rewrites: 1139 in 24ms cpu (25ms real) (45942 rewrites/second)
5 result PPDLModel: ppdlModel(false, c −> g1 g2 −> g1 s2 −> s1 s2 −> d)

Listing 8. Model checking the Rock-paper-scissors example.

function formalizes that atomic propositions p and q are true in w1 and 2, re-
spectively and that neither is true when there is a draw.

Finally, Listing 8 illustrates the use of Petri-PDL bounded model checker.
It provides a counter-example when we ask if it is always true that there is a
winner in the example of Section 5.2. A trace reaching the draw state is then
returned.

7 Related work

There is a large body of literature regarding Petri nets. Trace Theory [10]
presents a highly expressive algebra without restrictions over the Petri net model
but without decidability and completeness.

The use of PDL as a query language for Petri nets was already proposed [14],
but PDL does not allows for reasoning directly on Petri nets. The net must be
translated to the usual regular program of Petri nets, but as there is not a
bijection between Petri nets and PDL programs: information is lost. There is
an implementation of a model checker for PDL with graph systems [7]. Their
approach relies on graph transformations with second order µ-calculus.

In [13] the authors discuss many connections between Rewriting Logic and
Petri nets, but in a categorical approach, unrelated to the proof-theoretical PDL-
based aspects that this work builds on.

8 Conclusion

We have discussed a prototype implementation of a model checker for Petri nets
based on Propositional Dynamic Logic. Our model checker is formally designed
by the application of a general mapping from Kripke structures to rewrite the-
ories [4] to Petri-PDL, an extension of PDL for Petri nets [9].

18

Future work, for Petri-PDL model checker, includes a more efficient imple-
mentation that takes further advantage of the Rewriting Logic calculus. Our
long term goal is to evolve this tool into a tool set for reasoning in Dynamic
Logics.

References

1. A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in mem-
bership equational logic. Theor. Comput. Sci., 236(1-2):35–132, Apr. 2000.

2. M. Bourcerie, F. Bousseau, and F. Guegnard. Petri Nets for production systems:
Teaching and research in europe. In Global Cooperation in Engineering Educa-
tion: Innovative Technologies, Studies and Professional Development - Interna-
tional Conference Proceedings, pages 85–89, 2008.

3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. L.
Talcott. All About Maude - A High-Performance Logical Framework, How to Spec-
ify, Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes
in Computer Science. Springer, 2007.

4. S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL Model Checker
and its Implementation. In Proceedings of the 10th international conference on
Model checking, pages 230–234. Springer-Verlag, 2003.

5. M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences, 18(2):194–211, 1979.

6. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. Foundations of Computing
Series. MIT Press, 2000.

7. A. L. Lafuente and A. Vandin. Towards a Maude Tool for Model Checking Tempo-
ral Graph Properties. In Proceedings of theTenth International Workshop onGraph
Transformation andVisual Modeling Techniques, volume 41, pages 1–14, 2011.

8. B. Lopes, M. Benevides, and E. H. Haeusler. Extending Propositional Dynamic
Logic for Petri Nets. Electronic Notes in Theoretical Computer Science, 305(11):67–
83, 2014.

9. B. Lopes, M. Benevides, and E. H. Haeusler. Propositional dynamic logic for Petri
nets. Logic Journal of the IGPL, 22(5), 2014.

10. A. Mazurkiewicz. Trace theory. In W. Brauer., W. Reisig, and G. Rozenberg, ed-
itors, Petri Nets: Applications and Relationships to Other Models of Concurrency,
volume 255 of Lecture Notes in Computer Science, pages 278–324. Springer, 1987.

11. C. Nalon, B. Lopes, E. H. Haeusler, and G. Dowek. A calculus for automatic
verification of Petri Nets based on Resolution and Dynamic Logics. Electronic
Notes in Theoretical Computer Science, 312:125–141, 2015.

12. C. A. Petri. Fundamentals of a theory of asynchronous information flow. Commu-
nications of the ACM, 5(6):319–319, 1962.

13. M.-O. Stehr, J. Meseguer, and P. C. Ölveczky. Rewriting logic as a unifying frame-
work for petri nets. In Unifying Petri Nets, Advances in Petri Nets, pages 250–303,
London, UK, UK, 2001. Springer-Verlag.

14. H. Tuominen. Elementary net systems and Dynamic Logic. In G. Rozenberg,
editor, Advances in Petri Nets 1989, Lecture Notes in Computer Science, pages
453–466. Springer Berlin Heidelberg, 1990.

15. R. Zurawski and M. C. Zhou. Petri Nets and industrial applications – a tutorial.
IEEE Transactions on Industrial Electronics, 41(6):567–583, 1994.

19

Evaluating the Assignment of Behavioral Goals
to Coalitions of Agents

Christophe Chareton1, Julien Brunel2, David Chemouil2

1 École Polytechnique de Montréal, Montreal (Quebec), Canada
2 Onera/DTIM, Toulouse, France

Abstract. We present a formal framework for solving what we call the “assign-
ment problem”: given a set of behavioral goals for a system and a set of agents
described by their capabilities to make the system evolve, the problem is to find
a “good” assignment of goals to (coalitions of) agents. To do so, we define Kore,
a core modelling framework as well as its semantics in terms of a strategy logic
called USL. In Kore, agents are defined by their capabilities, which are pre- and
post-conditions on the system variables, and goals are defined in terms of tem-
poral logic formulas. Then, an assignment associates each goal with the coalition
of agents that is responsible for its satisfaction. Our problem consists in defining
and checking the correctness of this assignment. We define different criteria for
modelling and formalizing this notion of correctness. They reduce to the satis-
faction of USL formulas in a structure derived from the capabilities of agents.
Thus, we end up with a procedure for deciding the correctness of the assignment.
We illustrate our approach using a toy example featuring exchanges of resources
between a provider and two clients.

1 Introduction

The question of assigning behavioral goals to coalitions of agents (i.e. sets of active
entities), the capabilities of whom are known, is a fundamental and recurring problem in
various areas of software and systems engineering. We call it the assignment problem.
In this paper, we propose a formalization of this problem and then describe various
criteria to assess an assignment formally.

First, let us illustrate various situations where this problem arises; this will not only
demonstrate the ubiquity of this problem but also enable us to delineate the most salient
aspects that ought to be addressed in the formalization.

In the field of Requirements Engineering (RE), for instance, several modeling lan-
guages have been proposed that each partly feature the concepts just mentioned. Thus,
Kaos [Let02, LVL02b, vL09, vL03], a so-called goal-oriented modeling language, fea-
tures behavioral goals that may be formalized using Linear Temporal Logic (LTL).
This allows us to assert and check the correctness of both refinement between goals
and of realization of goals by operations. On the other hand, agent-oriented modeling
languages, such as Tropos [BPG+04] and i∗ [Yu09,Yu96], also focus on the agents that
will realize these goals. A formal extension of i∗, featuring commitments and proto-
cols [CDGM10b, CDGM10a, CS09, MS06], aims at checking the capabilities of agents

20

to ensure the satisfaction of the goals. There, goals are described using propositional
logic and agents are described along with their capabilities to ensure the satisfaction of
propositional formulas. Thus, the need for a treatment of the assignment problem has
been identified in RE but, to the best of our knowledge, no proposition has been made
until now to address it for behavioral goals, in a formalized framework.

In Systems-of-Systems Engineering (SoSE) [Mai98], several independent systems,
made up of subsystems (agents in our parlance) interact altogether to achieve a global
mission. Consider one of these systems and its set of agents A. Then, to investigate
whether the agents in A are able to ensure a given goal in the global system, one must
take into account the side effects of the actions performed by the other agents (from
other systems) pursuing different goals.

Finally, in Component-Based Software Engineering (CBSE) [Szy02], individual
components (agents, for us) may be assembled into composite subsystems in order to
fulfill requirements specifications. The capabilities of these agents are given as con-
tracts [BJPW99]. Then knowing whether the resulting architecture indeed satisfies its
specification is of major importance. Besides, identifying unsatisfied specifications can
provide guidance to the engineer for adding new components. Identifying unexpected
side effects (good or bad) between components is also very important.

These various examples lead us to propose the following informal characterization
of the assignment problem:

Definition 1 (Assignment Problem, Informally). Given a set of interacting agents,
the capabilities of whom are known, given a set of goals, and given an assignment
function mapping each goal to a coalition (i.e. a set) of agents, is every goal assigned
to a coalition of agents who are able to ensure its satisfaction (including by benefiting
from actions of other coalitions)?

The objective of this paper is to formalize this definition and to provide a means to
solve the assignment problem. In particular, notice that in this definition, what interac-
tion is is left ambiguous. One of our contributions is precisely to propose multiple ac-
ceptations, each of them inducing a particular case of the problem. We call these cases
correctness criteria for an assignment. We model the assignment problem and these
criteria, and we describe a formal process to check their satisfaction for any instance.

Our approach was originally developed for agent- and goal-oriented RE [CBC11].
In this field, to the best of our knowledge, this provides the first unified formal frame-
work addressing the satisfaction of behavioral goals by operation specifications and the
capabilities of agents to perform these operations as required.

Checking the capabilities of agents to ensure goals also enables one to distinguish,
given a set of available agents and a set of goals, those goals that the available agents
cannot ensure. Then these goals can support the engineer in identifying new agents that
should be introduced to fulfill all goals.

Our approach also makes it possible to characterize other sorts of interaction phe-
nomena. Here, we stress the following:

– First, given two coalitions of agents and a goal for each coalition, we highlight
dependencies between coalitions w.r.t. the satisfaction of their respective goals.

21

– Second, in an SoS for instance, we can check whether, while pursuing their own
goals, agents in a system S 1 necessarily entail, as a side effect on the global system,
that agents in a system S 2 can also ensure their own goals.

The remainder of this article is organized as follows: in Sect. 2 we introduce a mini-
mal modeling framework, called Kore, to allow a proper representation of the situations
that we wish to address. In practice, this framework can be seen as a subset of modeling
languages such as Kaos or SysML. In the same section, we also introduce a minimal
example which will be used in the following sections to illustrate our approach. In
Sect. 3, we give a description of the assignment problem in the framework introduced
by Sect. 2. To do so, we analyze various modalities of interactions between agents and
we devise corresponding correctness criteria for the assignment. This way, the assign-
ment problem is reduced to the problem of satisfaction of the evaluation criteria by an
instance of Kore. Then, this problem is itself reduced to a model-checking problem for
a multi-agent logic called USL in Sect. 4. Related work is discussed in Sect. 5.

2 A Modeling Framework for the Assignment Problem

As sketched before, a Kore model is described using a set of goals to be realized,
a description of the context given by a number of context properties, a set of agents
(considered with their capabilities to act on the system) and an assignment of the goals
to (coalitions of) agents. Goals and context properties are temporal properties, so we
briefly introduce in Sect. 2.1 the logic that we use to formalize them.

Let us first introduce a running example that will be used throughout this paper to
illustrate our approach. In this example, we consider a resource, provided by a provider.
Then two clients A and B have different needs w.r.t. this resource. As we will proceed
through this article, we will envision three variations of this example.

Example 1 (CP1). In the first version (CP1), the provider can provide up to 15 units of
the resource per time unit. It can also decide to which clients the resources are affected.
Concretely, at each time unit it provides the clients up to 15 new units as a whole,
distributed in variables newA for client A and newB for client B. Each client is able to
receive up to 15 units of the resource at a time.

2.1 LTLKore

In our setting, goals are behavioral: therefore we formalize them as well as context prop-
erties in a version of Linear Temporal Logic (LTL, [MP95]). Following [Let02,LVL02b,
vL09, vL03], we describe an action (of an agent) as the modification of the values of
variables describing the state of the sytem. Therefore, in our version of LTL(called
LTLKore), atomic propositions are comparisons of integer variables and constants.

Definition 2 (Cond). Let X be a set of variables, the set of propositions Cond over X
(written Cond (X)) is given by the following grammar:

ϕ ::= x ∼ n | x − y ∼ n | x + y ∼ n | ϕ ∧ ϕ | ϕ ∨ ϕ |¬ϕ
where x, y ∈ X, n is a constant in Z, and ∼ ∈ {<, >,=,6,>}.

22

Definition 3 (LTLKore). Let X be a set of variables, the logic LTLKore(X) is the usual
Linear Temporal Logic where atoms are taken from Cond(X). It is generated by the
following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ where p ∈ Cond(X).

Because LTL is standard knowledge in formal approaches and due to space constraints,
we do not detail the formal semantics of LTL and refer the interested reader to [MP95].
Basically,an LTLKore(X) formula is interpreted over discrete traces of assignments (in-
stants) for variables in X. A formula Xϕ is true in one of these traces, at a given instant,
iff ϕ is true in the same trace at the next instant. A formula �ϕ is true in a trace iff ϕ is
true at every instant of this trace.

Example 2 (CP1 (cont.)). Version CP1 of the client-provider example makes use of the
following variables for every c ∈ {A, B} :

– a variable resc denotes the amount of resources available for client c at any time
t > 1. This amount is the sum of:
• the part remaining from the resource in resc at time t − 1, denoted oldc

• the resources added by provider in resc at transition from time t − 1 to t: newc

– at any time t > 2, obtc denotes the amount of resources obtained by c from the
amount in store resc at time t − 1.

We also write XCP for the set of variables
⋃

c∈{A,B}{resc, oldc, newc, obtc}.
Now that LTLKore has been introduced, let us delve into the concepts necessary to

consider the assignment problem as we informally defined it in Sect. 1.

2.2 Goals

In Kore, goals are statement describing the behavior expected from the system. They
are formalized in LTLKore.

Example 3 (CP1 (cont.)). In CP1, every client wishes to get a certain amount of the
resource: A (resp. B) wants to get at least 6 (resp. 12) units of the resource per unit of
time t > 2. Their respective goals gA and gB are formalized as follows3:

[[gA]] , XX(�(obtA > 6)) [[gB]] , XX(�(obtB > 12))

2.3 Context Properties

Context properties are statements describing the system as it is (as opposed, for in-
stance, to expected properties). In this paper:

– They may be used to specify the set of states of the system, in which case we call
them static.

3 We use double brackets [[·]] to denote the formalization of an informal property.

23

– They may also concern the initial state of the system. In this case, they are called
initial properties. They can be formalized using Cond only.

Example 4 (CP1 (cont.)). In CP1 we consider the following context properties:

– Static properties:
Resc For any client c, the set of resources in resc is the union of oldc and newc.

Formally, at any time t > 1, the resources available are the sum of the previous
ones (remaining from the value of resc at time t − 1) and the new ones, gotten
from provider:

[[Resc]] , �(resc = oldc + newc)
Obtc At any time t > 1, when a client c takes some resources from the set resc,

then at time t+1, the set oldc is the set of resources remaining from resc at time
t: at any time t > 1 the amount of resources in oldc is the amount in resc minus
the amount obtained by c at transition from time t − 1 to t:

[[Obtc,k]] , �(resc = k → X(oldc = k − obtc))

Posix All the variables in the example stand for the cardinality of some set of
resources. Therefore they always have a non-negative value. For each x ∈ XCP:

[[Posix]] , �x > 0

– Initial property Initx: in the initial state of the system, there is none of the resource
anywhere. Thus, every variable is initialized to 0. For each x ∈ XCP:

[[Initx]] , x = 0

2.4 Agents and Capabilities

Agents are the active entities of the system, likely to ensure or prevent the satisfac-
tion of goals. They are described along with their capabilities. To define the latter, we
need to consider a restriction of Cond to a fragment which characterizes finite intervals
(windows) only:

Definition 4 (Window conditions). Let X be a set of variables, the language of win-
dow conditions, written Condwin(X), is generated by the following grammar:

ϕ ::= a 6 x ∧ x 6 b | ϕ ∧ ϕ | ϕ ∨ ϕ (with x ∈ X, a 6 b and a, b ∈ Z).

Definition 5 (Capability). A capability Cap for an agent a is a pair of a pre-condition
Cap.enabCond in Cond(X) and of a window Cap.window, in Condwin(X).

The meaning of a capability is as follows: in each state where the enabCond holds,
the corresponding agent can give to the variables appearing in window any values sat-
isfying this window. Indeed, our modeling considers that an agent able to act upon
variables is not necessarily able to give them any value at any time. The ∧ connective in
Def. 4, is in particular used to link bounds on different variables (see Ex. 5 below). The
enabling condition defines the conditions under which an agent can use her capability
and change the values of some variables, and the window bounds the set of values she
can give to these variables. However, in the example we develop in this article, each
window is reduced to a singleton.

24

Example 5 (Capabilities for all variations of client-provider). The capabilities for the
agents in client-provider are given hereafter:

Caps. {provide}k+`615 for provider: Caps. {getc}0<k615 for client c ∈ {A, B}:
enabCond : >

window : newA = k ∧ newB = `
enabCond : resc > k

window : obtc = k

2.5 Assignment

An assignment is simply a function from goals to coalitions (where every coalition is a
set of agents). This can model different kinds of situations; for instance:

– Each agent may be pursuing her own goals (distributed intentionality [Yu09]). In
this case the assignment models the relation between a goal and the agent(s) aiming
for it.

– Or there may be a controller or an engineer, able to constrain and schedule every
agent in the model, and who is responsible for the realization of the whole set of
goals. In this case the assignment is an affectation, by this controller, of the available
resources (the agents) to the satisfaction of the goals.

Example 6 (CP1 (cont.)). Here we follow the second item, then provider is commit-
ted to the realization of both goals, so the assignment A1 is defined by: A1(gA) =

{provider, A} andA1(gB) = {provider, B}.

3 Evaluation Criteria for Assignment

Now that the different elements of Kore are defined, let us come back to the assignment
problem and seek precise criteria modeling the notion of correctness for an assignment.
We first give informal definitions for these criteria. Their formalization, which requires
first the introduction of the USL framework, is given in Sect. 4.

3.1 Local correctness

The first version of the assignment problem we consider is the question whether each
goal is assigned to a coalition able to ensure it, whatever the other agents do. We call this
criterion the local correctness of the system under consideration. For the client-provider
example, this is the question whether {provider, A} is able to ensure the satisfaction of
gA (whatever B does) and {provider, B} is able to ensure the satisfaction of gB (whatever
A does). We write LCA(G) for the satisfaction of the local correctness of a set of goals
G under an assignmentA.

3.2 Global correctness

The criterion of local correctness is easy to understand and to check. Nevertheless it
is not sufficient when, as is the case of CP1, one agent is part of several coalitions
being assigned different goals. Indeed, provider is able to take part separately in both

25

coalitions {provider, A} and {provider, B}. But the local correctness does not say whether
provider is able to take part in both coalitions at the same time. What provider has to do
with the first coalition might be contradictory with what she has to do with the second
coalition. To overcome this issue, we introduce a second correctness criterion, called the
global correctness. Global correctness is satisfied if there is a general behaviour b of
all agents s.t. for each goal g, knowing that the coalition of agents assigned to g behaves
according to b is enough to ensure g, whatever the other agents do. The notion of such
a general behaviour is to be defined as a multi-strategy profile in a CGS, in Sect. 4. If
the assignmentA of a set of goals G is globally correct, then we write GCA(G).

3.3 Collaboration

The global correctness criterion is sufficient to ensure that each goal is assigned to a
capable coalition. Nevertheless, it may require more than what is necessary. Indeed, it
requires that each coalition is able to ensure its goal in a completely autonomous way
(whatever the agents not in this coalition do). In certain cases, it may be necessary to
soften this criterion and to admit that some given coalitions depend on others to ensure
their goals. To illustrate this point, let us slightly modify our example and consider its
second version, CP2.

Example 7 (CP2). It brings the following changes from CP1:

– provider can produce up to 20 units at a time
– in the new assignment A2, provider is assigned a new goal gprovider, to produce at

least 16 units of the resource per time unit. Furthermore, gA and gB are respectively
assigned to {A} and {B}.

In this second version, provider is able, at the same time, to ensure the satisfaction of
its goal and to help A and B. By producing, for example, at least 7 units in newA and
13 units in newB, it ensures gprovider and the global correction of the model reduced
to {gA, gB}. In this case we say that the coalition that is assigned to gprovider globally
collaborates to the satisfaction of {gA, gB}, and we write CollA2 (gprovider, {gA, gB}).

Note that a relation of local collaboration could also be defined a similar way.

3.4 Contribution

In the three criteria introduced above, we adopted the point of view of an engineer
controlling every agent in the system. Thus, we considered our model as a closed system
and only asked the possibility for a unique decision-maker to specify the agents so that
all goals are ensured. In the case of open systems, the engineer of one system does not
control the other systems, which interact with it. Then, a relevant question from the
point of view of this engineer is whether the agents from the other interacting systems,
by ensuring their goals, necessarily have favorable side effect on its model. This is what
we call contribution. Let us consider a last version of our example, CP3.

26

Example 8 (CP3). In this version, A has priority over B: when the provider provides
resources in newA at time t, A can get some of them, the remainder is sent to newB and
then at time t + 1, B can take some. In order to encode this, we introduce a new variable
even marking the evenness of the current time unit (it is equal to 0 at even times and
equal to 1 at odd times). A can act during transitions from even to odd time units (let us
call them even transitions), and provider and B can act during odd transitions. Again,
the provider is able to produce up to 20 units of the resource per odd transition, its goal
gprovider is changed into providing at least 18 units of the resource per time unit and gA

and gB are both assigned to {A, B} in the assignment A3. (Fig. 1 gives an overview of
the goals and the assignments in the three versions of our example.)

In this version, whatever provider does, if by doing so it ensures the satisfaction of
gprovider then it provides at least 18 units of the resource per time unit, enabling A and B
to ensure the satisfaction of gA and gB. We say that gprovider globally contributes to gA

and gB and we write ContrA3 (gprovider, {gA, gB}).

Again, one can also define, similarly, a relation of local contribution, that we do not
detail here.

CP1 [[gA]] , XX(�(obtA > 6)) [[gB]] , XX(�(obtA > 12))
A1(gA) = {provider, A} A1(gB) = {provider, b}

CP2 [[gprovider]] , X(�(newA + newB > 16)) [[gA]] , cf. CP1 [[gB]] , cf. CP1

A2(gprovider) = {provider} A2(gA) = {A} A2(gB) = {B}
CP3 [[gprovider]] , X(�(newA > 18)) [[gA]] , cf. CP1 [[gB]] , cf. CP1

A3(gprovider) = {provider} A3(gA) = {A, B} A3(gB) = {A, B}

Fig. 1: Goals and assignments in the client-provider example

4 Formal Analysis

In this section we introduce the formal framework that we use to check the correctness
criteria. Basically, given a specification K conforming to the Kore framework, checking
a criterion consists in knowing whether goals in K are assigned to coalitions of agents
able to ensure them.

Our approach consists of reducing such a question to a model-checking problem:
does a model G (in the logical sense) satisfy a formula ϕ ? where: (1) the model of the
possible behaviors of the system is derived from the description of agents and context
properties; and (2) the formula expresses that some coalition(s) is (are) able to ensure
some goal(s).

To achieve this, a logic that allows to reason about the ability of agents to ensure
temporal properties is required. This is the aim of temporal multi-agent logics, such as
ATL [AHK02], Chatterjee, Henzinger, and Piterman’s Strategy Logic (SL) [CHP10] or

27

USL (Updatable Strategy Logic) [CBC13, CBC15], which is strictly more expressive
than the former two, and which we originally proposed to address such issues.

One of the main specific features of USL is that it enables us to express situations
where agents may be part of several different interacting coalitions. So, agents in USL
can compose their behavior according to the different goals assigned to these coalitions.
For this reason, we rely on USL in the following.

In Sect. 4.1, we briefly present USL. Then in Sect. 4.2, we present the reduction of
our correctness criteria to instances of the model-checking problem for USL.

4.1 A temporal multi-agent logic for the formalization of Kore: USL

Let us first introduce the semantic concepts that are used in USL. Due to space con-
straints, we refer the reader to [CBC15] for a complete exposition of USL.

Semantic concepts Formulas of USL are interpreted in concurrent game structures
(CGS), introduced in [AHK02] and then subsequently used with slight modifications in
numerous works [BDCLLM09, DLLM10, MMV10, MMPV14]4. Intuitively, a CGS is
an extension of labelled transition systems dedicated to modelling multi-agent systems.
In these systems, transitions are determined by the actions that agents perform. More
precisely, at each state of any execution, each agent plays an action so that a transition
is determined.

Definition 6. A CGS is a tuple G = 〈Ag, St, s0,At, v,Act, tr〉 where :

– Ag is a non-empty finite set of agents,
– St is an non-empty enumerable set of states,
– s0 ∈ St is the initial state,
– At is a non-empty finite set of atomic propositions
– v: St → P(At) is a valuation function, to each state s it associates the set of atomic

propositions that are true in s,
– Act is an non-empty enumerable set of actions,
– Let Dec = ActAg be the set of decisions, i.e. the set of total functions from the

agents to the actions. Then tr : St × Dec → St is the transition function: it decides
the successor of a state, given this state and the set of actions played by the agents.

The semantics of USL in CGSs is given by plays in a game, that are infinite se-
quences (s0, δ0) · (s1, δ1) . . . where for each k ∈ N:

– sk is a state and δk is a decision
– tr(sk, δk) = sk+1

In such a game, every agent plays w.r.t. a multi-strategy. A multi-strategy is a function
from St∗ to P(Act): given the current history of the game, it gives a set of possible
actions for any agent following it. The datum of one multi-strategy per agent in the
game is called a multi-strategy profile.

4 As USL builds upon SL, our definition for CGS is the one from [MMV10, MMPV14].

28

During the evaluation of an USL formula in a CGS, the data concerning the different
multi-strategies played by the agents are stored in a context κ. In a context, an agent
may be bound to several multi-strategies, which is a particularity of USL in the field
of multi-agent logics. As we will see below, USL also makes use of multi-strategy
variables. Then, a context also contains information about the instantiations of multi-
strategy variables to multi-strategies. We also use the notion of multi-strategy profile for
a coalition of agents, which consists of one multi-strategy per agent in the coalition.

Given a context κ binding agents and variables to multi-strategies in a CGS, and
given a state s of this CGS, we can define the notion of outcomes of s and κ. It is the set
of executions that are possible in the CGS from s if each agent plays only actions that
are allowed by all the multi-strategies she is bound to in κ.

Syntax and semantics of USL Let us now present the syntax of USL and an intu-
ition of its semantics. We start by defining USL pseudo-formulas. We distinguish be-
tween state pseudo-formulas (interpreted on states, whose operators deal with multi-
strategies quantification and binding of multi-strategies to agents) and path pseudo-
formulas (which express temporal properties).

Definition 7 (Pseudo-formulas of USL). Let Ag be a set of agents, At a set of proposi-
tions, and X a set of multi-strategy variables. Then, the set of USL (Ag, At, X) pseudo-
formulas is generated by the following grammar (with p ∈ At, x ∈ X and A ⊆ Ag):

– State pseudo-formulas: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈x〉〉ϕ | (A B x)ψ | (A 7 x)ψ
– Path pseudo-formulas: ψ ::= ϕ | ¬ψ | ψ ∧ ψ | Xψ | ψUψ

Then, well formed formulas are pseudo-formulas where every quantified multi-
strategy variable is fresh w.r.t. the scope in which it is introduced. Formally:

Definition 8 ((Well formed) formulas). A pseudo-formula ϕ is a (well formed) for-
mula iff for any sub-formula 〈〈x〉〉ϕ′ of ϕ and for any sub-formula 〈〈y〉〉ϕ′′ of ϕ′, x and y
are distinct variables.

Here we do not detail the definition for the relation of semantic satisfaction for USL
(|=USL). We just give an intuition for the main operators:

– The operator 〈〈x〉〉 is an existential quantifier over multi-strategies: a formula 〈〈x〉〉ϕ
is true in a state s of a CGS G, under context κ, iff there is a multi-strategy σ s.t.
the formula ϕ is true in s and G under the context κ enriched by the fact that x is
instantiated by σ.

– The operator (A B x) is a binding of agents in A to the multi-strategy instantiating
x in the current context: a formula (A B x)ψ is true in a state s of a CGS G, under
context κ, iff the formula ψ is true in any execution in the outcomes of s and κ[A⊕x],
where κ[A ⊕ x] is the context κ enriched with the fact that agents in A are now
bound to the multi-strategy instantiating x in κ (in addition to the multi-strategies
they were already bound to in κ, if there are some). In USL, this set of outcomes
may be empty (if there are agents bound to multi-strategies in empty intersection
in the context). In such a case, the current execution stops.

29

– (A 7 x) unbinds agents in A from the multi-strategy instantiating x in the current
context: it is interpreted in a similar way as (A B x), except that the binding of
agents in A to x is deleted from the current context (instead of being added).

– The semantics of temporal operators follows the classical definition of their inter-
pretation in possibly finite executions [EFH+03]. In the following, given a possibly
finite execution λ and an integer i, we write λ>i for the sequence obtained from λ
by deleting its i first elements:

• A formula Xψ is true in λ iff λ contains at least two states and ψ is true in λ>1.
• A formula ψ1Uψ2 is true in λ iff there is i ∈ N s.t. λ contains at least i+1 states,
ψ2 is true in λ>i and for all 0 6 j < i, ψ1 is true in λ> j.

4.2 Reduction of the assignment problem to the model-checking of USL

Using USL, we can reduce the satisfaction problem for the assignment correctness cri-
teria from Sect. 3 to instances of model-checking. First, notice that from the description
of agent capabilities in an instance K of Kore, and from the set of context properties for
K, one can derive a CGS GK. For the sake of simplicity, we do not detail this translation
here. Basically:

– Agents of GK are those of K,
– the set of states in GK is the set of possible instantiations for the variables in K

which respect the static context properties,
– the initial state of GK is chosen non-deterministically within those satisfying the

initial context properties,
– the set of atomic propositions is the set of propositions in Cond that are used in K

for the description of goals or for the description of agents capabilities,
– the valuation function is given by the natural evaluation of Cond formulas in vari-

ables instantiations,
– the transition function encodes the capacities of agents to change the value of vari-

ables, according to the description of their capabilities in K.

Then, thanks to USL formulas, we can express that coalitions of agents ensure the
satisfaction of the different correctness criteria for K. The formalization of the criteria
are given in Def. 9. It makes use of the following notations:

– −→x denotes a vector of multi-strategy variables (one can see it as a multi-strategy
profile variable). Then, for any coalition of agents A = {a1, . . . , an}, the notation
(A,−→x) abbreviates the sequence (a1, xa1), . . . (an, xan)

– for a variable x, pxq is the universal quantifier over x. It is the dual operator of 〈〈x〉〉.
In other words, for any USL formula ϕ, pxqϕ , ¬〈〈x〉〉¬ϕ.

Definition 9 (Formalisation of the correctness criteria in USL). Let K be an instance
of Kore with assignment A. Let G be a set of goals in K and let g be a goal in K s.t.

30

g < G. Then:

[[LCA(G)]] , ∧
g∈G

(〈〈−→xg〉〉(A(g) B −→xg)[[g]]
)

[[GCA(G)]] , 〈〈−→x 〉〉(∧g∈G(A(g) B −→xg)[[g]]
)

[[CollA(g,G)]] , 〈〈−→xg〉〉(A(g) B −→xg)
(
[[g]] ∧ [[GCA(G)]]

)

[[ContrA(g,G)]] , (〈〈yg〉〉(A(g) B −→xg)[[g]])∧(
p−→xgq

(
(A(g) B −→xg)[[g]]→ (

(A(g) B −→xg)[[GCA(G)]]
)))

Thus, for any correctness criterion C from Sect. 3, and for any instance K of Kore,
the satisfaction of C by K is formalized by the relation GK |=USL [[C]].

Let us discuss on the formulas in Def. 9.

– The assignment is locally correct iff for each goal g, there is a multi-strategy pro-
file s.t., by playing it, the agents to which g is assigned can ensure its satisfac-
tion. Hence, we check the satisfaction of this criterion by considering one (possibly
different) multi-strategy profile per considered goal. Let us consider for instance
CP1 from Examples 3 and 5. We see that provider can play the multi-strategy al-
waysNewA > 6 (consisting in restricting to the choices of values for newA and
newB s.t. newA > 6 at any time of the execution) and, if provider does so, A
can play alwaysObtA > 6 so that gA is ensured. Similarly, by playing respec-
tively alwaysNewB > 12 and alwaysObtA > 12, provider and B can ensure gB.
So,

(〈〈−−→xgA〉〉(A, provider B −−→xgA)[[gA]]
) ∧ (〈〈−−→xgB〉〉(B, provider B −−→xgB)[[gB]]

)
is true:

GCP1 |=USL [[LCA1 ({gA, gB})]].
– For the global correctness, we consider one single multi-strategy profile, which

imposes on each agent to act in a coherent way. The assignment is globally correct
iff there is a multi-strategy profile −→x s.t. for each goal g, if the agents in the coalition
A(g) play according to −→x (in the definition, we note −→xg the part of −→x that concerns
the agents in Ag), then they ensure the satisfaction of g. We can easily see that
[[GCA1 (G)]] is not true in GCP1 . Indeed, provider cannot play a multi-strategy that
satisfies both gA and gB at the same time. (According to its capabilities, provider
cannot deliver more than 15 units of the resource at a time).

– To ensure that a goal g globally collaborates to a set of goals G, we need a multi-
strategy profile −→x s.t., if followed by the agents inA(g), −→x ensures at the same time
that:
• g is satisfied
• the evolution of the model is constrained in such a way that the assignment A

becomes globally correct for the set of goals G.
According to this definition, the example gprov globally collaborates to gA and gB in
CP2 (see Sect. 3.3). Indeed, since it may produce up to 20 units of the resource per
time unit, provider can play a multi-strategy that will allow both A and B to ensure
their respective goal. Furthermore, recall thatA2(gA) is reduced to {A} andA2(gB)
is reduced to {B} and observe that CP2 is not globally correct: to be able to ensure
their goals, A and B depend on the multi-strategy played by provider.

– The contribution relation is an universally quantified variant of the collaboration :
a goal g globally contributes to a set of goals G iff

31

• the agents inA(g) are able to ensure g,
• for any multi-strategy profile −→xg that makesA(g) ensure g, −→xg also makesA(g)

constrain the evolution of the system in a way that G becomes globally correct.
In CP2, by playing, for example, the multi-strategy consisting in setting newA to 5
and newB to 11, provider ensures its goal of producing at least 16 units per time
unit, but it prevents A and B to ensure both goals gA and gB. On the other hand, in
CP3, the satisfaction of gprovider (providing at least 18 units of the resource) by the
provider allows A an B to ensure their goals, provided the new assignment of both
gA and gB to {A, B}. So [[ContrA3 (gprov, {gA, gB})]] is true in GCP3 .

Theorem 1. The possible entailment relations between our correctness criteria for the
assignment are given in the following figure, where arrows 1, 2 and 3 represent a strict
entailment relation, and the crossed out arrow 4 means that there is no entailment
between GCA(G) and ContrA(g,G\{g}), in either direction. Each arrow should be read
by universally quantifyfing the assignment A, the set of goals G and any goal g ∈ G.
For example:

– Entailment For any instance K of Kore with assignmentA and for any subset G of
goals in K, for any g ∈ G, if GK |=USL [[GCA(G)]] then GK |=USL [[CollA(g,G\{g})]].

– Strictness It is not true that for any instance K of Kore with assignment A and
for any subset G of goals in K, for any g ∈ G, if GK |=USL [[CollA(g,G\{g})]] then
GK |=USL [[GCA(G)]].

LCA(G)

GCA(G)

CollA(g,G\{g})

ContrA(g,G\{g})

1 2 3

/
4

Proof (sketch). Each item in this proof sketch refers to the arrow in figure above that
has the corresponding label.

1. Entailment : straightforward. Strictness: as seen in Sect. 4.2, CP1 provides a coun-
terexample.

2. Entailment: suppose there is a general multi-strategy profile −→x s.t., by playing it,
every coalition ensures its goal. Then, by playing along −→x , the agents in g ensure at
the same time the satisfaction of g and the global correction of the model reduced
to G \ {g}. Strictness: as seen in Sect. 4.2, CP2 is a counterexample for the converse.

3. Entailment : straightforward. Strictness: goal gprovider in CP2 provides a counterex-
ample: by playing multi-strategies allwaysNewA = 5 and allwaysNewB = 11,
provider ensures gprovider but prevents the satisfaction of gA and gB by the other
agents.

4. Left to right: CP3 satisfies ContrA3 (gprovider,GC({gA, gB})) but, to be able to en-
sure their goals, A and B depend on the satisfaction of gprovider by provider, so
GCA3 ({gA, gB}) is not true. Right to left: consider a minimal example where provi-
der is able to provide 5 units of the resource per time unit, and is assigned both
goals g− to provide 2 units, and g+ to provide 4 units. This model is globally cor-
rect but g− does not contribute to {g+}. ut

32

5 Related Work

This work was initially developed in the context of Requirements Engineering [CBC11]
and took inspiration from the state-of-the-art in this domain, in particular from Kaos
[vL09, LVL02b, Let02]. In this method, goals are gradually refined until reaching so-
called requirements. Then, agents are assigned the responsibility of realizing the latter
by relying on operations (our agents are directly assigned goals to simplify the pre-
sentation). In some developments of Kaos, a notion of controllable and monitorable
conditions [LVL02a,vL04] is used as a criterion of satisfiability of realization: an agent
can perform an operation if it monitors the variables in its pre-conditions and controls
the ones in its post-conditions. So, in Kaos and contrary to Kore, (1) capabilities are
not conditioned by the state of the system; and (2) agents interactions are not analyzed.

Another important RE approach is Tropos [CDGM10a, CDGM10b, MS06, CS09].
In this line of work, a notion of role is introduced which gathers a set of specifications
to be satisfied by the system. The two notions of agents and roles are then confronted.
The adequacy between them is examined using propositional logic: roles are described
through commitments and agents may ensure these depending on their capabilities.
Considerations on time and interactions between agents are only led using natural lan-
guage. Thus the method makes the verification of questions of the sort: “can agent a
ensure transition tr?” possible. But the possible interactions between agents, as modifi-
cations of the common environment, are not considered formally. Kore precisely aims
at unifying the multi-agent and behavioral aspects.

On the logical side, ATL and ATL* [AHK02] consider the absolute ability of coali-
tions to ensure propositions whatever other agents do. But there is no contextualization
w.r.t. the strategies followed by different agents. More recently, this contextualization
was considered for ATL* [BDCLLM09]. This proposition only uses implicit quantifica-
tion over strategies for coalitions, preventing from considering different strategy quan-
tifications for a given coalition. This problem was also tackled in SL [MMV10] where
quantification over strategies is made using explicit variables. Our logic USL was first
developed in [CBC13, CBC15]. Its syntax is inspired by that of SL, but it contains in
addition treatment for the composition of several multi-strategies for a given agent.

6 Conclusion and Future Work

In this article, we proposed a framework to model the assignment of behavioral goals
to agents, described with capabilities. Then, we addressed the evaluation of such an
assignment, informally referred to as the assignment problem. We proceed in two steps:

– Rather than defining one criterion that would provide a unique “yes or no” answer,
we think it is more relevant to define several correctness criteria, each involving a
different level of interaction between agents. We compared these criteria through a
logically defined entailment relation between them.

– We provide a formalization of the different criteria using a temporal multi-agent
logic, USL, and we reduce the verification of these criteria to the model-checking
problem of this logic.

33

As a future work, the relevance of new correctness criteria for the assignment could
be investigated. A direction would be to develop a formal language dedicated to the
specification of criteria, using the satisfaction of goals by the coalitions they are as-
signed to as atoms, and the relations between these goals as operators. Thanks to such
a language, we could extend and refine the criteria that can be checked in Kore.

Another direction is to study dependence relations between the multi-strategies that
are played by the different coalitions. In the contribution relation for example, a coali-
tion A1 is able to find a favorable multi-strategy profile, whatever another coalition A2
does (because of the nesting of multi-strategy quantifiers). In other words, A1 knows
the whole multi-strategy profile chosen by A2 when choosing its own multi-strategy
profile, which is a very strong assumption. However, it is possible in USL to charac-
terize several forms of independence of A1’s multi-strategy profile with respect to A2’s
multi-strategy profile, so that this question could be integrated in the definition of new
correctness criteria.

In [CBC15], we proved that the model-checking problem for USL is decidable, but
does not support any elementary bound. Nevertheless, we have a strong conjecture stat-
ing that the restriction of USL to memoryless multi-strategies is decidable in PSPACE.
Thus, restricting to memoryless multi-strategies appears as an important condition for
a tractable use of our proposition. Then, research should be led in order to further char-
acterize the class of systems for which a memoryless semantics is adequate.

Finally, it can happen that some goals are not fully achievable by the agents they
are assigned to. Especially, so called soft goals don’t have any clear cut satisfaction
criterion. Then, considering and searching the best multi-strategies with regards to these
goals would rise further analyses. Different notions of optima are indeed expressible in
USL and could be used for defining different notions of optimal multi-strategies.

References
[AHK02] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time tem-

poral logic. J. ACM, 49(5):672–713, 2002.
[BDCLLM09] T. Brihaye, A. Da Costa Lopes, F. Laroussinie, and N. Markey. ATL with strategy

contexts and bounded memory. Logical Foundations of Computer Science, pages
92–106, 2009.

[BJPW99] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins.
Making components contract aware. Computer, 32(7):38–45, 1999.

[BPG+04] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John My-
lopoulos. Tropos: An agent-oriented software development methodology. Au-
tonomous Agents and Multi-Agent Systems, pages 203–236, 2004.

[CBC11] Christophe Chareton, Julien Brunel, and David Chemouil. A formal treatment of
agents, goals and operations using alternating-time temporal logic. In Brazilian
Symposium on Formal Methods (SBMF), pages 188–203, 2011.

[CBC13] Christophe Chareton, Julien Brunel, and David Chemouil. Towards an Updatable
Strategy Logic. In Proc. 1st Intl WS on Strategic Reasoning SR, 2013.

[CBC15] Christophe Chareton, Julien Brunel, and David Chemouil. A logic with revocable
and refinable strategies. Inf. Comput., 242:157–182, 2015.

[CDGM10a] A.K. Chopra, F. Dalpiaz, P. Giorgini, and J. Mylopoulos. Modeling and reason-
ing about service-oriented applications via goals and commitments. In Advanced
Information Systems Engineering, pages 113–128. Springer, 2010.

34

[CDGM10b] A.K. Chopra, F. Dalpiaz, P. Giorgini, and J. Mylopoulos. Reasoning about agents
and protocols via goals and commitments. In Proc. of the 9th Intl Conf. on Au-
tonomous Agents and Multiagent Systems-Volume 1, pages 457–464, 2010.

[CHP10] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Strategy logic.
Inf. & Comp., 208(6):677–693, 2010.

[CS09] A.K. Chopra and M.P. Singh. Multiagent commitment alignment. In Proc. of The
8th Intl Conf. on Autonomous Agents and Multiagent Systems-Volume 2, pages
937–944, 2009.

[DLLM10] Arnaud Da Costa Lopes, François Laroussinie, and Nicolas Markey. ATL
with strategy contexts: Expressiveness and model checking. In IARCS Annual
Conf. on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), volume 8, pages 120–132, 2010.

[EFH+03] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac, and
David Van Campenhout. Reasoning with temporal logic on truncated paths. In
Computer Aided Verification, pages 27–39, 2003.

[Let02] E. Letier. Reasoning about Agents in Goal-Oriented Requirements Engineering.
PhD thesis, Université Catholique de Louvain, 2002.

[LVL02a] E. Letier and A. Van Lamsweerde. Agent-based tactics for goal-oriented require-
ments elaboration. In Proc. of the 24th Intl Conf. on Software Engineering, pages
83–93. ACM, 2002.

[LVL02b] E. Letier and A. Van Lamsweerde. Deriving operational software specifications
from system goals. In Proc. of the 10th ACM SIGSOFT symposium on Foundations
of software engineering, page 128. ACM, 2002.

[Mai98] Mark W. Maier. Architecting principles for systems-of-systems. Systems Engi-
neering, 1(4):267–284, 1998.

[MMPV14] Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y Vardi. Rea-
soning about strategies: On the model-checking problem. ACM Transactions on
Computational Logic (TOCL), 15(4):34, 2014.

[MMV10] Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi. Reasoning about strate-
gies. In IARCS Annual Conf. on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS), volume 8, pages 133–144, 2010.

[MP95] Zohar Manna and Amir Pnueli. Temporal verification of reactive systems - safety.
Springer, 1995.

[MS06] A. Mallya and M. Singh. Incorporating commitment protocols into Tropos. Agent-
Oriented Software Engineering VI, pages 69–80, 2006.

[Szy02] Clemens Szyperski. Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley, 2nd edition, 2002.

[vL03] Axel van Lamsweerde. From system goals to software architecture. In Formal
Methods for Software Architectures, pages 25–43, 2003.

[vL04] Axel van Lamsweerde. Elaborating security requirements by construction of in-
tentional anti-models. In ICSE, pages 148–157, 2004.

[vL09] Axel van Lamsweerde. Requirements Engineering - From System Goals to UML
Models to Software Specifications. Wiley, 2009.

[Yu96] Eric Siu-Kwong Yu. Modelling strategic relationships for process reengineering.
PhD thesis, University of Toronto, Toronto, Ont., Canada, Canada, 1996. UMI
Order No. GAXNN-02887 (Canadian dissertation).

[Yu09] Eric S. K. Yu. Social modeling and i*. In Conceptual Modeling: Foundations and
Applications, pages 99–121, 2009.

35

Hard-wiring CSP Hiding: Implementing Channel
Abstraction to Generate Verified Concurrent

Hardware

F. J. S. Macário1 and M. V. M. Oliveira1
∗

Departamento de Informática e Matemática Aplicada, UFRN, Brazil

Abstract. Throughout the development of concurrent systems, com-
plexity may easily grow exponentially yielding a very complex and error-
prone process. By using formal languages like CSP we may simplify this
task increasing the level of confidence on the resulting system. Unfortu-
nately, such languages are not executable: the gap between the specifi-
cation language and an executable program must be solved. In previous
work, we presented a tool, csp2hc, that translates a considerable sub-
set of CSP into Handel-C source code, which can itself be converted to
produce files to program FPGAs. This subset restricts the use of data
structures and CSP hiding. In this paper, we present an extension to
csp2hc that includes sequences in the set of acceptable data structures
and completely deals with the CSP hiding operator. Finally, we validate
our extension by applying the translation approach to a industrial scale
case study, the steam boiler.

Keywords: concurrency, CSP, Handel-C, abstraction, data structures,
code synthesis.

1 Introduction

Concurrent systems encompass two or more components in progress at the same
time [4]. They were initially programmed mainly to build operating systems.
Nowadays, however, concurrency has been strongly used to develop more gen-
eral applications. Throughout this development, however, it is very difficult to
ensure the quality of the resulting system based solely on informal inspections.
The system dimension together with the complexity added by concurrency have
an important impact on this increasing difficulty. In the development of con-
current applications, ensuring the software correctness is even more complicated
because developers have to deal with the parallel execution and synchronisation
of many components. This complexity usually yields a complex and error-prone
development process [19]. Moreover, there are many properties in the concurrent
world that need to be taken into consideration like, for instance, deadlock, live-
lock, and multi-synchronisation. Communicating Sequential Processes, CSP [19],

∗
Partially supported by INES and CNPq (grants 573964/2008-4 and 483329/2012-6)
and Instituto Metrópole Digital.

36

was proposed to deal with these properties more explicitly. Using CSP, we are
able to specify systems and to refine them. Both, the specification and the refine-
ment, can then be validated and verified using the Failures-Divergence Refine-
ment model-checker FDR3 [22]. This approach ensures the system consistency
and reliability [9].

CSP is a process algebra used to describe concurrent systems as components
interactions [21]. It has been broadly used on specification and analysis of con-
current systems. CSP provides a good notation that allows specification to be
clearly expressed and extended. Using this notation, the systems are abstracted
to behaviours of unities, called processes, which are described by events, alge-
braic operators and other less complex processes. The use of CSP to specify
concurrent systems is aided by tools like FDR3, whose input specifications are
written in CSPM [19], the machine-readable version of CSP. FDR3 is able to au-
tomatically verify the correctness of the specifications as well as other properties
like determinism, deadlock freedom and divergence freedom.

The levels of abstraction (specification, design and implementation) can be
easily described using CSP, but the translation of the implementation to a pro-
gramming language is still required at the end of the refinement process, prefer-
ably to a language that supports the CSP concurrency style through channels,
such as occam-2 [11] and Handel-C [13].

The process to translate formal specifications of a system to a programming
language is usually a non-trivial process and is considered problematic. In [16],
we presented a tool, csp2hc, that automatically translates from CSPM to Handel-
C. csp2hc accepts a subset of CSPM operators that includes, SKIP, STOP, sequential
composition, parallel composition (including interleaving), recursion, prefixing,
external choice, internal choice, alternation, guarded processes, IF-THEN-ELSE,
datatypes, constants, functions, and some expressions.

In this paper, we extend csp2hc, increasing the subset of accepted CSPM by
adding the CSP abstraction operator (hiding) and almost all sequence expres-
sions: sequence literals (i.e. <> and <1,4,5>), closed range (<m..n>), sequence
concatenation (sˆt), the length of a sequence (#s and length(s)), testing if a se-
quence is empty (null(s)), the head of a non-empty sequence (head(s)), the tail
of a non-empty sequence (tail(s)) and testing if a given object occurs in a given
sequence (elem(x,s)). CSP hiding makes a given set of events internal, that is,
the events become invisible to the environment and beyond its control. Hence,
the hiding operator can be used to encapsulate the events within a process and
to remove them from the interface. The translation of hiding is a non-trivial
process, which is described in Section 3.

In its current version, csp2hc automatic translates many of the classical case
studies in the literature. For instance, the Dinning Philosophers proposed by
Dijkstra in 1965 [8]. In this paper, we present the translation process of a more
complex case study, which formalises the control system of a Steam Boiler [7].

This paper is organised as follows. In Section 2 we introduce CSPM, Handel-
C, and briefly describe the previous version of csp2hc. Section 3 describes one
of the main contributions of this paper, the extensions added into csp2hc: the

37

sequence expressions and the hiding operator. In Section 4 we present our case
study and the steps performed to translate the CSPM specification of the Steam
Boiler into Handel-C. Our conclusions and intended future work can be found in
Section 5.

2 Background

In this section, we describe CSP, Handel-C, and csp2hc’s previous version. Here,
we focus on the features used in the context of this paper.

2.1 CSP

Communicating Sequential Processes (CSP) is a formal language for describing
patterns of interaction. It is based on a mathematical theory, a set of proof tools,
and an extensive literature [10,19,21,20]. Most of the CSP tools, like FDR3 and
ProBE, accept a machine-processable CSP, called CSPM.

The simplest process of all is STOP. This process is never prepared to engage
in any of its interfaces events. Other simple process is SKIP, that indicates that
the process has reached successful termination. A prefixing c -> P, pronounced
“c then P”, describes an object that first engages in the event c and then behaves
as described by P. The process P1[]P2 is an external choice between process P1

and P2: it allows the environment to resolve the choice by communicating an
initial event to one of the processes. When environment has no control over the
choice (i.e. the choice is resolved internally), we have an internal choice, which
is written P1|~|P2. The parallel composition P1[|cs|]P2 synchronises P1 and P2

on the events in the synchronisation set cs; events that are not listed in cs

occur independently. The interleaving P1|||P2 runs the processes independently.
The guarded process g & P behaves like P if the predicate g is true; it deadlocks
otherwise. The renaming P[[a<-b]] behaves like P except that all occurrences of
a in P are replaced by b. Finally, using the hiding operator P\cs, we may hide all
events in cs from the environment.

In Figure 1, we illustrate CSPM by presenting the specification of a buffer.
The specification contains special comments called directives (--!!), which give
extra information to csp2hc, such as: direction of communication (input or out-
put) of simple synchronisation channels; types of processes’ arguments; the main
behaviour of the system; the length of integers used in the system; the maximum
size of sequences; channels that will behave like buses (communication with the
environment); and the maximum size of sequences that the specification is using.
The details about these directives will be described in Section 3.

The buffer receives the data via an input channel, read, which is defined as
a bus. It is important to notice that buses are not part of CSP: they are used
only by csp2hc to define which special channels make communications between
the external environment and the system. After receiving the data, the buffer
transmits it to the storage component via the internal channel input, which is
hidden from the environment. In this specification, we use a sequence to store the

38

--!! mainp SYSTEM
--!! int_bits 3
--!! seq_max_size 6

channel input, output : Int
channel read, write : Int

--!! bus read
--!! bus write

--!! channel input in within B
--!! channel output out within B
--!! arg s integerSequence within B
--!! arg n integer within B
B(s,n) =
#s > 0 & output!head(s) -> B(tail(s),n)
[]
#s < n & input?x -> B(s^<x>,n)

--!! arg n integer within BUFFER
BUFFER(n) = B(<>,n)

BUSIN = read?x -> input!x -> BUSIN

BUSOUT = output?x -> write!x -> BUSOUT

BUSES = BUSIN ||| BUSOUT

SYSTEM =
(BUFFER(4)

[| {| input, output |} |]
BUSES)\{|input,output|}

Fig. 1. CSPM Example: a Buffer

data. The storage component has an external choice: it may either communicate
the first element of the sequence and remove it from the sequence or receive a
new element and add it to the sequence. Both options are guarded: an output
may only be given if the sequence has elements (the size of the sequence is greater
than zero) and an input may only be accepted if the buffer is not full (the size of
the sequence is less than the size of the buffer). Finally, the storage component
may communicate forward a value via an internal channel output. This value is
communicated to the environment using the write channel.

The storage process B uses a sequence to store the data: operations like
concatenation, head and tail are used to handle the data. The process BUFFER

behaves as a buffer of size 4. The processes BUSIN and BUSOUT receive inputs and
give outputs, respectively. Their interleaving corresponds to the behaviour of
the process BUSES. The SYSTEM is the main process. It is defined as the parallel
composition of the BUSES with the BUFFER. Despite being a simple example, this
example was not accepted by the previous version of csp2hc. This is due to the
use of both (i) sequences and (ii) hiding.

2.2 Handel-C

Handel-C is a high level programming language that can be used to program low
level hardware and is generally used to program FPGAs. The syntax of Handel-C
is similar to C, but adds new constructors for describing parallel behaviour like,
for example, the definition of channels, parallel composition, sequence blocks,
and choice among events.

Using Handel-C the developer is able to write sequential code, but he may
also maximise performance of the resulting hardware by using the high level
parallel constructors. The parallel construct par{P; Q;} executes instructions
from P and Q in parallel. The parallel branches may communicate with each other
via channels. The semantics of par{P; Q;} corresponds to the CSP alphabetised
parallel P [|α(P) || α(Q)|] Q, where α(P) and α(Q) denotes all communications

39

of P and Q, respectively. The prialt statement selects one of the channels that
are ready to communicate, and communicates via this channel. The only data
type allowed in Handel-C is int, which can be declared with a fixed size.

The target of the Handel-C compiler is low level hardware. In practical terms,
developers may achieve considerable improvements in performance when using
parallelism, in which case, the parallel statements will be executed at the same
time in two separate blocks of hardware. The execution flow of Handel-C parallel
statements is divided at the beginning of the parallel block and each branch
is executed concurrently. The execution flow regroups at the end of the block
when each branch has completed its own execution. If any branch completes its
execution before the other, it waits for the others before continuing.

By way of illustration, we present a simple BUFFER, illustrate in Figure 2,
that receives an integer value through a channel input and outputs it through
channel output.

Fig. 2. A Simple Buffer

This buffer can be decomposed into a parallel branch IN that receives an
integer value and passes it through channel middle to another parallel branch
OUT that finally outputs this value. A possible CLIENT can interact with the BUFFER

by sending an integer value via channel input and receiving it back via channel
output. The Handel-C code presented below implements this interaction.

set clock = external "clock1";
chan int 8 input, output, middle;
void IN(){ int 8 v; while(1) { input?v; middle!v; } }
void OUT(){ int 8 v; while(1) { middle?v; output!v; } }
void BUFFER(){ par{ IN(); OUT(); } }
void CLIENT(){ int 8 v; input!10; output?x; }
void main(){ par { BUFFER(); CLIENT(); } }

We define an external clock named clock1, and declare the channels used in
the system. The Handel-C function IN declares a local variable v and starts an
infinite loop: in each iteration, it receives a value via channel input, assigns it to
v, and writes its value on middle. The function OUT is very similar; however, it
receives a value via middle and writes it on output. The BUFFER is defined as the
parallel composition of IN and OUT. The main function is the parallel composition
of the BUFFER with the CLIENT.

2.3 The Translator csp2hc

csp2hc fosters the use of the development methodology depicted in Figure 3. In
this methodology, we start from an abstract CSP specification of a system (possi-

40

bly centralised) and develop CSP an implementation (possibly distributed) using
ProBE and FDR3 to prove its compliance with the specification. Finally, we use
csp2hc to automatically translate the CSP implementation into Handel-C code,
which can be validated using the DK simulator. Finally, the Handel-C code can
be compiled and used to program FPGAs.

Fig. 3. Development Methodology

The automatic translation from CSPM to Handel-C is simpler for some CSPM

constructs because Handel-C provides constructs that facilitate the description
of concurrent behaviour based on CSP concepts. The version of csp2hc presented
in [15] mechanised the translation of a subset of CSPM to Handel-C, which in-
cluded SKIP, STOP, sequential and parallel composition, recursion, prefixing, ex-
ternal and internal choice, alternation, guarded processes, renaming and inter-
leaving, datatypes, constants, functions, and some expressions. But, the hiding
operator and sequence expressions were not supported.

The implementation of sequence expressions is based on Handel-C struct

construct. For each sequence operations available in CSP, we have implemented
two Handel-C versions, one for signed integers and other for unsigned integers.
Furthermore, the extension of csp2hc to accommodate hiding is not trivial be-
cause it requires the pre-processing of the CSPM and the generation of a new
CSPM that refines the original input. In what follows, we described the details
of both translation strategies.

3 Extensions to CSP2HC

The current version of csp2hc accepts a large subset of CSPM constructs, which
allows us to automatic translate many of the classical concurrent specifications
available in the literature. In this paper, we present our contributions that in-
creased that subset with sequence expressions and the CSPM hiding. First, in
Section 3.1 we describe how sequences were implemented in Handel-C. Next, we
present the details of the implementation of hiding in Section 3.2.

41

Fig. 4. Representation of sequence <3,1,7>

3.1 Data Structures: Sequence

CSPM’s sequences have a standard behaviour. They can be used to store data
in order and can be manipulated using CSPM’s sequence operations: the closed
range <n..m> returns the sequence with elements ranging from n to m; tail(s)

returns the sequence resulting from removing the first element of s; complemen-
tary, head(s) returns the first element of s; elem(x,s) tests if a given x belongs to
s; length(s) and #s return the size of s; null(s) tests if the sequence is empty;
and, finally, sˆt concatenates the two given sequences s and t. Three further
CSPM sequence operations are available, but are not supported by our transla-
tion: the open range ..m, the distributed concatenation concat(s) and sequence
comprehension. They are, however, on our research agenda.

The translation of sequences from CSP to Handel-C makes use of Handel-C
structures defined below, which consist of three components: the start position
startPos, the final position endPos, and the vector array that stores the data.
The array has a fixed sized, which is informed by the user using a directive in the
input CSPM specification and the components startPos and endPos are used as
low water and high water marks that defines the elements of the array that are
actually part of the sequence. The Handel-C code generated by csp2hc has two
sorts if integers, signed and unsigned. The former is used to implement CSPM

integers and the latter is used to represent values of existing datatypes. For this
reason, since array types must be defined in advance, our translation defines two
sorts of sequences. The structure integerSeqType is used for sequences of signed
integers and the structure nonIntegerSeqType is used for sequences of unsigned
integers.

struct integerSeqType{
unsigned int 3 startPos; unsigned int 3 endPos; integer vector[6];

};
typedef struct integerSeqType integerSequence;

struct nonIntegerSeqType{
unsigned int 3 startPos; unsigned int 3 endPos; unsigned int 3 vector[6];

};
typedef struct nonIntegerSeqType nonIntegerSequence;

In Figure 4, we have the representation of the sequence <3,1,7>.
For each CSP sequence operation, our translation has either a corresponding

macro (for length, null and head) or a corresponding inline function (for tail

and concatenation) that implements the original CSPM operation. For example,
the CSPM functions head and tail are implemented as follows.

macro expr integerhead(S) = (S.vector[S.startPos]);

42

inline integerSequence integertail(integerSequence S){
unsigned int 3 i; integerSequence S1;
S1.startPos = 0; S1.endPos = S.endPos - 1; i = S.startPos + 1;
while (i < S.endPos){

S1.vector[i-1] = S.vector[i]; i = i + 1;
}
return S1;

}

The head of a sequence is simply the element at position startPos of the array.
The function integertail builds a sequence that starts at position startPos + 1

of the given sequence S and returns this sequence.
The translation of sequences required the creation of a new directive that

provides further information to csp2hc. The directive --!! seq_max_size n in-
forms csp2hc the maximum length n of sequences within the specification and is
used to determine the length of the array in the Handel-C structure.

3.2 Hiding

CSP hiding encapsulates one or more events, turning these events internal to the
process and inaccessible to the environment. Hence, the environment is unaware
of the existence of hidden events because these events are removed from the
interface. As an example, P \ {|c|} makes all events on c performed by P

hidden from the environment. In our previous version of csp2hc, the “translation”
of hiding consisted in ignoring it under certain conditions. These conditions
guaranteed that only channels on which a communication between two parallel
branches should take place were hidden. If these conditions were not satisfied,
the translation would simply fail and the user would receive an error message.
The conditions were:

H1 Hiding is only applied to communicating parallel processes: for every
parallel composition P [| cs |] Q we increment a counter. During the analy-
sis, channels may not be hidden if this counter is zero, meaning that we have
no parallel branches. For example, this restriction forbids the translation
of (c -> SKIP) \ {| c |}, which is deadlock free but whose translation
would deadlock if we simply ignore the hiding.

H2 Hiding is only applied to channels on which communication must
take place: during the analysis of the processes, hidden channels of a parallel
branch must be in the synchronisation channel set of the parallel composi-
tion. Furthermore, they are either written on this branch and read on the
parallel branch or read on this branch and written on the parallel branch. For
reasons that are similar to those of the previous item, this restriction forbids
the translation of ((c -> SKIP) ||| (b -> SKIP)) \ {| c |}, which is
also deadlock free but whose translation would deadlock if we simply ignore
the hiding.

H3 Ignoring the hiding does not enable unallowed communications: we
avoid communications that should not happen in the specification, by check-
ing that no hidden channels on a parallel branch are in the synchronisation

43

channel set and in the alphabet of the other parallel branch. For example,
this restriction forbids the translation of
((c!1 -> SKIP) \ {| c |}) [| {|c|} |] (c?x -> SKIP),
on which there is no communication but whose translation would present a
communication if we simply ignore the hiding.

If any of the above conditions were not satisfied, the translation would not
succeed. In this paper, we remove this restriction by dealing with the cases on
which the conditions were not satisfied. Our approach consists in refining the
CSPM specifications that do not satisfy the conditions above in an automatic way
and translating these refinements into Handel-C. We have used FDR3 to verify
the validity of the refinements in the failures-divergences model, ensuring that
their behaviours are in accordance with the original specifications [19]. Since the
refinements are a little more complex, the strategy is only applied in cases on
which at least one of the above conditions fails. If, however, they are all satisfied,
we simply ignore the hiding providing a simpler translation.

Basically, the strategy is to rename hidden channels and to create, for each
application of the hiding to a branch, an auxiliary process RUN_i that continu-
ously offer the renamed channels. The auxiliary process is executed in parallel
with the renamed version BODY_i of the original branch. This parallel composi-
tion avoids the deadlocks that would otherwise take place because the translation
of the original branches write on the renamed channels but no other branch reads
from them. By way of illustration, let us consider the CSPM process below.

P = ((a -> b -> SKIP) \ {|a|}) [| {|a, b|} |] ((b -> a -> SKIP) \ {|b|})

First, we create new channels for each of the hidden channels. Furthermore,
for each of these channels, we also create an auxiliary channel tau_terminate_n
whose function is described below. In our example, we have four new chan-
nels: tau_a_1 and tau_terminate_1, which are related to the hiding of a in the
left branch and tau_b_1 and tau_terminate_2, which are related to the hiding
of b in the right branch. The channels are grouped in the channel sets that are
related to each use of hiding.

channel tau_a_1, tau_b_1, tau_terminate_1, tau_terminate_2

CT_1 = {| tau_a_1, tau_terminate_1 |}
CT_2 = {| tau_b_1, tau_terminate_2 |}

Next, for each branch to which a hiding is applied, we create an auxiliary
process that recursively offers the newly created channels until it is terminated
using the newly created tau_terminate_n channel.

RUN_1 = tau_a_1 -> RUN_1 [] tau_terminate_1 -> SKIP
RUN_2 = tau_b_1 -> RUN_2 [] tau_terminate_2 -> SKIP

The body of the branch is changed to a process that replaces the hidden chan-
nels with the newly created ones and communicates on the tau_terminate_n

channel that is related to that branch. In our example, we have the processes
BODY_1 and BODY_2, which correspond to the left and right branches of the
parallel composition above, respectively.

44

BODY_1 = tau_a_1 -> b -> SKIP;tau_terminate_1 -> SKIP
BODY_2 = tau_b_1 -> a -> SKIP;tau_terminate_2 -> SKIP

The refinement process NEW_P is defined as the parallel composition of the
rewritten version of the branches. Each branch is rewritten as the parallel com-
position of its new body with the corresponding RUN process.

NEW_P = (BODY_1 [|CT_1|] RUN_1) \CT_1 [|{|a,b|}|] (BODY_2 [|CT_2|] RUN_2) \CT_2

Using FDR3, we can verify that the new process NEW_P is indeed a refinement
of the original process P (see Figure 5).

Fig. 5. FDR3 Verification of Hiding

During the translation process, csp2hc internally creates a new specification
using NEW_P, the new channels and sets defined above, replaces the previous
processes by their corresponding newly created ones, reprocesses this new speci-
fication, and finally translates it into Handel-C. This whole process is transparent
to the user. The refined specifications satisfy the original restrictions on the hid-
ing operator (conditions H1-H3). Hence, csp2hc simply ignores the resulting
hiding, but preserves its original behaviour.

This process of translation and refinement verification in FDR3 was done for
a test bench containing different specifications that exercises all possible combi-
nations of using parallel composition, communication, and hiding. Furthermore,
we also exercised this strategy with different case studies containing hiding on
which at least one of the conditions H1-H3 was not satisfied. The next section
presents the development of one of these case studies, the Steam Boiler.

4 Case Study

The specification of a steam boiler control was first proposed by Bauer in 1993 [3].
It has been used as a case study for thorough comparison between the various
design formalisms proposed in the literature. As a result, specifications of the
steam boiler have been proposed in a large number of different formal languages.

45

Fig. 6. Message sequence of Steam-Boiler

The problem consists in programming the control system of a steam boiler
that can be found in power stations. The software that controls the steam boiler
has to coexist with a physical environment with different elements: the steam
boiler itself, a sensor to detect the level of water in the boiler, four pumps
that supply water to the steam boiler, four pump controllers, a sensor that
measures the amount of steam being produced, an operator’s desk and a message
transmission system.

At the moment the pump is turned on, a balancing pressure process is exe-
cuted before the water is pumped into the boiler. This process takes five minutes.
It may, however, be stopped instantaneously at any time. The controller that
is responsible for the pump reports whether there is water passing through the
pump. The program communicates with the external environment through mes-
sages that are transmitted by the reporter (See Figure 6).

The steam boiler program control operates in five different modes. The ini-
tialisation mode ensures that the water level is within the normal operating
limits, and checks that the water and steam sensors are operating correctly.
When operating in the normal mode, the program tries to keep the water level
within the operating limits. In case the water sensor has not failed, but any other
non-vital piece of equipment has failed, the program operates in degraded mode.
In such cases, however, the system continues its execution. If the water sensor
has failed and the program continues to operate, it operates in rescue mode.
Finally, the program control enters in the emergency stop mode if any of the
following happen:

– The program stops;
– The water level is near to either of the operating limits;
– A vital piece of equipment has failed;
– There is some irregularity in the protocol between the program and the

physical equipment.

In [7], Freitas proposes an specification of steam boiler using Circus, a for-
mal language that combines CSP, Z, and commands from Dijkstra’s command
language. Here, we adapted the Circus solution by removing the Z components

46

and transforming the state components into process arguments. In what follows,
we focus on the structure of the resulting CSP specification. The complete CSP
specification, which includes all processes and csp2hc’s directives can be found
at the project’s website1.

The solution consists of four processes operating in parallel. The process
formalises the Timer and ensures that the program’s cycle begins at every five
seconds.

TCycle(time) = (if (time + 1) % cycletime == 0
then startcycle -> SKIP else SKIP);
clocktick -> TCycle((time + 1) % cycletime)

Timer = TCycle(5)

The second process is the Analyser. It receives messages from the external
environment and analyses the contents of these messages. After the analysis has
completed, it sends an information service to the Controller process.

Analyser = startcycle -> ainput -> startexec -> InfoService
InfoService = ainfo -> InfoService

[] afailuresrepairs -> apumps -> Analyser
TAnalyser = (Timer [| TAnalyserInterface |] Analyser) \TAnalyserInterface

The Controller decides the next actions to be taken based on the information
that it receives. It is responsible for sending information to the Reporter process.

Controller = startexec -> startreport -> NewModeAnalysis;
getmode?m -> (if m != emergencyStop

then |~| i: {0 .. limit} @ PutReports(i)
else SKIP);

endreport -> Controller
...
TAController = (TAnalyser

[| TAControllerInterface |]
(Controller [|ModeStateInterface|] ModeState) \ ModeStateInterface

) \ TAControllerInterface

Finally, the Reporter is responsible for indicating the end of the cycle after
reporting service to the Controller, packing them together with the outputs of
the Controller and dispatching the results to the external environment.

Reporter = startreport -> ReportService
ReportService = [] m: NonEmergencyModes @ reportmode.m -> putmode!m -> ReportService

[] areport -> ReportService
[] reportmode.emergencyStop -> putmode!emergencyStop -> TidyUp
[] TidyUp

TidyUp = endreport -> afailuresrepairs -> getmode?m -> aoutput!m -> apumps -> Reporter
TACReporter = (TAController

[| TACReporterInterface |]
(Reporter [| ModeStateInterface |] ModeState) \ ModeStateInterface

) \ TACReporterInterface
SteamBoiler = TACReporter

Although based on the Circus specification proposed in [7], the resulting CSP
specification was further refined to make it acceptable by csp2hc. For example,
the replicated external choice used in the Reporter was refined by expanding
them to an external choice resulting from instantiating the indexing variables.
Furthermore, csp2hc does not accept mutually recursive processes in parallel
compositions. For this reason, Reporter was also refined to remove the mutual
recursion with ReportService and TidyUp as follows.

1 http://www.dimap.ufrn.br/~marcel/research/csp2hc/

47

Fig. 7. Development Methodology

ReporterNew(n) =
if (n == 0) then startreport -> ReporterNew(1)
else if (n == 1) then

reportmode?initialisation -> putmode!initialisation -> ReporterNew(1)
[] reportmode?normal -> putmode!normal -> ReporterNew(1)
[] reportmode?degraded -> putmode!degraded -> ReporterNew(1)
[] reportmode?rescue -> putmode!rescue -> ReporterNew(1)
[] areport -> ReporterNew(1)
[] reportmode?emergencyStop -> putmode!emergencyStop -> endreport ->

afailuresrepairs -> getmode?m -> aoutput!m -> apumps -> ReporterNew(0)
[] endreport -> afailuresrepairs -> getmode?m -> aoutput!m ->

apumps -> ReporterNew(0)
else SKIP

ReporterR = ReporterNew(0)

The case study development methodology depicted in Figure 7 is based on the
general development methodology depicted in Figure 3, but extends it by: (1) in-
cluding an early translation from Circus to CSP (validated using FDR3’s process
explorer, ProBE); (2) instantiating the manual CSP refinement by a single re-
finement (verified using FDR3); and, finally, (3) including an automatic (and
internal to csp2hc) CSP refinement to make the transformations described in
this paper (transformation strategy validated using FDR3).

Overall, the final specification contained 21 processes specified on a 300
lines file. This refined CSPM specification of the steam boiler was finally given
to csp2hc, which translate it into a 1466 lines Handel-C code in 3755ms2.

5 Conclusions

The development of concurrent systems is inherently complex. The use of formal
methods like CSP yields benefits to the development process by providing simpler
means to specify and verify such systems. The work presented in this paper
fosters the use of a development methodology in which developers: (1) specify
the system’s desired concurrent behaviour; (2) gradually refine the specification
into a CSP implementation and verify the correctness of each refinement and

2 Experiment Environment: Dell Inspiron 3000; Windows 8.1 x64; Intel Core I5 2.2
GHz with 3MB Cache; 8GB DDR3 RAM.

48

other properties using tools like FDR3, and; (3) automatically translate the
CSPM implementation into Handel-C, which can itself be converted to produce
files to program FPGAs; (4) compile the resulting Handel-C code into VHDL
using the DK Design Suite3, and finally; (5) load this VHDL into a FPGA.

In this paper, we extend the tool that automatically translates from CSPM to
Handel-C. The previous version of csp2hc accepted a reasonable subset of CSP’s
operators that allowed users to translate most of the problems presented in the
literature. Our extension, however, allow users to make use of sequences (and
most of their operators) and CSP hiding. This contribution empowers the trans-
lation capabilities of csp2hc allowing it to translate more complex problems like
our case study, the steam boiler.

5.1 Related Work

Handel-C’s approach differs from BlueSpec’s one [2]. The later is based on Verilog,
a hardware description language that is useful for developing complex, bespoke
hardware, exploiting a hardware engineer’s skill and knowledge of circuits. The
former is a programming language for compiling programs into hardware images
of FPGAs or ASICs; it provides fast development and rapid prototyping, without
hardware skills, and allows massive parallelism to be easily exploited.

The translation of process algebras into programming languages has already
been considered in the literature. For instance, the refinement of CSPM specifi-
cations into occam-2 and Ada 9X [1] code was presented in [11], which simply
illustrates the translation without providing tool support. On the other hand,
in [18], an automatic translation of CSPM into C and Java is presented for a
small subset of CSPM. They make use of libraries that provide models for pro-
cesses and channels and allows programmers to abstract from basic constructs
of these languages (i.e., JCSP [23] for Java and CCSP [12] for C). Furthermore,
in previous work [14,6], we provided an automatic translation from a subset of
Circus [5], a combination of CSP with Z [24] and Dijkstra’s command language,
into JCSP. This tran

Most of the translations between CSPM and a programming language avail-
able in the literature target the generation of software. In [11], occam-2, which is
the native programming language for a line of transputer microprocessors, is the
target language. Unfortunately, it is not supported by any tool. In the literature,
as far as we know, only [17] presents a tool that automatically converts a sub-
set of CSPM into Handel-C code. Their methodology is very similar to ours, but
the subset of CSPM considered is relatively small. Besides the subset considered
in [17], csp2hc is able to translate complex communications, interleaved events,
multi-synchronisation, and hiding. Furthermore, besides integers, we allow the
use of sets and sequences.

3 http://www.mentor.com/products/fpga/handel-c/dk-design-suite/

49

5.2 Future Work

Our translation of sequences is effectively a form of data refinement. Our research
agenda includes proving that the transformation proposed in this paper is indeed
a valid data refinement.

Further extensions to csp2hc will make it into a more powerful tool support
for our methodology. First, the ability to translate the whole set of CSPM opera-
tors and the data structures and operations of the functional language provided
by FDR3 may encourage a large scale use of our methodology. Furthermore,
some directives used to help in the process of translation may be inferred. For
instance, the types of the processes arguments can be inferred based on a static
analysis; hence, the need for its corresponding directive may be removed.

Finally, a thorough analysis of the performance of the resulting VHDL run-
ning in a real FPGA is our next step. This may instigate a deeper analysis of
the translation decisions made during our research. This investigation may also
foster a new (and perhaps more interesting) direction of research in which the
CSPM is directly translated into VHDL that may (or may not) have a more
optimised behaviour.

References

1. A. Burns and A. Wellings. Concurrency in Ada. Cambridge University Press,
Second edition, Nov 1997.

2. Arvind. Bluespec: A language for hardware design, simulation, synthesis and verifi-
cation invited talk. In MEMOCODE ’03: Proceedings of the First ACM and IEEE
International Conference on Formal Methods and Models for Co-Design (MEM-
OCODE’03), page 249, Washington, DC, USA, 2003. IEEE Computer Society.

3. J. C. Bauer. ”Specification for a software program for a boiler water content
monitor and control system”. Institute of Risk Research, University of Waterloo,
1993.

4. Clay Breshears. The Art of Concurrency: A Thread Monkey’s Guide to Writing
Parallel Applications. O’Reilly Media, Inc., 2009.

5. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing, 15(2–3):146–181, 2003.

6. A. Freitas and A. L. C. Cavalcanti. Automatic Translation from Circus to Java.
In J. Misra, T. Nipkow, and E. Sekerinski, editors, 14th International Symposium
on Formal Methods, volume 4085 of Lecture Notes in Computer Science, pages
115–130. Springer, Aug 2006.

7. L. Freitas. Circus Example – Parsable Steam Boiler. Academia.edu, 2006.
8. Armando R. Gingras. Dining philosophers revisited. SIGCSE Bull., 22(3):21–ff.,

August 1990.
9. Anthony Hall. Seven myths of formal methods. IEEE Softw., 7(5):11–19, Septem-

ber 1990.
10. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
11. M. G. Hinchey and S. A. Jarvis. Concurrent Systems: Formal Development in

CSP. McGraw-Hill, Inc., New York, NY, USA, 1995.
12. B. McMillin and E. Arrowsmith. CCSP-A Formal System for Distributed Program

Debugging. In Proceedings of the Software for Multiprocessors and Supercomputers,
Theory, Practice, Experience, Moscow - Russia, Sep 1994.

50

13. Mentor Graphics. Handel-C Synthesis Methodology, 2012.
14. M. V. M. Oliveira and A. L. C. Cavalcanti. From Circus to JCSP. In J. Davies et

al., editor, Sixth International Conference on Formal Engineering Methods, volume
3308 of Lecture Notes in Computer Science, pages 320–340. Springer-Verlag, 2004.

15. M. V. M. Oliveira, I. S. Medeiros Júnior, and J. C. P. Woodcock. A verified protocol
to implement multi-way synchronisation and interleaving in csp. In RobertM.
Hierons, MercedesG. Merayo, and Mario Bravetti, editors, Software Engineering
and Formal Methods, volume 8137 of Lecture Notes in Computer Science, pages
46–60. Springer Berlin Heidelberg, 2013.

16. M. V. M. Oliveira and J. C. P. Woodcock. Automatic Generation of Verified
Concurrent Hardware. In M. M. Larrondo-Petrie M. Butler, M. Hinchey, editor, 9th
International Conference on Formal Engineering Methods, volume 4789 of Lecture
Notes in Computer Science, pages 286 – 306. Springer-Verlag, November 2007.

17. J. D. Phillips and G. S. Stiles. An Automatic Translation of CSP to Handel-C. In
Ian R. East, David Duce, Mark Green, Jeremy M. R. Martin, and Peter H. Welch,
editors, Communicating Process Architectures 2004, pages 19–38, sep 2004.

18. V. Raju, L. Rong, and G. S. Stiles. Automatic Conversion of CSP to CTJ, JCSP,
and CCSP. In Jan F. Broenink and Gerald H. Hilderink, editors, Communicating
Process Architectures 2003, pages 63–81, sep 2003.

19. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in
Computer Science. Prentice-Hall, 1998.

20. A.W. Roscoe. Understanding Concurrent Systems. Springer-Verlag New York,
Inc., New York, NY, USA, 1st edition, 2010.

21. Steve Schneider. Concurrent and Real Time Systems: The CSP Approach. John
Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1999.

22. Alexandre Boulgakov-A.W. Roscoe Thomas Gibson-Robinson, Philip Armstrong.
FDR3 — A Modern Model Checker for CSP. In Erika Ábrahám and Klaus
Havelund, editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 8413 of Lecture Notes in Computer Science, pages 187–201, 2014.

23. P. H. Welch. Process oriented design for Java: concurrency for all. In H. R. Arabnia,
editor, Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, pages 51–57. CSREA Press, June 2000.

24. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.
Prentice-Hall, 1996.

51

Re�nement strategies for Safety-Critical Java

Alvaro Miyazawa1 and Ana Cavalcanti2

1 alvaro.miyazawa@york.ac.uk,
2 ana.cavalcanti@york.ac.uk,

Department of Computer Science
University of York, York, UK

Abstract. Safety-Critical Java (SCJ) is a version of Java that supports
the development of real-time, embedded, safety-critical software. SCJ
introduces abstractions that enforce a simpler architecture, and simpler
concurrency and memory models, to support easier certi�cation. In this
paper, we detail a re�nement strategy that takes a state-rich process al-
gebraic design speci�cation that adheres to a cyclic executive pattern and
produces an SCJ design that can be automatically translated to code. We
then show how this re�nement strategy can be extended to support more
complex patterns that include non-terminating and multiple missions.

1 Introduction

Safety-Critical Java (SCJ) [7] is a version of Java suitable for the development of
veri�able real-time software. It incorporates part of the Real-Time Speci�cation
for Java (RTSJ) [17], introduces new abstractions such as Safelets and Missions,
and removes garbage collection by enforcing the use of scoped memory regions.
All this supports predictable timing behaviours.

SCJ enforces particular programming patterns via simpli�ed memory and
concurrency models. SCJ programs can adopt one of three pro�les, called levels,
which support an increasing number of abstractions. In this paper, we focus
on the intermediate level of SCJ programs (level 1), which enforces a structure
where a safelet (the main program) de�nes a mission sequencer, which in turn
provides a number of missions that are run in sequence as shown in Figure 1.
This level is comparable in complexity to the Ravenscar pro�le for Ada. While
adequate to a wide range of applications, it is amenable to formal reasoning.

An SCJ application is formed by a safelet, a mission sequencer, a number
of missions, and periodic and aperiodic event handlers. A safelet instantiates a
mission sequencer, and iteratively obtains a mission from the mission sequencer,
executes it and waits for it to terminate. At level 1, each mission is formed by a
collection of periodic and aperiodic event handlers that are run concurrently.

A safelet terminates when there are no missions left to be executed, and a
mission terminates when one of its handlers requests termination. In the SCJ
memory model, which is based on scoped memory regions, safelets, missions,
and handlers each have associated memory regions, which are cleared at speci�c
points of the program execution. This ensures predictable time properties.

52

Start HaltMission
Cleanup

Mission
Execution

Select
Mission Initialization

Mission

MissionSequencer

Fig. 1. SCJ programming model

Cavalcanti et al. [5] proposes a design technique for SCJ based on the Cir-

cus family of languages for re�nement, which are state-rich process algebras for
re�nement that include aspects such as object-orientation and timing; it has been
used to support veri�cation of a number of di�erent models such as Simulink/S-
tate�ow diagrams [4,11] and SysML [13,9].

In [12], we describe the syntax and semantics of a version of Circus called
SCJ-Circus, which includes the SCJ abstractions. In that work, we identify four
patterns of Circus speci�cations used as a basis for the development of SCJ pro-
grams de�ned by SCJ-Circus models. We also describe the main phases of a
re�nement strategy that takes a Circus speci�cation based on one of the pat-
terns for a non-terminating cyclic design with one mission whose handlers are
in lockstep. The strategy produces an SCJ-Circus program that can be directly
converted into an SCJ program. Here, we show that a re�nement strategy for
the terminating versions of the patterns identi�ed in [12] can be extended and
composed to support the re�nement of a wider variety of patterns, in particular,
non-terminating and multi-mission patterns.

We �rst focus on the terminating cyclic in lockstep pattern, and detail the
re�nement strategy for it. We then show how this strategy can be extended to
support the re�nement of the non-terminating cyclic in lockstep pattern of [12]
and a multi-mission pattern, in which the missions are provided sequentially
and each mission follows the terminating cyclic in lockstep pattern. Besides
considering re�nement for a collection of patterns that is signi�cantly larger than
that in [12], we also provide a detailed account of the strategy, instead of just
an overview. Whilst most of the laws used in our strategies have only syntactic
provisos, a few require more complex provisos, such as deadlock freedom.

Section 2 introduces Circus and Section 3 discusses our patterns, focusing
on the terminating cyclic in lockstep pattern. Section 4 details our re�nement
strategy for our target pattern. Section 5 and 6 extend the re�nement strategy of
Section 4 to cover non-terminating and multi-mission patterns. Finally, Section 7
concludes by reviewing our results and discussing future work.

2 Circus

In this section, we use the Circus process ThreeEqual in Figure 2, which models
an SCJ level 1 application that contains two event handlers, to give an overview
of the notation. It de�nes a program that takes integers as inputs, and outputs
booleans indicating whether the last three inputs are equal or not.

53

process ThreeEqual =̂ begin
InputHandler =̂

µX •



(
(input?x −→ Skip)J ID ; setBuffer !x−→
(wait 0..PTB); checkRepeats −→ Skip

)
I PD

9 wait P


 ; X

OutputHandler =̂

µX •




checkRepeats−→


getBuffer?buffer −→wait 0..ATB ;


if check(buffer) = True −→
(output !true −→ Skip)J OD

8check(buffer) = False −→
(output !false −→ Skip)J OD

fi







I AD ; X




MArea =̂ var buffer : seqN • buffer := 〈0, 0, 0〉; µX •(
setBuffer?x −→ buffer := (tail buffer a 〈x 〉); X
@getBuffer !buffer −→X @ stop −→ Skip

)

TEMission =





InputHandler
J{} | {| stop, checkRepeats |} | {}K
OutputHandler


 \ {| checkRepeats |}

J{} | {| setBuffer , getBuffer |} | {} K MArea


 \ {| . . . |}

TEMissionSequencer =̂ TEMission
TESafelet =̂ TEMissionSequencer
• TESafelet

end

Fig. 2. SCJ Level 1 example: ThreeEqual

The main modelling element of a Circus speci�cation is a process (indicated
by the keyword process). A basic process declares state components (identi�ed
by the keyword state), a number of auxiliary actions, and a main action (at the
end pre�xed by •) that describes the overall behaviour of the process. Processes
can also be combined using CSP operators to de�ne other processes.

Processes communicate with each other and with the environment via chan-
nels. In the case of our example, the process ThreeEqual does not declare any
state components; its interface is characterised by the channels input and output .

ThreeEqual declares six auxiliary actions: InputHandler , OutputHandler ,
MArea, TEMission, TEMissionSequencer and TESafelet . Actions are speci�ed
using a combination of Z [18] for data modelling and CSP [15] for behavioural
descriptions. The main action is de�ned by a direct call to the action TESafelet .

In general, a safelet may have an initialisation, but in our example, its be-
haviour is just that of the action TEMissionSequencer . In general, a mission
sequencer de�nes a sequence of missions, but here TEMissionSequencer de�nes
just the mission TEMission. The action MArea represents a memory area that
holds a bu�er. It has a block (var . . . • . . .) that declares a local variable buffer
of type seqN, and whose body is de�ned by a recursion (µX • . . .) that at each
step o�ers a choice of reading a value on the (internal) channel setBuffer , stor-

54

ing it in buffer and recursing, or outputting the value of buffer on the channel
getBuffer and recursing, or synchronising on stop and terminating. The action
Mission composes in parallel (J . . . | . . . | . . . K) the two event handlers synchro-
nising on stop and checkRepeats, with checkRepeats hidden (\), and the action
MArea synchronising on the channels setBuffer and getBuffer .

The action InputHandler represents a task with period P , that must get its
input within ID time units, can take up to PTB time units to complete, but no
more than PD . It is also de�ned by a recursion, where at each step two actions
are started in interleaving. The �rst action must take at most PD time units as
indicated by the end-by deadline operator I. It reads an input with a deadline
of ID time units as indicated by the start-by deadline operator J, appends the
value to the end of the tail of buffer , waits (wait) between 0 and PTB time
units, and then synchronises on checkRepeats, before terminating (Skip). The
wait 0 . .PTB models a budget of time for the update of the bu�er of PTB time
units. We observe that data operations take no time, unless explicitly speci�ed
otherwise. The communication of checkRepeats triggers the OutputHandler . The
second interleaved action in InputHandler waits for exactly P time units and
guarantees that a new iteration of the recursion does not start before the end of
the cycle, whose duration is P time units.

The action OutputHandler represents a task triggered by a synchronisation
on the channel checkRepeats; the task can take up to ATB time units to complete,
but must terminate in less than AD time units. It is de�ned by a recursion,
where each step synchronises on checkRepeats, reads the value of the bu�er on
the channel getBuffer , waits for up to ATB time units, and checks whether
the value read is in the set check or not. In the �rst case it outputs the value
true on the channel output within OD time units, in the second case it outputs
false on the same channel under the same time restriction. The whole step must
terminate within AD time units as indicated by the deadline operator.

In general, a Circus speci�cation consists of a sequence of paragraphs that
de�ne processes (as well as channels, constants, and other constructs that sup-
port the de�nition of processes). Processes are used to de�ne the system and
its components: state is encapsulated and interaction is via channels. Processes
can be composed, via CSP operators, to de�ne other processes. In Circus Time,
wait and deadline operators can be used to de�ne time restrictions. In OhCircus

models, we can in addition de�ne paragraphs that declare classes used to de�ne
types. More information about these languages can be found in [14,16,3]. In the
sequel, we further explain the notation as needed.

3 Patterns

The cyclic executive pattern that has been identi�ed in our previous work is
shown in Figure 3. It requires that the application has a single mission with a
�xed cycle, and all periodic and aperiodic event handlers execute at each cycle.
This requirement radically simpli�es the re�nement strategy since it allows the

55

P =̂ begin
state S
PHandleri =̂ µX • (Fi I PD 9 wait PERIOD); X @ t −→ Skip
AHandlerj =̂ µX • (cj −→Gj)I AD ; X @ t −→ Skip
MArea =̂ . . .
Termination =̂ rt −→ µX • (rt −→X @ t −→ Skip)

Mission =̂




(MArea ‖ (‖ i : I • PHandleri) ‖ (‖ j : J • AHandlerj))
JαS | {| t , rt |} | {}K

Termination




MissionSequencer =̂ Mission
Safelet =̂ MissionSequencer
• Safelet

end
where PD ≤ PERIOD ∧ AD ≤ PERIOD

Fig. 3. Pattern: cyclic in lockstep.

transformation of synchronous releases of aperiodic event handlers in the models
into the asynchronous releases that occur in SCJ-Circus.

In this pattern, parallelism occurs between the actions that model the mission
and the mission memory, and the termination management action, and within
the mission action between the di�erent event handlers. The mission memory
action MArea declares the variables shared by the handlers and o�ers commu-
nications over get and set channels that support reading and writing to the
shared variables. The termination management action accepts a synchronisation
on a channel rt ; this corresponds to a request from some handler to terminate.
Afterwards, the action starts a recursion where at each step, it either accepts
another communication on rt (corresponding to a further request to terminate)
and recurses, or it synchronises on t and terminates. The communication on t
has the e�ect of terminating the handlers of the mission.

A parallelism of actions in Circus needs to identify the partition of variables
that each parallel action can modify to avoid race conditions. So far, these sets
of variables have been empty. In the case of the Mission action, all variables αS
in scope can be modi�ed by the parallelism of handlers, while the termination
management action modi�es no variables.

Periodic event handlers PHandleri are de�ned as recursive actions, where each
step takes a �xed amount of time (waitPERIOD) whilst executing (in inter-
leave) some behaviour that takes at most PD time units (indicated by the I
operator). The execution of an aperiodic event handler AHandlerj , on the other
hand, is triggered by a synchronous event cj , which may occur at any time dur-
ing the cycle of the mission that lasts PERIOD time units, but must terminate
within AD time units. In order to guarantee the cyclic behaviour, the pattern
imposes timing restrictions over the behaviours of both periodic and aperiodic
handlers, which guarantee that they terminate within the cycle of the mission.

The second pattern that we consider allows for an aperiodic event handler
not to be called in a cycle. For this to be possible, the deadlines of the aperiodic
event handler must be adapted so that they can be missed as long as it has not

56

AHandlerj =̂ µX • (cj −→Gj)I AD ; X @ t −→ Skip @ wait PERIOD ; X

where AD ≤ PERIOD

Fig. 4. Pattern: cyclic not in lockstep.

AHandlerj =̂


var pr : boolean • pr := false;

µX •
(

cj −→ pr := true; X @ (pr)N hr −→ pr := false; X
@t −→ Skip

)

J{} | {| hr , t |} | α(Gj)K
µX • (hr −→Gj ; X @ t −→ Skip)



\ {| hr |}

Fig. 5. Pattern: non-cyclic.

started. This pattern di�ers from that in Figure 3 just in the characterisation of
the aperiodic handlers, which is presented in Figure 4. It requires the release via
the channel cj and the associated handling action Gj to terminate within AD
time units, or termination through the channel t . Furthermore, if release or ter-
mination does not take place within PERIOD time units, the choice terminates
and a new cycle of the recursion is started. The timing restrictions of the �rst
pattern over the periodic event handlers also apply to the second pattern.

Finally, the third pattern imposes no restriction on the timing of the han-
dlers, which means that the behaviour of a periodic handler can take longer
than its period, and the behaviour of the aperiodic handler can be called mul-
tiple times even if its action is not yet completed. In this case, the pattern for
aperiodic handler models is as shown in Figure 5. In SCJ, release requests are
asynchronous. So, if requests for further releases occur before a handler is ready
to execute again, one, and just one, pending release is recorded.

Accordingly, the actions of the form described in Figure 5 accumulate an
asynchronous release. It is used to support accumulation of at most one asyn-
chronous release and consists of two parallel actions. The second parallel action
models the behaviour of the handler itself in the usual way, but it is triggered
by the internal event hr . The actual triggering is managed by the �rst parallel
action. It receives release requests through the channel cj and records them in
the local variable pr (pending release), or requests for termination on t . When
there is a pending release (pr), then it can release the handler (hr), but it can
never have more than one pending release. This is, no doubt, a very speci�c pat-
tern, in spite of the absence of time restrictions. We emphasise that the starting
point of our re�nement strategy is not an abstract model, but an SCJ design.
Such a design can be obtained using the re�nement strategy in [5], for example.

The purpose of the re�nement strategy that we propose here and detail in the
next few sections is threefold. First, it guarantees that the design embedded by
the patterns can indeed be realised in SCJ. Not every model that conforms to our
patterns can be correctly implemented in SCJ with the suggested structure of
missions and actions. For example, in the design model, there may be a possibility
that an aperiodic handler is not released in a particular cycle. Such a model

57

Fig. 6. Phases of the re�nement strategy

safeletSafelet =̂ begin . . . end
sequencerSequencer =̂ begin . . . end
missionMission =̂ begin . . . end
periodic handlerPHandleri =̂ begin . . .handleAsyncEvent =̂ Fi I PD end
aperiodic handlerAHandlerj =̂ begin . . .handleAsyncEvent =̂ Gj I AD end

Fig. 7. Target

cannot be realised as a cyclic execution in lockstep. Its rendering in SCJ may
lead to visible inputs and outputs not allowed in the model.

Second, by deriving via re�nement an SCJ-Circus model, we enable auto-
matic translation to SCJ code via trivial transformations whose soundness is
not a concern. Finally, we obtain a model whose abstractions are in direct corre-
spondence with those of the SCJ paradigm. In this model, reasoning about use
of the memory model, for example, is much simpler.

4 Re�nement strategy

In this section, we present the re�nement strategy for the terminating cyclic lock-
step pattern. It consists of the same phases as the re�nement strategy in [12]
shown in Figure 6. The target is an SCJ-Circus program of the form de�ned
in Figure 7. Each periodic action in the starting design model has a corre-
sponding periodic event handler paragraph in the target speci�cation, where the
handleAsyncEvent method is de�ned as Fi I PD . Similarly, each aperiodic,
mission, mission sequencer and safelet action has a corresponding paragraph.

The four phases of our re�nement strategy are as follows: (CF) introduction
of SCJ control �ow, (AP) introduction of application processes, (FW) introduc-
tion of framework processes, (Conv) conversion to SCJ-Circus. CF makes the
control �ow of the SCJ paradigm, which is implicitly de�ned in the patterns via
sequential and parallel compositions, explicitly captured by channel synchroni-
sations. For example, we introduce, a channel activate handlers that models the
synchronised start of the handlers in parallel. AP separates application-speci�c
behaviours (for example, handler behaviours) from behaviours such as starting
a mission, which are implemented by an SCJ runtime environment (framework).
FW takes the incomplete model of framework behaviour, representing a slice
of the SCJ framework actually used by the application, and replaces it by the

58

full-�edged framework model. Finally, Conv re�nes the speci�cation into a se-
quence of SCJ-Circus paragraphs. As illustrated in Figure 6, the �rst three phases
act only on constructs of the time and object-oriented languages, Circus Time

and OhCircus, whilst the last phase manipulates SCJ-Circus speci�cations, which
complement those two notations with SCJ speci�c constructs.

4.1 (CF) Introduction of SCJ control �ow

This phase extracts each of the SCJ abstractions from the starting design model
into parallel actions. It derives, from a design like that in Figure 3, a process
structured as shown in Figure 8. Its main action is the parallel composition
of actions corresponding to speci�c SCJ abstractions. The order of execution
imposed by the original speci�cation is maintained through the use of commu-
nication channels such as start mission and start sequencer .

Figure 9 presents the steps necessary to reach its target. The laws named
there can be found in [1]. Due to space restrictions, only some are presented and
explained here. Overall, this phase identi�es the actions of the starting process
that model speci�c abstractions and applies specialised laws to parallelise the
safelet, mission sequencer and mission actions. Next, handler laws replace syn-
chronous communications between handlers with asynchronous communications,
and separate the handlers from the mission action. Finally, Circus laws are used
to merge parallel actions associated with mission execution.

The law call-intro is used to split an action F (A) into the parallel composition
of two actions, one of which executes the behaviour of the subaction A of F (A).
To retain the control �ow of F (A), internal channels cs and ce are used to
synchronise the parallel actions. In F (A), the action A is replaced with a call to
the parallel action using the internal channels.

Law [call-intro]

F (A) v




F (cs −→ ce −→ Skip)

JwrtV (A) | {| cs, ce |} | wrtV (A)K
cs −→A; ce −→ Skip


 \ {| cs, ce |}

provided

• {| cs, ce |} ∩ usedC (A) = ∅
• wrtV (A) ∩ usedV (F (Skip)) = ∅
• wrtV (F (Skip) ∩ usedV (A) = ∅

This law is proved by structural induction over the structure of the action F
using distribution and step laws such as the ones found in [14]. The provisos
guarantee that the internal channels are fresh and that the state is appropriately
partitioned to avoid racing conditions in the parallelism. We use usedC (A) to
refer to the set of channels used in an action A, and usedV (A) and wrtV (A) to
refer to the variables used and modi�ed by A. The law call-intro is applied to
parallelise the safelet, mission sequencer and mission.

59

CF P =̂ begin
state S
PHandleri =̂ µX • (Fi I PD 9 wait PERIOD); X @ t −→ Skip
AHandlerj =̂ µX • (cj −→Gj)I AD ; X @ t −→ Skip
MArea =̂ . . .
Termination =̂ rt −→ µX • (rt −→X @ t −→ Skip)
CF Mission =̂ start mission−→


MArea ‖ Termination ‖


‖ i : I • SHi −→ register .i −→ start peh.i −→ activate handlers−→
done handler .i −→ Skip
‖
‖ j : J • SHj −→ register .j −→ start aeh.j −→ activate handlers−→
quaddone handler .j −→ Skip







;

done mission −→ Skip
Safelet =̂


‖ i : I • SHi −→ start peh.i −→ activate handlers −→ PHandleri ;
done handler .i −→ Skip
‖‖ j : J • SHj −→ start aeh.j −→ activate handlers−→

(AHandlerj J {. . .} | {| cji |} | {} K Bufferj) \ {| cji |};
done handler .j −→ Skip
‖ CF Mission
‖ start sequencer −→ start mission −→ done mission−→

done sequencer −→ Skip
‖ start sequencer −→ done sequencer −→ Skip




• Safelet
end

Fig. 8. Re�nement strategy (CF) � Target

1. Apply Law call-intro to the action Safelet with channels cs and ce replaced by
start sequencer and done sequencer ;

2. Apply Law call-intro to the action MissionSequencer with channels cs and ce re-
placed by start mission and done mission;

3. Apply Law copy-rule to the action Mission in MissionSequencer ;
4. For each aperiodic action AHandlerj in the parallelism of handler actions use asso-

ciativity and commutativity laws to obtain a parallelism between AHandlerj and
another parallelism with all other handlers, and apply Law sync-async-conv;

5. Apply Laws pre�x-par-dist [14] and par-pre�x-dist to the action Mission to distribute
the communications on start mission and done mission over all parallel actions;

6. Apply Law handler-extract to each parallel action except MArea and Termination;
7. Apply step laws of [14] to merge the left hand side actions of the parallelisms

introduced in the previous step.

Fig. 9. Re�nement strategy: (CF) Introduction of SCJ control �ow

For the treatment of event handlers, we �rst introduce asynchronous commu-
nication between the event handlers using the Law sync-async-conv (see step 4 of
Figure 9). This law, which we omit here, replaces the synchronous communica-
tion between two actions by an asynchronous communication based on a bu�er.

60

Handleri app =̂ . . .
Mission app =̂ . . .
MissionSequencer app =̂ . . .
Safelet app =̂ . . .

AP P =̂ AP P FW ‖
(

Safelet app 9 MissionSequencer app 9 Mission app ‖
(9i : I ∪ J • Handleri app)

)

Fig. 10. Re�nement strategy: target of phase AP

Next, parallelism distribution laws are used in step 5 to expand the par-
allelism between handlers (previously internal to the action Mission) to a top
level parallelism as shown in Figure 8. In the next step, a simple law, handler-
extract omitted here, is used wrap the handler actions with synchronisations on
new internal channels SH , register , start peh, start aeh, activate handlers and
done handler to represent the interactions corresponding to the initialisation of
a mission, including creation (SH), registration (register), starting (start peh
and start aeh) and activation (activate handlers) of handlers, and to the ter-
mination of a mission, including the cleaning of handlers (done handler). All
these synchronisations are orchestrated by a new parallel action that models the
mission execution cycle. Its repeated occurrence for each handler is eliminated
in favour of a single parallel action named CF Mission in Figure 8.

4.2 (AP) Introduction of application processes

The starting point of this phase is the target of the previous phase in Fig-
ure 8, and its target is shown in Figure 10: it de�nes a number of application
processes, and re�nes the process CF P into the parallel composition of the
interleaved application processes and a modi�ed version of the original process,
where application-speci�c behaviours have been replaced by calls to actions of
the application processes via Call and Ret channels that model method calls.

The steps of this phase are shown in Figure 11. Overall, we use the process
obtained in phase CF to identify the behaviours that are application speci�c and
construct application processes. Next, each action modelling an SCJ abstraction
is split into two parallel actions: one containing application-speci�c behaviours,
and the other containing the interactions introduced during CF to model the SCJ
control �ow. In this control action, the application-speci�c behaviour is replaced
by calls via appropriate channels. This is achieved by specialised laws handler-
split, mission-split, sequencer-split and safelet-split, for each of the di�erent SCJ
constructs. Finally the initial basic process is split into a parallelism of processes.
Since, following the application of the specialised split laws, the main action of
the basic process is a parallelism, this is a simple application of the de�nition of
process parallelism in Circus.

Due to space restrictions, we present just the Law handler-split. The others are
similar and simpler. For handlers, the new parallel actions communicate through
channels that model a call to the handleAsyncEvent method. Accordingly, this

61

1. Apply Law handler-split to each handler action with channels haeC and haeR
replaced by handleAsyncEventCall and handleAsyncEventRet ;

2. Apply Law mission-split to the action that models the mission;
3. Apply Law seq-interleave [1] to turn the interleaving on the left hand side of the

parallel action introduced in step 2 into a sequential composition;
4. Apply Law rec-interleave [1] to turn the interleaving on the right hand side of the

parallel action in step 2 into a recursion;
5. Apply Law sequencer-split [1] to the action that models the sequencer;
6. Apply Law safelet-split [1] to the action that models the safelet;
7. Apply the de�nition of parallel processes [14] from right to left to replace the basic

process, whose main action is parallel, with a parallelism of application processes
and the remains of the original process.

Fig. 11. Re�nement strategy: (AP) Introduction of application processes

law takes an action modelling a handler, and splits it by distributing application
aspects such as constructor channels SH and release behaviour F to one side, and
framework behaviours such as start and end channels (sh and dh) to the other
side. This law is easily proved by the application of parallelism step laws [14].

Law [handler-split]

SH .n −→ sh.n −→ µX • (F ; X); dh.n −→ Skip
v


SH .n −→ sh.n −→ µX • (haeC −→ F ; haeR −→X); dh.n −→ Skip
JwrtV (F) | {| sh.n, dh.n, haeC , haeR |} | {}K
sh.n −→ µX • (haeC −→ haeR −→X); dh.n −→ Skip




\{| haeC , haeR |}

provided {| sh,SH , dh |} ∩ usedC (F) = ∅.

In step 3, the strategy applies a law to transform the interleaving of the instan-
tiation and registration of all handlers (on the application side) into a sequence.
This is possible because all the parallel actions that synchronise on the inter-
leaved events do so in interleaving (avoiding deadlock) and these events are
internal. Step 4 transforms the interleaving on the framework side of the mission
into a recursive action that at each step allows the registration of a handler, and
once all handlers have been registered, executes them in interleaving.

At the end of this phase, the application processes are completed, but the
remaining process AP P FW does not quite specify the SCJ runtime environ-
ment. This process is the focus of the next phase.

4.3 (FW) Introduction of framework processes

This phase applies to the part of the model that remains after the application
processes are extracted. It consists of a process AP P FW containing portions

62

1. Apply Law safelet-fw-cl to the action Safelet of CF P FW ;
2. Apply Law sequencer-fw-cl to the action Sequencer of CF P FW ;
3. Apply Law mission-fw-cl to the action Mission of CF P FW ;
4. Apply Law periodic-handler-fw-cl to the actions PHandleri of CF P FW ;
5. Apply Law aperiodic-handler-fw-cl to the action AHandlerj of CF P FW ;
6. Apply the de�nition of parallel processes [14] from right to left to replace the

process CF P FW , with a parallelism of framework processes.

Fig. 12. Re�nement strategy: (FW) Introduction of framework processes

FW P =̂




(
SafeletFW ‖ SequencerFW ‖ MissionFW (mission) ‖
(9i : I ∪ J • HandlerFW (handleri))

)

‖(
Safelet app 9 MissionSequencer app 9 Mission app ‖
(9i : I ∪ J • Handleri app)

)




Fig. 13. Re�nement strategy: target of phase FW

of the framework that are explicitly used in the design. The result is a new pro-
cess that de�nes the complete framework behaviours. For instance, our running
example never asks a mission for the sequencer that oversees its execution. This
is, however, a service provided by the framework. We can introduce the richer de-
scription of the framework because the application process is guaranteed not to
request the additional behaviour. The steps of this phase are shown in Figure 12.

The process resulting from the application of this phase is shown in Fig-
ure 13. It is the parallel composition of the application processes introduced in
the previous phase and the framework processes that model the SCJ API.

The main laws used in this phase are specialised to the cyclic in lockstep pat-
tern as indicated by the su�x -cl. The single non-application process AP P FW
obtained in the previous phase is the same for all applications that follow our
target pattern. This is because the pattern is very restrictive with respect to
the execution of missions and handlers, and most of the framework speci�c be-
haviours are introduced by the laws in the previous steps. For this reason, the
specialised laws can be used to introduce the full blown framework processes re-
lying solely on syntactic conditions over the application processes. This is done
to each abstraction in steps 1�5. These framework processes are speci�ed in [10].

At the �nal step 6, the process whose main action is the parallel composition
of the actions completed by the previous steps is split into a parallelism of frame-
work processes. The result is a parallelism of processes as shown in Figure 13.

4.4 (Conv) Conversion to SCJ-Circus

This phase rearranges the parallel processes shown in Figure 13 by pairing
framework and application processes according to the abstraction they model,
and introducing new process paragraphs that isolate these pairs. For instance,

63

handler S Handleri =̂ . . .
mission S Mission =̂ . . .
sequencer S MissionSequencer =̂ . . .
safelet S Safelet =̂ . . .

Fig. 14. Re�nement strategy: target of phase Conv

1. Systematically apply Law par-par-dist to rearrange the parallelism in Figure 13,
until it is structured as a parallelism of pairs of processes;

2. For each pair of processes, apply the copy rule from right to left to introduce the
corresponding action paragraph and replace the process by a call;

3. For each newly introduced action, apply the de�nition of the appropriate SCJ
abstraction from right to left.

Fig. 15. Re�nement strategy: (Conv) Conversion to SCJ-Circus

SafeletFW is paired with Safelet app, and extracted into a process Safelet . Next,
the semantics of SCJ-Circus is used to convert the newly introduced processes
into the corresponding SCJ-Circus paragraphs. For example, the process Safelet
is converted into a paragraph identi�ed by the keyword safelet.

The target of this phase is a speci�cation formed by SCJ-Circus paragraphs as
shown in Figure 14. Each action that models an SCJ abstraction in the original
design is modelled by an SCJ-Circus paragraph. These paragraphs overtly specify
only the application speci�c behaviours, leaving the framework aspects implicit.

The steps for this phase are shown in Figure 15. The �rst step extracts pairs
of application and framework processes two by two using the Law par-par-dist
below. This is carried out exhaustively until there are no more pairs to extract.

Law [par-par-dist]

(A J sA | a1 | sB K B) J sA ∪ sB | a2 ∪ b | sC ∪ sD K (C J sC | c | sD K D)
=
(A J sA | a2 | sC K C) J sA ∪ sC | a1 ∪ c | sB ∪ sD K (B J sB | b | sD K D)

provided

• usedC (A) ∩ usedC (B) ⊆ a1 ∧ a1 ∩ usedC (C ,D) = ∅
• usedC (C) ∩ usedC (D) ⊆ c ∧ c ∩ usedC (A,B) = ∅
• usedC (A) ∩ usedC (C) ⊆ a2 ∧ a2 ∩ usedC (B ,D) = ∅
• usedC (B) ∩ usedC (D) ⊆ b ∧ b ∩ usedC (A,C) = ∅

This law relies on the strict partition of the communication network between the
four parallel processes. It uses the fact that the channels used by the processes
C and D , which are matched to application processes in our strategy, to com-
municate with each other are not used by A and B , and, conversely, that the

64

channels used by A and B (matched to the framework processes in our strategy)
to communicate with each other are not used by the application processes.

Next, each pair of application and framework processes is used to de�ne a
new process using the reverse of the copy-rule, and the semantics of SCJ-Circus
is used to transform these newly de�ned processes into SCJ-Circus paragraphs.

5 Non-terminating pattern

Figure 16 shows the Mission action of the non-terminating cyclic in lockstep
pattern. The main di�erence from that in Figure 3 is the missing Termination
action. The target of our re�nement strategy is the same: an SCJ-Circus program
in the form described in Figure 7.

Mission =̂ (MArea ‖ (‖ i : I • PHandleri) ‖ (‖ j : Jn • AHandlerj)

Fig. 16. Non-terminating cyclic in lockstep pattern

The re�nement strategy described in Section 4 cannot be applied to models
that follow the pattern in Figure 16 because it expects the Mission action to have
an extra parallelism: see step 6 of CF and step 3 of FW. Instead of modifying the
mission speci�c laws to introduce the mechanisms of termination, it is possible to
extend the re�nement strategy in the Section 4 by introducing this parallel action
as a �rst step using the Law termination-intro, omitted here, before applying it.

This law takes a Circus action A of the form µX • F ; X and two channels
t and rt , and re�nes A into a parallelism between µX • F ; X @ t −→ Skip,
and an action that waits for a termination request on a channel rt and then
behaves as a recursive action that either accepts an event on the channel rt and
recurses, or accepts an event on the channel t and terminates. The parallelism
synchronises on both t and rt , which are made internal via the hiding operator.
This law relies on the fact that A does not terminate, and does not use rt or t .

It may seem ine�cient to complicate the model, but we note that the re�ne-
ment steps of the whole re�nement strategy are mostly automatic. Moreover, the
phase FW is already about completing the framework model to re�ect the SCJ
paradigm. The termination protocol is part of the framework model already.

6 Multiple terminating missions

For an application with multiple missions in sequence, the pattern only di�ers
in the speci�cation of the action MissionSequencer , which is de�ned as the se-
quential composition of a number of missions M1; M2; . . . ; Mn . In this case, it
is possible to modify the existing re�nement strategy at very speci�c points to
cater for a sequence of missions.

Step 2 of CF needs to be replaced with an iteration that, for each mission Mi ,
applies the Law call-intro to MissionSequencer with A instantiated as Mi and the

65

channels cs and ce replaced by start mission.Mi ID and done mission.Mi ID .
With that, the mission-sequencer action is re�ned to a sequence of pairs of
synchronisations on start mission and done mission, in parallel with actions
that call the mission actions. We have one parallel action for each mission, with
the call wrapped by the start mission and done mission events. This is similar
to the result obtained for the �rst pattern: the only di�erence is that, in this
case, we have several parallel calls to missions.

Next, for each mission, the modi�ed strategy applies the remaining steps
described originally, including those of the following phases. We have to take into
account, however, that the steps 5 and 6 of AP and 1 and 2 of FW only need
to be applied in the �rst iteration. These steps are related to the application
and framework processes for the safelet and the mission sequencer, and need
to be carried out just once. Moreover, step 5 of AP needs a slightly di�erent
re�nement law, which introduces a particular pattern for the implementation of
the getNextMission tailored for multiple missions in sequence.

7 Conclusions

In this paper, we detail a re�nement strategy for SCJ speci�cations. We describe
each step necessary, and present some of the specialised laws required. This
strategy di�ers from the re�nement strategy for SCJ in [5] in that the latter
takes an abstract model and re�nes it into a concrete program using speci�cation
patterns based on SCJ, but not its API. The strategy we present here re�nes a
concrete SCJ-based model into a program that makes full use of the standard
SCJ library to implement control aspects that are speci�c to SCJ. In that sense,
our re�nement strategy is similar to compilation, except that the target SCJ-

Circus programs include library calls that are not present in the starting model.
Moreover, some of the applications of re�nement laws in the strategy generate
proof obligations. Theorem proving is required when applying the strategy.

Despite that, since the Circus models used as a starting point for our strategy
already embed an SCJ design, the level of automation achievable in applying the
strategy is much higher than in [5]. For the particular pattern that we target
here, most of the laws used have only syntactic provisos.

Our re�nement strategy, possibly in combination with the one in [5], com-
plements other veri�cation techniques for SCJ. The work in [8] proposes an
annotation-free technique for the veri�cation of memory safety of SCJ programs
based on a translation to a notation similar to SCJ-Circus. Also, [6] extends the
widely used Java Modelling Language [2] with timing annotations to support
worst case execution time analysis of SCJ programs.

It is worth mentioning that the pattern on which we focus here is fairly com-
mon in safety critical systems. For instance, the re�nement strategy for control
law diagrams proposed in [4] targets Ada implementations that follow a similar
pattern, and it may be possible to adapt both re�nement strategies to support
the veri�cation of SCJ implementations of control law diagrams.

66

As future work, we plan to refactor our strategy by extracting a re�nement
strategy that targets missions. With this structure, our strategy can be more
easily generalised. We plan to specify strategies that target common patterns of
mission combination, as well as missions following di�erent patterns. Finally, we
plan to implement our strategies in a theorem prover such as Isabelle/HOL, and
apply them to existing examples such as a collision detection system [19].

Acknowledgements This work is funded by the EPSRC grant EP/H017461/1.
No new primary data was created during this study.

References

1. A. Miyazawa and A. Cavalcanti. Report on re�nement strategies for Safety-Critical
Java, 2015. http://www-users.cs.york.ac.uk/~alvarohm/report2015b.pdf.

2. L. Burdy et al. An overview of JML tools and applications. Int. J. Softw. Tools
Technol. Transf., 7(3):212�232, June 2005.

3. A. Cavalcanti, A. Sampaio, and J. Woodcock. Unifying classes and processes.
Software & Systems Modeling, 4(3):277�296, 2005.

4. A. L. C. Cavalcanti, P. Clayton, and C. O'Halloran. From Control Law Diagrams
to Ada via Circus. Formal Aspects of Computing, 23(4):465 � 512, 2011.

5. A. L. C. Cavalcanti et al.Safety-Critical Java programs from Circus models. Real-
Time Systems, 49(5):614�667, 2013.

6. G. Haddad et al. The design of SafeJML, a speci�cation language for SCJ with
support for WCET speci�cation. In JTRES '10, pages 155�163. ACM, 2010.

7. D. Locke et al.Safety-Critical Java technology speci�cation. Technical report.
8. C. Marriott and A. L. C. Cavalcanti. SCJ: Memory-safety checking without anno-

tations. In FM, volume 8442 of LNCS, pages 465�480. Springer, 2014.
9. A. Miyazawa and A. Cavalcanti. Formal re�nement in SysML. In iFM 2014,

volume 8739 of LNCS, pages 155�170. Springer, 2014.
10. A. Miyazawa and A. Cavalcanti. Re�nement of Circus models into SCJ-Circus,

2015. http://www-users.cs.york.ac.uk/~alvarohm/report2015a.pdf.
11. A. Miyazawa and A. L. C. Cavalcanti. Re�nement-oriented models of State�ow

charts. Science of Computer Programming, 77(10-11):1151�1177, 2012.
12. A. Miyazawa and A. L. C. Cavalcanti. SCJ-Circus: a re�nement-oriented formal

notation for Safety-Critical Java. In Re�nement Workshop, 2015.
13. A. Miyazawa, L. Lima, and A. Cavalcanti. Formal models of SysML blocks. In

ICFEM 2013, volume 8144 of LNCS, pages 249�264. Springer, 2013.
14. M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs Using

Circus. PhD thesis, University of York, 2006.
15. A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science.

Springer, 2011.
16. K. Wei, J. C. P. Woodcock, and A. L. C. Cavalcanti. Circus Time with Reactive

Designs. In UTP 2012, volume 7681 of LNCS, pages 68�87. Springer, 2012.
17. A. Wellings. Concurrent and Real-Time Programming in Java. John Wi-

ley & Sons, 2004.
18. J. C. P. Woodcock and J. Davies. Using Z�Speci�cation, Re�nement, and Proof.

Prentice-Hall, 1996.
19. F. Zeyda, A. Cavalcanti, A. Wellings, J. Woodcock, and K. Wei. Re�nement of

the Parallel CDx. Technical report, University of York, 2012.

67

Automatic generation of test cases and test
purposes from natural language

Sidney Nogueira1,2, Hugo L. S. Araujo1, Renata B. S. Araujo1,
Juliano Iyoda1, and Augusto Sampaio1

1 Centro de Informática, Universidade Federal de Pernambuco
2 DEINFO, Universidade Federal Rural de Pernambuco

Abstract. Use cases are widely used for requirements description in the
software engineering practice. As a use case event flow is often written in
natural language, it lacks tools for automatic analysis or processing. In
this paper, we extend previous work that proposes an automatic strategy
for generating test cases from use cases written in a Controlled Natural
Language (CNL), which is a subset of English that can be processed
and translated into a formal representation. Here we propose a state-
based CNL for describing use cases. We translate state-based use case
descriptions into CSP processes from which test cases can be automati-
cally generated. In addition, we show how a similar notation can be used
to specify test selection via the definition of state-based test purposes,
which are also translated into CSP processes. Test generation and selec-
tion are mechanised by running refinement checking verifications using
the CSP processes for use cases and test purposes. All the steps of the
strategy are integrated into a tool that provides a GUI for authoring use
cases and test purposes described in the proposed CNL, so the formal
CSP notation is totally hidden from the test designer. We illustrate our
tool and techniques with a running example.

1 Introduction

Model-based testing (MBT) uses a model to describe the system under test in or-
der to generate test cases automatically. There are many different notations used
to create test models. For instance, Finite State Machines (FSM) and Labelled
Transition Systems (LTS) are commonly adopted as input for test generation
tools [12, 25]. Therefore, the adoption of MBT normally requires the users to be
familiar with a formal specification language.

Unfortunately, in some contexts, working with modelling formalisms might be
an impediment for the effective use of MBT. Thus, a more light-weight notation
supported by an interactive tool might help to reduce the gap between informal
specifications adopted in the initial phases of software development processes
and a formal representation required by MBT.

Use cases are widely employed in the software engineering practice. It de-
scribes interactions between the user and the system in terms of event flows,
typically written in natural language. Use cases are easier to learn in compari-
son with the formal notations used in MBT. However, as natural language is hard

68

to process automatically, use cases lack tool support for automatic analysis and
processing. Some efforts in this direction generate test cases from requirements
written in natural language [3, 4, 19, 21]. In [3, 19] the authors do not impose any
grammar restrictions on the language. This tends to demand more user inter-
vention to generate test cases, unless there is a substantial knowledge base for a
specific domain. The works reported in [4, 21] define standardised notations and
provide automated strategies to generate test cases.

In previous work [15] we devised a strategy for the automatic generation of
test cases from use cases written in a Controlled Natural Language (CNL), which
is a subset of English that can be processed and translated into a formal language,
and particularly CSP [11]. The main limitation of this strategy, however, is that
states, inputs and outputs are expressed directly using (a variation of) the CSP
notation, which, in general, is not accessible for test designers.

Here we propose a state-based CNL that embodies state and state operations,
as well as inputs and outputs. Despite being a natural language, it requires from
the use case designer familiarity with notions of variables, inputs and outputs.
We translate state-based CNL use cases into a CSP representation that includes
a memory model to record state information. From such a model, test cases and
test data are automatically generated. A similar notation has proved convenient
to express test purposes as a mechanism for test selection; this uniform use of
our state-based CNL is a distinguishing feature of our approach with respect
to related work. Furthermore, test generation is normally achieved by designing
and running explicit algorithms that traverse a test model. By using CSP to
represent both control behaviour and state information, we are able to generate
test cases and test data as counterexamples of refinement verifications using a
tool such as FDR [10]. Selection can be based both on the occurrence of events as
well as on the system state. Our overall approach is illustrated by a case study,
presented as a running example.

The next section gives an overview of CSP and of our previous strategy to
test case generation. Section 3 introduces the proposed state-based controlled
natural language for use case. The following section addresses the translation
of state-based CNL descriptions into CSP. Then, Section 5 introduces the CNL
notation for test purpose specification. In Section 6 we present tool support. In
the final section we summarise our results and discuss related and future work.

2 Test Case Generation from CSP Models

This section overviews our previous strategy [15] for test case generation from
use cases written in natural language, as well as the CSP notation. Figure 1
gives an overview of the TaRGeT Tool [9] that mechanises the strategy. The
main inputs are use case documents that specify the software features to be
tested, and test purposes written in CSP that define subsets of test scenarios to
be generated. Feature descriptions are then translated to CSP test models that
capture use cases behaviour. Test models and test purposes are inputs for our
test generation approach, which uses FDR [10] to run verifications that yield

69

the desired set of abstract test cases represented as CSP traces (sequences of
events). Finally, CNL test cases are obtained from the abstract CSP test suite.

Fig. 1. Test generation approach in the TaRGeT tool

Use Case Documents Use case documents follow a template that allows the
specification of several features; each feature has one or more use cases. Sentences
are used to describe user actions and the respective system responses. The CNL
is restricted to control aspects. Input, output, guards and variable update can
be specified, but they are described in a formal notation (a variant of CSP).

CSP Test Models For the purpose of test case generation, the use case docu-
ments are translated into a formal representation in the CSP process algebra [17,
18]. The main element in CSP is a process, which models a component or an
entire system. Processes communicate (atomic and instantaneous) events that
represent visible actions. The alphabet αP denotes the set of events a CSP
process P can communicate. Events are communicated as soon as there is an
agreement between processes and the environment. STOP and SKIP are two
primitive CSP process. The former represents a deadlocked process that does
not communicate any events. The latter represents a process that terminates
successfully (communicates the X event) and deadlocks.

Basic CSP operators as prefix, external choice, and sequential composition
are suitable to model the control flow of use cases. The CSP prefix operator
P = ev → Q specifies that event ev is communicated by P , which then behaves
as the process Q . A channel is an important abstraction in CSP for a set of events
with a common prefix. Let T be a type and c a channel that can communicate
a value of type T (declared as c : T). Such a channel declaration represents
the set of events {c.x | x ∈ T}. The external choice operator P = Q 2 R
indicates that the process P can behave as Q or R; the choice is made by the
environment. The sequential composition P ; Q behaves initially like P ; if it
terminates successfully, then the control passes to Q .

Parallel composition, hiding and interruption are other CSP operators used
in the model for a state-based use case. The process P |[X]| Q stands for the
generalised parallel composition of the processes P and Q with synchronisation
set X . This expression states that P and Q must synchronise on events that
belong to X . Each process can progress independently for events that are not
in X . This composition terminates successfully if, and only if, the left- and

70

the right-hand side processes do terminate. Likewise, consider the process P\X
that communicates all its events, except the events that belong to X , which
become internal (invisible): \ stands for the hiding operator. We also introduce
the process P 4 Q , which indicates that Q can interrupt the behaviour of P if
an event offered by Q is communicated.

Moreover, consider the replicated external choice of CSP 2 x : A • F (x),

where x is a value from the set A, and F (x) is any process expression involving
x . This construction behaves as the process F (a1) 2 . . . 2 F (ak), for A =

{a1, . . . , ak}. Additionally, consider the process RUN (s) = 2 ev : s • ev →
RUN (s) that continuously offers the events from the set s.

CSP Traces Model Our test generation approach is based on refinement ver-
ification using the traces model of CSP [17]. The traces of a process P , given
by T (P), correspond to the set of all possible sequences of events P can com-
municate. For instance, the traces model for the STOP process is the set {〈〉};
the traces of the process a → P is {〈〉} ∪ {〈a〉 a t | t ∈ T (P)}; and the traces
of an external choice P 2 Q is T (P) ∪ T (Q). A complete definition for all CSP
operators can be found in [17].

It is possible to compare the traces semantics of two processes by refinement
verification using one of the CSP refinement checking tools, such as FDR [10].
A process Q refines a process P in the traces model, say P vτ Q , if, and only if,
T (Q) ⊆ T (P). If the refinement does not hold, FDR yields a trace (the shortest
counter-example), say ce, such that ce ∈ T (Q) but ce 6∈ T (P). For instance,
(P 2 Q) vτ P holds, since T (P) is a subset of T (P 2 Q). However, the relation
STOP vτ accept → STOP does not, since 〈accept〉 ∈ T (accept → STOP)
but 〈accept〉 6∈ T (STOP). Thus, the trace 〈accept〉 is a counter-example for the
above refinement expression.

Test Generation with CSP Test Purposes Test scenarios are traces from
the specification that describe particular behaviours to be tested. A test case is a
CSP process that is constructed from the trace, as detailed in [15]. The mapping
of the CSP events of a test case into the respective CNL elements produces a
test case suite that can be executed directly by a tester. In our approach, test
scenarios are yielded as counter-examples of refinement verifications using CSP
test purposes [14], which are CSP process representing a partial specification of
the test scenarios to be selected from a specification. We summarise how CSP
test purposes are used to generate test scenarios.

Let the processes ACCEPT , ANY and UNTIL be primitive test purposes
used in the construction of CSP test purposes. The process ACCEPT = accept →
STOP is used to mark test scenarios by communicating the mark event accept ,
which does not belong to the alphabet of the specification process. The primi-
tive ANY (evset ,next) = 2 ev : evset • ev → next performs basic selection.
It selects the events offered by the specification that belong to evset . If any of
these events is communicated, it behaves as next . Otherwise, it deadlocks. The
process UNTIL(alpha, evset ,next) = RUN (alpha \ evset) 4 ANY (evset ,next),

71

where alpha is the alphabet of the specification, selects all sequences offered by
the specification events until it engages in some event that belongs to evset .

The CSP sample test purpose TP1 = UNTIL(αS , {event}, ACCEPT) selects
test scenarios that reach the event event in a specification process S , such that
event ∈ αS . Consider the expression PP1 = S |[αS]|TP1 that represents the
parallel product between S and TP1. The refinement expression S vτ PP1
yields test scenarios as counter-examples, if there are test scenarios that match
TP1. The right-hand side of the expression behaves as the process S while the
event event is not communicated. After the communication of event , the accept
event is communicated and the composition deadlocks. Consequently, the traces
ending with accept belong to PP1 but not to T (S). Moreover, the verification
of this refinement using FDR does not hold and yields a test scenario as the
shortest counter-example trace.

In general, FDR yields only the shortest counter-example trace, thus, for
obtaining lengthier counter-examples it is necessary to run other verifications in
an interactive manner. Further details on interactive test generation approach,
and on case construction from test scenarios can be found in [15].

3 State-Based Use Case

The notation we propose for state-based use cases is introduced via a case study
that describes a feature of a 4G mobile phone. The grammar for this notation
is presented in [2]. The standards for mobile networking have evolved through
several generations: 2nd generation (2G), 3rd generation (3G), and 4th generation
(4G). A mobile phone has three configurations related to internet over the carrier
network: (i) the network mode defines which standard generation is being used;
(ii) the mobile data enables or disables the access to the internet over the carrier
network; and (iii) the wireless (wifi) enables or disables internet access over a
wireless router. The use cases described below introduce scenarios where these
configurations conflict with each other.

First, we introduce new types (Table 1). The type OnOff contains two val-
ues: On and Off, which are useful for variables that represent toggle switches.
The type NetworkModes contains all possible networking compatibility stan-
dards. The N 2G and N 3G values represent connection modes that operate
exclusively in a 2G and 3G network, respectively. The N 3G 2G network mode
works for both 3G and 2G networks, prioritizing the 3G connection, although
still attempting to connect to a 2G network whenever the 3G connection fails.
Analogously, the N 4G 3G mode works for both 4G and 3G network. Finally,
the N 4G 3G 2G network mode targets a 4G connection, but should work with
all previous generations in the described order. Our CNL also allows a new type
to be introduced either by indexing or from a base type. Indexing associates a
tag with the values defined in a range. For example, the construction Phone[1,3]
creates a new type composed of the values Phone.1, Phone.2 and Phone.3. A new
type can also be created by associating a tag to the elements of an existing type
(in general allowing disjoint unions). For instance, the new type Car.OnOff con-

72

tains the values Car.On and Car.Off. Table 1 also shows the declaration of the

New Type
Id Description Value

OnOff Type of a toggle switch On, Off
NetworkModes Types of network compatibilities N 2G, N 3G, N 3G 2G, N 4G 3G,

N 4G 3G 2G

Constants
Id Description Value

Non 4G Modes Set of non 4G modes {N 2G, N 3G, N 3G 2G}
All 4G Modes Set of 4G modes {N 4G 3G, N 4G 3G 2G}

Variables
Id Description VarType Value
selectedMode Network mode configuration NetworkModes N 3G 2G
mobileData Mobile data configuration OnOff On
wifi Wifi configuration OnOff Off

Table 1. Type, constant and variable declarations.

constants Non 4G Modes and All 4G Modes. The constant Non 4G Modes is
a set of NetworkModes that does not operate under 4G, while All 4G Modes is
the set complement of Non 4G Modes.

Variables are also declared in Table 1. The variable selectedMode is of type
NetworkModes and has an initial value of N 3G 2G. This variable stores the
configuration of the network mode of the mobile phone. The variables mobile-
Data and wifi are of type OnOff. When mobileData is On, the mobile phone
can access the internet over the carrier network, and, when the wifi is On, the
mobile phone can access the internet over a wireless router. The initial value of
the mobileData is On and the wifi is Off.

Table 2 shows, at the top, the header of the Use Case 01 (UC01). It declares
the use case title (Network Mode vs Mobile Data) and states that it includes
the Use Case 02 (UC02) at steps 3M and 4M. We explain how the include
works when introducing the UC02 in the sequel. The main flow specification of
UC01 is also shown in Table 2. A step is defined by an identifier (Step ID), the
user action (Action), the system state before the action is carried out (System
State), and the expected result (System Response). In Step 1M, the user disables
the mobile data. Regardless of the current system state, the device turns off
the mobile data. Internally, the variable mobileData is assigned to Off. The
notation between two occurrences of the symbol % is the subset of the CNL that
manipulates state changes, inputs and outputs. In Step 2M the user selects one of
the 4G network modes. The CNL sentence contained in the Action cell %Input
x : NetworkModes from All 4G Modes% takes an input from the user
and assigns it to the local variable x. The variable x is of type NetworkModes
restricted to the subset All 4G Modes. As the mobile data was disabled in Step
1M, the system does not allow this selection to be done. The sentence (%Output
x%) produces the value to replace the $ sign. Therefore, the message “$ is not
available while mobile data is off or wifi is on.” is displayed, where the $ sign
is replaced by the value of x. Step 3M enables the mobile data. No change is

73

made on the network mode (so, it remains N 3G 2G, the default value defined
in Table 1), but the variable mobileData is now On. Finally, Step 4M tries again
to set up a new network mode. This time, the system successfully assigns the
input x to the variable selectedMode. Table 3 shows the main flow of UC02.

UC01 - Network Mode vs Mobile Data
Include
Use Case Id Position

UC02 3M, 4M

Main Flow
Step Id Action System State System Response
1M Disable the mobile data. The device disables

the mobile data.
%mobileData := Off%

2M Manually select a network
mode containing the 4G option.
%Input x : NetworkModes
from All 4G Modes%

The warning “$ is not available
while mobile data is off or wifi
is on.” is displayed and the net-
work mode remains unchanged.
%Output x%

3M Enable the mobile data. The mobile data is enabled.
The selected network remains $.
%mobileData := On, Output
selectedMode%

4M Manually select a network
mode containing the 4G option.
%Input x : NetworkModes
from All 4G Modes%

The device selects the
new network mode : $
%selectedMode := x, Output
x%

Table 2. UC01 main flow.

This use case describes the scenario where the mobile phone makes a call, sends
an SMS (Short Message Service) and an MMS (Multimedia Messaging Service).
A call and the sending of an SMS do not require the internet to be turned on;
but an MMS does. The main flow assumes that the System State has either the
mobileData or the wifi (or both) enabled. In this case, the SMS and the MMS
are sent. Also, the call is made.

UC02 - Wifi and Mobile Data
Main Flow
Step Id Action System State System Response
1M Make a call, and send an

SMS and an MMS.
Either the wifi or the mo-
bile data is turned on.
%(mobileData==On) or
(wifi==On)%

The device makes the call
and sends both the SMS and
the MMS.

Alternative Flow
From: START
To: END
Step Id Action System State System Response
1M Make a call, and send an

SMS and an MMS.
Both the wifi and the mo-
bile data are turned off.
%(mobileData==Off) and
(wifi==Off)%

The device makes the
call and sends the SMS,
but is not able to send
the MMS.

Table 3. UC02 main and alternative flows.

74

The alternative flow is also described in Table 3. The control flow jumps
from the main flow START point, i.e. before step 1M happens, and returns to
the main flow END point, i.e. after 1M finishes. The alternative flow introduces
the scenario where no internet access is available, i.e the System State has both
the mobileData and the wifi off. As a result, the call is made and the SMS is
sent, but the MMS is not delivered.

The UC02 is included as part of the UC01. Table 2 shows an include dec-
laration at steps 3M and 4M. This means that the UC02 runs twice. Firstly, it
runs before step 3M and, once completed, it returns to UC01 to run step 3M.
In the second time, it runs before 4M followed by the execution of 4M. So, the
UC01 executes the following steps: 1M, 2M, UC02, 3M, UC02, and 4M.

4 Automatic Generation of CSP Test Models

This section describes our approach for generating CSP test models from use
cases. The process which yields a CSP model is split in three steps. First, the
syntax of the CNL is checked; second, an XML representing the use cases is
generated; and finally, the CSP test model that represents the use case document
is yielded. We further detail these steps in what follows.

Validating Use Case Documents Our use cases are described as part of
a fix tabular template where its structure is well formed by construction. So
part of the syntactical structure of the use cases does not need to be checked.
However, we still need to verify the well-formedness of the CNL embedded in
the template. So we built a parser and a type checker to carry out syntactic and
semantic analysis and point out errors to the user. If no errors are reported, the
process continues and we move on to the second step.

Building an XML Representation A use case is translated into an inter-
mediate format as an XML file because it does not dependent on any formal
notation. This simplifies future developments by giving the flexibility to use al-
ternative formalisms for test generation. Figure 2 illustrates a portion of the
XML schema for defining new types. The type OnOff is described in Figure 2 as
an enumeration. Note that each field in Table 1 becomes a tag in XML.

Generating the CSP Model The final step yields the CSP test model, where
each use case is modelled as a CSP process. Accordingly, every use case flow is
also modelled as a process. If the use cases declare variables, then an additional
CSP process that works as a RAM memory is created. In what follows we present
the translation of some elements of the example introduced in Section 3.

The types, the constants and the variables declared in Table 1 are translated
into CSP as shown in Figure 3.
The variables are mapped into a datatype Var (line 01). New types are mapped
into the datatype Type (line 02), which is the disjoint union of all types. Each
type is declared by a tag that identifies the type followed by the separator ”.” and
the respective set of values (line 02). The values for the types are mapped into
CSP datatypes (lines 04 and 05). For instance, t1.On and t1.Off are instances

75

<newType>

<id>OnOff</id>

<description>Type of a toggle switch</description>

<newTypeElements>

<enumeration>

<element>On</element>

<element>Off</element>

</enumeration>

</newTypeElements>

</newType>

Fig. 2. The XML for the new type OnOff.

01 datatype Var = wifi | mobileData | selectedMode
02 datatype Type = t1.t OnOff | t2.t NetworkModes
03
04 datatype t OnOff = On | Off
05 datatype t NetworkModes = N 2G | N 3G | N 3G 2G | N 4G 3G
06
07 Non 4G Modes = {(N 2G), (N 3G), (N 3G 2G)}
08 All 4G Modes = {(N 4G 3G), (N 4G 3G 2G)}
09
10 INIT = {(wifi , t1.Off), (mobileData, t1.On), (selectedMode, t2.N 3G 2G)}
11
12 channel get , set : Var .Type

Fig. 3. CSP model for data definitions.

of the type t1. Each constant is mapped to a constant in CSP (lines 07 and 08).
The initial binding for the variables (Table 1) is defined as a set of pairs (variable
name, initial value) named INIT (line 10). The channels get and set (line 12)
communicate variable names and values. These channels are used to read the
value of a variable from the memory and to update a value of a variable to the
memory, respectively. For instance, the event set .mobileData.t1.Off stores Off
into the variable mobileData. Figure 4 shows the translation of the UC01.

The control flow is defined by the process F1 FLOW in Figure 4 (line 3), which
behaves as the process UC 1 1M . The process UC 1 1M models the step 1M of
the use case UC01 (compare this process with the step 1M shown in Table 2).
The event disableData represents the user action and the event dataDisabled
is the system response. The event set !mobileData!t1!Off updates the variable
mobileData to the value Off . The event mem update is a flag that indicates
that a memory update has happened (this is used by the test purposes de-
scribed in Section 5). The process UC 1 1M behaves as SKIP followed by the
behaviour of process UC 1 2M , which models the behaviour for the step 2M.
The process UC 1 2M uses the channels input and showNotAvailable (lines 07
and 08) to specify the values given as input, and the output value produced

76

01 channel input , showNotAvailable, showMode,modeChanged : t NetworkModes
02
03 F1 FLOW = UC 1 1M
04
05 UC 1 1M = disableData → dataDisabled → set !mobileData!t1!Off →
06 mem update → SKIP ; UC 1 2M
07 UC 1 2M = selectMode → input?x : {e | e ∈ 4G Modes} →
08 showNotAvailable!x → SKIP ; UC 1 3M
09 UC 1 3M = UC 2; get !selectedMode.t2?selectedMode → enableData →
10 showMode!selectedMode → set !mobileData!t1!On →
11 mem update → SKIP ; UC 1 4M
12 UC 1 4M = UC 2; selectMode → input?x : {e | e ∈ 4G Modes} →
13 modeChanged !x → set !selectedMode!t2!x → mem update → SKIP

Fig. 4. CSP model for use case UC01.

by the system. The notation ? in input?x : {e | e ∈ 4G Modes} denotes the
value to be communicated is a choice of the environment. The process UC 1 3M
initially behaves as the process UC 2 that specifies the behaviour of the use case
UC01 (due to inclusion). Then, it reads from the memory the current value for
the variable selectedMode (get !selectedMode!t2?selectedMode), which is commu-
nicated by the channel showMode as the system response (line 10). The process
UC 1 4M starts at UC01 because of the use case inclusion. Then it takes as
input one of the 4G modes and outputs it through the channel modeChanged .
The memory for selectedMode is updated and the process terminates succesfully
(SKIP). We omit the model for UC02 due to space limitations.

The top-level process for the feature described in Section 3 is specified by
the process F1, as follows.

F1 = ((F1 FLOW ; END1)
|[| αF1 MEMORY ∪ {success} |]|
(F1 MEMORY 4 END2)) \ (αF1 MEMORY ∪ {success})

This process is the parallel composition of the control flow F1 FLOW and the
respective memory process F1 MEMORY synchronising on the alphabet of the
memory plus the control event success. The process F1 MEMORY provides two
services: the current value of a variable can be retrieved via the get event; and
a new value of a variable can be stored via the set event. Furthermore, for each
event in the form get .var .type.val , there is a copy get ′.var .type.val event, which
is used for the purpose of test selection (see Section 5). The auxiliary process
END1 = willsucc → success → SKIP is used to flag successful termination via
the willsucc event whenever a use case in F1 FLOW terminates. This process
allows the successful termination of the process F1 FLOW by synchronising
with the event success that is offered by the auxiliary process END2 = success →
SKIP , which interrupts the memory process whenever a use case in F1 FLOW
terminates. Finally, the control events (αF1 MEMORY and success) are hidden.

77

5 State-Based Test Purposes

We present the notation for authoring state-based test purposes. This language
enables the partial specification of test scenarios based on the use case steps
and states of the use case variables. New constructs have been added into the
language to specify the selection of steps. State conditions are specified using
boolean expressions. Each construct of the language is automatically translated
to a CSP process that represents a test purpose, which is used for test generation
in the way presented in Section 2. Thus, CSP notation is again hidden from the
test designer. Table 4 presents the constructs for the test purposes notation (col-
umn Test Purpose) and the CSP processes that specify the constructs (column
CSP Test Purpose).

Test Purpose CSP Test Purpose

01 next stepId [,TP] ANY ({act},UNTIL(αS , {res},T (TP)))

02 not stepId [,TP] ANY (AI \ {act},T (TP))

03 stepId [,TP] UNTIL(αS , {res},T (TP))

04 guard [,TP] GUARD = get ′.var1?var1 → . . .→ get ′.varN ?varN →
if (eval(guard)) then T (TP)
else UNTIL(αS , {mem update},GUARD)

05 STOP UNTIL(αS , {mem update},
get ′.var1?var1 → . . .→ get ′.varN ?varN →
ACCEPT)

06 SUCCESS willsucc → T (STOP)

07 TP1 OR TP2 T (TP1) 2 T (TP2)

08 TP1 AND TP2 T (TP1) |[αS ∪ {accept}]|T (TP2)

Table 4. CSP model for test purposes.

Table 4 line 1 introduces the next construct that specifies test scenarios ini-
tiating with the step stepId . The notation f#uc#step is used to define stepId .
This notation represents the full identification for a step whose id is step, and be-
longs to the use case uc of the feature f. For instance, F1#UC01#2M represents
the step 2M of the use case UC1 that belongs to the feature F1 (in Section 3).
Let the set αS stand for the alphabet of the specification, and act and res CSP
events that represent the action and the system response of the step stepId , re-
spectively. The CSP model for this construct is defined in terms of the primitive
test purposes ANY and UNTIL introduced in Section 2. After matching act ,
the test purpose accepts any event until it finds res. This guarantees that the
events between act and res are in the test scenario. In Table 4, T (TP) stand
for the CSP model for a test purpose TP. What the test purpose selects after
the event res is (optionally) defined by a test purpose TP. If TP (preceded by a
comma) is absent, it is implicitly assumed that TP is STOP (Table 4, line 5).

A test purpose in the form not stepId ,TP (line 2 in Table 4) selects test
scenarios that initiate with any step, except the step stepId . This constructor is

78

complementary to the previous one. The CSP model for this construct selects
any event in the input alphabet but act . The subsequent events are specified by
TP. A step stepId not preceded by any construct (line 3), specifies test scenarios
that reach the system response of stepId , which can be preceded by any other
steps. The steps subsequent to step stepId are specified by TP.

Line 4 in Table 4 shows a state-based test purpose of the form guard ,TP ,
where guard is a boolean expression that refers to the feature variables. The
notation for describing such an expression is the same introduced in Section 3
for describing system conditions. Test scenarios in which guard is evaluated to
true are the ones to be selected. The CSP model for guard ,TP initially reads
the current values of the variables using get ′ events, then evaluates the guard.
If the guard holds, the selection continues according to TP; otherwise, the test
purpose looks for a memory update event (to guarantee that the state changed)
and the process recurses.

The test purpose STOP (Table 4, line 5) reads all variable values and includes
a mark event. Its CSP model looks for a memory update event; after that it reads
the variables in order to record their values at the end of the test scenarios.
Finally, it behaves as ACCEPT (introduced in Section 2).

The test purpose SUCCESS (line 6) selects test scenarios that terminate
successfully: those for which the CSP model communicates a X event. The CSP
model synchronises on the event willsucc that flags that the use case will termi-
nate, then it behaves as T (STOP).

The last two constructs in Table 4 (lines 7 and 8) enable test purposes to be
combined. Let TP1 and TP2 be test purposes. The expression TP1 OR TP2 spec-
ifies the set of test scenarios that match TP1 plus the ones that match TP2. The
CSP model is the external choice of the model for TP1 with the model for TP2.
Remember that the parallel product (see Section 2) is the parallel composition of
a test purpose TP with the specification S . According to the laws of CSP, we have
that S |[. . .]|T (TP1) 2 T (TP2) equals S |[. . .]|T (TP1) 2 S |[. . .]|T (TP2),
whose semantics is the union of T (S |[. . .]|T (TP1)) with T (S |[. . .]|T (TP2)).
The expression TP1 AND TP2 specifies test scenarios that are common to
TP1 and TP2. The CSP model for this expression is the parallel composition
T (TP1) |[. . .]|T (TP2), whose semantics is T (T (TP1)) ∩ T (T (TP2)). Conse-
quently, this composition selects traces that are common to both test purposes.

As an example, consider the CNL test purpose TP2 = (mobileData == Off),
F1#UC1#2M that selects test scenarios for which the value of the variable
mobileData equals Off and that terminates in the step F1#UC1#2M, such that
TP2 is the test purpose identifier (an abbreviation for mobileData == Off, . . .).
Thus, the CSP model for this test purpose is characterised by the processes that

79

follow.

TP2 = get ′.mobileData?v → if (v == t1.Off) then TP3
else UNTIL(αF1, {mem update},TP2)

TP3 = UNTIL(αF1, {| showNotAvailable |},T (STOP))

T (STOP) = UNTIL(αF1, {mem update}, get ′.wifi?v1 →
get ′.mobileData?v2 → get ′.selectedMode?v3 → ACCEPT)

Let PP2 = F1 |[αF1]|TP2 be the parallel product between F1 and TP2. The
shortest test scenario yielded by the verification of the refinement expression
F1 \ {mem update} vτ PP2 \ {mem update} is presented in the sequel,
namely ts. The hiding of the control event mem update removes such an event
from the yielded test scenarios.

ts = 〈 get ′.mobileData.t1.On, disableData, dataDisable,
get ′.mobileData.t1.Off , selecteMode, input .N 4G 3G ,
showNotAvailable.N 4G 3G , get ′.wifi .t1.Off ,
get ′.mobileData.t1.Off , get ′.selectedMode.t2.N 3G 2G , accept〉

As expected, the get ′ events in the end of ts show that mobileData equals Off
after the system output in F1#UC01#2M (event showNotAvailable.N 4G 3G).
The events in ts are translated to CNL counterparts with the reverse mapping
from CNL to CSP used in Section 4 for generating the CSP model. This yields
a CNL test case that is used for manual execution.

6 Tool support

This section presents an overview of the TaRGeT tool with the necessary exten-
sions to mechanise the entire strategy described in this paper, and, particularly,
it gives a short demonstration of how the authoring of state-based use cases and
test purposes is supported by the tool.

TaRGeT is developed using Java [16] and Eclipse RCP [13] with the idea
to aggregate different capabilities in separate implementation units called plug-
ins. A new plugin was added to support the new GUI interfaces for authoring
state-based use cases and CNL test purpose . It also comprises a compiler that
validates the CNL notation and translates from CNL to CSP, and a test gener-
ator component which calls FDR to generate test cases.

Data Definition Editor Figure 5 shows the interface of the data definition
editor, created to assist the test designer in the task of authoring data in our use
case template. Several verifications are performed during the edition as syntactic
and semantic checks to report errors.

Test Purpose Generation TaRGeT has also been extended to consider state-
based test purposes. Figure 6 illustrates the interface which allows the definition

80

of test purposes. Each test purpose is given a unique identifier. This allows the
user to create new test purposes composed of previously defined ones.

Fig. 5. The data definition editor. Fig. 6. Test purpose creation

After the user finishes editing test purposes, the extended version of TaRGeT
converts use cases to XML, which is translated to CSP as detailed in Section 4.
Test purposes, after syntactic and semantic checks, are converted directly to CSP
processes that are used for generating test scenarios as explained in Section 5.
Finally, test scenarios are translated to test cases for test execution.

7 Conclusion

Use cases are widely used in industry in consolidated approaches to requirements
specification. A use case specification typically describes, in the form of an event
flow, in natural language, interactions between the user and the system. Unfor-
tunately, natural language is hard to analyse and to process. In this work, we
have proposed an approach to specify use cases in a Controlled Natural Lan-
guage. Our use cases are able to specify both control flow and data aspects. The
control flow is captured via the tabular structure of our use cases in addition
to commands that take the flow to alternative, inclusion and extension of use
cases. The data flow is embedded in the use case specification via the CNL for
manipulating inputs, outputs and state variables.

Both control and data constructs are translated into a CSP model. By adopt-
ing CSP we can take advantage of tools like FDR to mechanise test generation,
which is carried out as a process refinement computation: the counter-example
produced by FDR is used to build a test case. In order to select and control
which test cases should be generated, we have also shown how the CNL can be
used to specify test purposes, which are also translated into CSP; once it runs in
parallel with the CSP translation of the use cases, it automatically selects which
test cases are produced. A tool fully integrated with FDR has been developed
for use case editing and test case generation using test purposes.

Traditionally, automatic test case generation is carried out from formal lan-
guages that are typically not mastered by test designers; therefore this demands

81

extra effort in the testing process: the test designer needs to translate the re-
quirements to the formal language and the test cases produced back to another
format (either natural language or a programming language). With a Controlled
Natural Language embedded on a widely used requirements artifact, such as use
cases, we conceal the formal aspects of test case generation.

Several works have proposed approaches to generate formal specifications
from requirements to solve the problem of ambiguous, imprecise and unclear
specifications [4, 8, 20–22]. However, differently from our approach, the formal
notations used are not a process algebra, their formal models are not used with
the purpose of test derivation, and the input, output and state are not analysed
and processed as we do. For instance, Schwitter and Fuchs [20] propose a Con-
trolled Natural Language that resembles a formal specification in logic and that
can be translated to Prolog [24]. The notions of input, output and state that may
appear in the CNL are translated as Prolog facts and not processed as part of
a state based requirements. Similarly, Sinha et al. [21] analyse use cases for the
purpose of edit-time, instantaneous inspection of their style and content. Inputs,
outputs, and states are not processed as part of a system, but as part of a text
to be checked for completeness, structure, flow, dependencies, etc. Some other
works introduce approaches for test case generation from requirements described
in a variety of notations [3, 5, 7, 23, 6]. Requirements are translated to a model
that is used as the input for test generation. For instance, Carvalho et al. [7]
introduce an approach for the generation of test vectors from a Controlled Natu-
ral Language that captures temporal requirements for the domain of controlling
systems. Transition relations are used as the formal specification language. Somé
and Cheng [23] take as input use cases written in natural language with a well
defined syntax. Similarly to our work, their approach allows the use of step flows,
condition and operations within the test cases. However, there is no notion of
inputs and outputs and it is only possible to use data types provided by default.
New types cannot be created by the user as in our approach. Another related
approach is [6] that generates test cases for control system based on a natural
language that supports timed reactive system. None of these approaches allow
the specification of the test purposes in a Controlled Natural Language.

As future work, we intend to investigate how to produce executable test
cases, particularly for the UIAutomator framework [1]. We also plan to explore
the use of compression techniques of FDR and analyse efficiency gains in refine-
ment verification. Concerning scalability, as a future work we plan to apply our
strategy to more complex systems.

References

1. Android Developers: UIAutomator.
(2015), https://developer.android.com/tools/testing-support-library/index.html

2. Bezerra, R.: Extração Automática de Modelos CSP a partir de Casos de Uso.
Master’s thesis, Center of Informatics of Federal University of Pernambuco (2011)

3. Boddu, R et al.: RETNA: From requirements to testing in a natural way. In:
Proceedings of the RE 2004. pp. 262–271. IEEE, Washington, DC, USA (2004)

82

4. Brottier, E., Baudry, B., Traon, Y.L., Touzet, D., Nicolas, B.: Producing a global
requirement model from multiple requirement specifications. In: Proceedings of the
11th EDOC. pp. 390–. EDOC ’07, IEEE, Washington, DC, USA (2007)

5. C Nebut et al.: Automatic test generation: a use case driven approach. IEEE
Transactions on Software Engineering 32(3), 140–155 (2006)

6. Carvalho, G. et al.: Test case generation from natural language requirements based
on scr specifications. In: Proceedings of the 28th Annual ACM Symposium on
Applied Computing. pp. 1217–1222. SAC ’13, ACM, New York, NY, USA (2013)

7. Carvalho, G. et al.: Model-based testing from controlled natural language require-
ments. In: Artho, C., Ölveczky, P.C. (eds.) Formal Techniques for Safety-Critical
Systems, CCIS, vol. 419, pp. 19–35. Springer International (2014)

8. Drazan, J., Mencl, V.: Improved processing of textual use cases: Deriving behav-
ior specifications. In: SOFSEM 2007: Theory and Practice of Computer Science,
LNCS, vol. 4362, pp. 856–868. Springer Berlin Heidelberg (2007)

9. Ferreira, F., Neves, L., Silva, M., Borba, P.: TaRGeT: a Model Based Product Line
Testing Tool. In: Proceedings of CBSoft 2010 — Tools Panel (2010)

10. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 17 A
Modern Refinement Checker for CSP. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems. pp. 187–201 (2014)

11. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
12. Jard, C., Jéron, T.: TGV: theory, principles and algorithms: A tool for the auto-

matic synthesis of conformance test cases for non-deterministic reactive systems.
International Journal of Software Technology Transfer 7(4), 297–315 (2005)

13. McAffer, Jeff et al.: Eclipse Rich Client Platform: Designing, Coding, and Packag-
ing Java(TM) Applications. Addison-Wesley Professional (2005)

14. Nogueira, S., Sampaio, A., Mota, A.: Guided Test Generation from CSP Models.
In: Proceedings of the 5th ICTAC. pp. 258–273. Springer, Berlin, Heidelberg (2008)

15. Nogueira, S., Sampaio, A., Mota, A.: Test generation from state based use case
models. Formal Aspects of Computing 26(3), 441–490 (2014)

16. Oracle: Java JSE. http://www.oracle.com/ (July 2015)
17. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR (1998)
18. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science,

Springer (2010)
19. Santiago Júnior, V.A.D., Vijaykumar, N.L.: Generating model-based test cases

from natural language requirements for space application software. Software Qual-
ity Journal 20(1), 77–143 (Mar 2012)

20. Schwitter, R., Fuchs, N.E.: Attempto - from specifications in controlled natural
language towards executable specifications. CoRR cmp-lg/9603004 (1996)

21. Sinha, A., Jr., S.M.S., Paradkar, A.: Text2test: Automated inspection of natural
language use cases. In: Proceedings of the ICST 2010. pp. 155–164. ICST ’10, IEEE
Computer Society, Washington, DC, USA (2010)

22. Somé, S.S.: Supporting use case based requirements engineering. Information and
Software Technology 48(1), 43 – 58 (2006)

23. Somé, S.S., Cheng, X.: An approach for supporting system-level test scenarios
generation from textual use cases. In: Proceedings of SAC 2008. pp. 724–729. ACM,
New York, NY, USA (2008)

24. Sterling, L., Shapiro, E.: The Art of Prolog. MIT Press, Cambridge, Massachusetts
(1986)

25. Veanes, M., Campbell, C., Schulte, W., Tillmann, N.: Online testing with model
programs. In: Proceedings of the 10th European software engineering conference.
pp. 273–282. ESEC/FSE-13, ACM, New York, NY, USA (2005)

83

A Mechanized Textbook Proof of a
Type Unification Algorithm

Rodrigo Ribeiro1 and Carlos Camarão2

1 Universidade Federal de Ouro Preto, João Monlevade, Minas Gerais, Brazil
rodrigo@decsi.ufop.br,

2 Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
camarao@dcc.ufmg.br

Abstract. Unification is the core of type inference algorithms for mod-
ern functional programming languages, like Haskell. As a first step to-
wards a formalization of a type inference algorithm for such programming
languages, we present a formalization in Coq of a type unification algo-
rithm that follows classic algorithms presented in programming language
textbooks.

1 Introduction

Modern functional programming languages like Haskell [1] and ML [2] provide
type inference to free the programmer from having to write (almost all) type
annotations in programs. Compilers for these languages can discover missing
type information through a process called type inference [3].

Type inference algorithms are usually divided into two components: con-
straint generation and constraint solving [4]. For languages that use ML-style
(or parametric) polymorphism, constraint solving reduces to first order unifica-
tion.

A sound and complete algorithm for first order unification is due to Robin-
son [5]. The soundness and completeness proofs have a constructive nature, and
can thus be formalized in proof assistant systems based on type theory, like
Coq [6] and Agda [7]. Formalizations of unification have been reported before
in the literature [8–11] using different proof assistants, but none of them follows
the style of textbook proofs (cf. e.g. [12, 13]).

As a first step towards a full formalization of a type inference algorithm for
Haskell, in this article, we describe an axiom-free formalization of type unification
in the Coq proof assistant, that follows classic algorithms on type systems for
programming languages [12, 13]. The formalization is “axiom-free” because it
does not depend on axioms like function extensionality, proof irrelevance or the
law of the excluded middle, i.e. our results are integrally proven in Coq.

More specifically, our contributions are:

1. A mechanization of a termination proof as it can be found in e.g. [12, 13]. In
these books, the proof is described as “easy to check”. In our formalization, it
was necessary to decompose the proof in several lemmas in order to convince
Coq’s termination checker.

84

2. A correct by construction formalization of unification. In our formalization
the unification function has a dependent type that specifies that unification
produces the most general unifier of a given set of equality constraints, or a
proof that explains why this set of equalities does not have a unifier (i.e. our
unification definition is a view [14] on lists of equality constraints).

We chose Coq to develop this formalization because it is an industrial strength
proof assistant that has been used in several large scale projects such as a Cer-
tified C compiler [15], a Java Card platform [16] and on verification of mathe-
matical theorems (cf. e.g. [17, 18]).

The rest of this paper is organized as follows. Section 2 presents a brief in-
troduction to the Coq proof assistant. Section 3 presents some definitions used
in the formalization. Section 4 presents the unification algorithm. Termination,
soundness and completeness proofs are described in Sections 4.1 and 4.2, respec-
tively. Section 5 presents details about proof automation techniques used in our
formalization. Section 6 presents related work and Section 7 concludes.

While all the code on which this paper is based has been developed in Coq,
we adopt a “lighter” syntax in the presentation of its code fragments. In the
introductory Section 2, however, we present small Coq source code pieces. We
chose this presentation style in order to improve readability, because functions
that use dependently typed pattern matching require a high number of type
annotations, that would deviate from our objective of providing a formalization
that is easy to understand. For theorems and lemmas, we sketch the proof strat-
egy but omit tactic scripts. The developed formalization was verified using Coq
version 8.4 and it is available online [19].

2 A Taste of Coq Proof Assistant

Coq is a proof assistant based on the calculus of inductive constructions (CIC)
[6], a higher order typed λ-calculus extended with inductive definitions. Theorem
proving in Coq follows the ideas of the so-called “BHK-correspondence”3, where
types represent logical formulas, λ-terms represent proofs [20] and the task of
checking if a piece of text is a proof of a given formula corresponds to checking
if the term that represents the proof has the type corresponding to the given
formula.

However, writing a proof term whose type is that of a logical formula can be
a hard task, even for very simple propositions. In order to make the writing of
complex proofs easier, Coq provides tactics, which are commands that can be
used to construct proof terms in a more user friendly way.

As a tiny example, consider the task of proving the following simple formula
of propositional logic:

(A→ B)→ (B → C)→ A→ C

3 Abbreviation of Brouwer, Heyting, Kolmogorov, de Bruijn and Martin-Löf Corre-
spondence. This is also known as the Curry-Howard “isomorphism”.

85

In Coq, such theorem can be expressed as:

Section EXAMPLE.

Variables A B C : Prop.

Theorem example : (A -> B) -> (B -> C) -> A -> C.

Proof.

intros H H’ HA. apply H’. apply H. assumption.

Qed.

End EXAMPLE.

In the previous source code piece, we have defined a Coq section named EXAMPLE4

which declares variables A, B and C as being propositions (i.e. with type Prop).
Tactic intros introduces variables H, H’ and HA into the (typing) context, re-
spectively with types A -> B, B -> C and A and leaves goal C to be proved.
Tactic apply, used with a term t, generates goal P when there exists t: P -> Q

in the typing context and the current goal is Q. Thus, apply H’ changes the goal
from C to B and apply H changes the goal to A. Tactic assumption traverses the
typing context to find a hypothesis that matches with the goal.

We define next a proof of the previous propositional logical formula that, in
contrast to the previous proof, that was built using tactics (intros, apply and
assumption), is coded directly as a function:

Definition example ’ : (A -> B) -> (B -> C) -> A -> C :=

fun (H : A -> B) (H’ : B -> C) (HA : A) => H’ (H HA).

However, even for very simple theorems, coding a definition directly as a Coq
term can be a hard task. Because of this, the use of tactics has become the
standard way of proving theorems in Coq. Furthermore, the Coq proof assistant
provides not only a great number of tactics but also a domain specific language
for scripted proof automation, called Ltac. In this work, the developed proofs
follow the style advocated by Chlipala [21], where most proofs are built using
Ltac scripts, to automate proof steps and make them more robust. Details about
Ltac can be found in [21, 6].

3 Definitions

3.1 Types

We consider a language of simple types formed by type variables, type constants
(also called type constructors) and functional types given by the following gram-
mar:

τ ::= α | c | τ → τ

where α stands for a type variable and c a type constructor. All meta-variables
(τ, α and c) can appear primed or subscripted and as usual we consider that →
associates to the right.

Identifiers for variables and constructors are represented as natural numbers,
following standard practice in formalized meta-theory [22, 23]. We are aware that

4 In Coq, we can use sections to delimit the scope of local variables.

86

choosing this representation of types is not adequate to represent Haskell’s types,
since it does not allow the occurrence of n-ary type constructors. Using n-ary
type constructors will only clutter definitions due to the need of using kinds5.
Since the presence of kind information is orthogonal to unification, we prefer to
omit it in order to clarify definitions and proofs.

The list of type variables of type τ is denoted by FV(τ).
The size of a given type τ , given by the number of arrows, type variables

and constructors in τ , is denoted by size(τ). Formally:

size(τ1 → τ2) = 1 + size(τ1) + size(τ2)
size(τ) = 1 otherwise (τ = α or τ = c, for some α, c)

We let τ1
e
= τ2 denote the equality constraint between two types τ1 and τ2.

Lists of equality constraints are represented by meta-variable C. We use the
left-associative operator :: for constructing lists: a :: x denotes the list formed
by head a and tail x.

The definition of free type variables for constraints and their lists are defined
in a standard way and the size of constraints and constraint lists are defined as
the sum of their constituent types. The following simple lemmas will be later
used to establish termination of the unification algorithm, defined in Section 4.

Lemma 1 For all types τ1, τ
′
1, τ2, τ

′
2 and all lists of constraints C we have that:

size((τ1
e
= τ ′1) :: (τ2

e
= τ ′2) :: C) < size((τ1 → τ2

e
= τ ′1 → τ ′2) :: C)

Proof. Induction over C using the definition of size.

Lemma 2 For all types τ, τ ′ and all lists of constraints C we have that

size(C) < size((τ
e
= τ ′) :: C)

Proof. Induction over τ and case analysis over τ ′, using the definition of size.

3.2 Substitutions

Substitutions are functions mapping type variables to types. For convenience,
a substitution is considered as a finite mapping [α1 7→ τ1, ..., αn 7→ τn], for
i = 1, . . . , n, which is also abbreviated as [α 7→ τ] (α and τ denoting sequences
built from sets {α1, ..., αn} and {τ1, ..., τn}, respectively). Meta-variable S is used
to denote substitutions.

In our formalization, a mapping [α 7→ τ] is represented as a pair of a variable
and a type. Substitutions are represented as lists of mappings, taking advantage

5 Kinds classify type expressions in the same way as types classify terms. More details
about the use of kinds and high-order operators can be found in [13].

87

of the fact that a variable never appears twice in a substitution. The domain of
a substitution, denoted by dom(S), is defined as:

dom(S) = {α |S(α) = τ, α 6= τ}
Following [10], we define substitution application in a variable-by-variable

way; first, let the application of a mapping [α 7→ τ ′] to τ be defined by recursion
over the structure of τ :

[α 7→ τ ′] (τ1 → τ2) = ([α 7→ τ ′] τ1)→ ([α 7→ τ ′] τ2)
[α 7→ τ ′]α = τ ′

[α 7→ τ ′] τ = τ otherwise (τ = α′ for some α′ 6= α, or
τ = c for some c)

Next, substitution application follows by recursion on the number of map-
pings of the substitution, using the above defined application of a single mapping:

S(τ) =

{
τ if S = []
S′([α 7→ τ ′] τ) if S = [α 7→ τ ′] :: S′

Application of a substitution to an equality constraint is defined in a straight-
foward way:

S (τ
e
= τ ′) = S(τ)

e
= S(τ ′)

In order to maintain our development on a fully constructive ground, we
use the following lemma, to cater for proofs of equality of substitutions. This
lemma is used to prove that the result of the unification algorithm yields the
most general unifier of a given set of types.

Lemma 3 For all substitutions S and S′, if S(α) = S′(α) for all variables α,
then S(τ) = S′(τ) for all types τ .

Proof. Induction over τ , using the definition of substitution application.

Substitutions and types are subject to well-formedness conditions, described
in the next section.

3.3 Well-Formedness Conditions

Now, we consider notions of well-formedness with regard to types, substitutions
and constraints. These notions are crucial to give simple proofs for termination,
soundness and completeness of the unification algorithm.

Well-formed conditions are expressed in terms of a type variable context,
V, that contains, in each step of the execution of the unification algorithm, the
complement of the set of type variables that are in the domain of the unifier. This
context is used to formalize some notions that are assumed as immediate facts in
textbooks, like: “at each recursive call of the unification algorithm, the number
of distinct type variables occurring in constraints decreases” or “after applying
a substitution S to a given type τ , we have that FV (S(τ)) ∩ dom(S) = ∅”.

We consider that:

88

– A type τ is well-formed in V, written as wf (V, τ), if all type variables that
occur in τ are in V.

– A constraint τ1
e
= τ2 is well-formed, written as wf (V, τ1 e

= τ2), if both τ1 and
τ2 are well-formed in V.

– A list of constraints C is well-formed in V, written as wf (V,C), if all of its
equality constraints are well-formed in V.

– A substitution S = {[α 7→ τ]} :: S′ is well-formed in V, written as wf (V, S),
if the following conditions apply:
• α ∈ V
• wf (V − {α}, τ)
• wf (V − {α}, S′)

The requirement that type τ is well-formed in V − {α} is necessary in order
for [α 7→ τ] to be a well-formed substitution. This avoids cyclic equalities that
would introduce infinite type expressions.

The well-formedness conditions are defined as recursive Coq functions that
compute dependent types from a given variable context and a type, constraint
or substitution.

A first application of these well-formedness conditions is to enable a simple
definition of composition of substitutions. Let S1 and S2 be substitutions such
that wf (V, S1) and wf (V−dom(S1), S2). The composition S2 ◦S1 can be defined
simply as the append operation of these substitutions:

S2 ◦ S1 = S1 ++ S2

The idea of indexing substitutions by type variables that can appear in its do-
main and its use to give a simple definition of composition was proposed in [10].

We say that a substitution S is more general than S′, written as S ≤ S′, if
there exists a substitution S1 such that S′ = S1 ◦ S.

The definition of composition of substitutions satisfies the following theorem:

Theorem 1 (Substitution Composition and Application) For all types τ
and all substitutions S1, S2 such that wf (V, S1) and wf (V−dom(S1), S2) we have
that (S2 ◦ S1) (τ) = S2(S1(τ)).

Proof. By induction over the structure of S2.

3.4 Occurs Check

Type unification algorithms use a well-known occurs check in order to avoid
the generation of cyclic mappings in a substitution, like [α 7→ α → α]. In the
context of finite type expressions, cyclic mappings do not make sense. In order
to define the occurs check, we first define a dependent type, occurs(α, τ), that
is inhabited6 only if α ∈ FV(τ):

6 According to the BHK-interpretation, a type is inhabited only if it represents a logic
proposition that is provable.

89

occurs(α, τ1 → τ2) = occurs(α, τ1) ∨ occurs(α, τ2)
occurs(α, α) = True

occurs(α, τ) = False otherwise
i.e. if τ = α′ for some α′ 6= α or τ = c for some c

Coq types True and False are the unit and empty type7, respectively. Note
that occurs(α, τ) is provable if and only if α ∈ FV(τ).

Using type occurs, decidability of the occurs check can be established, by
using the following theorem:

Lemma 4 (Decidability of occurs check) For all variables α and all types
τ , we have that either occurs(α, τ) or ¬ occurs(α, τ) holds.

Proof. Induction over the structure of τ .

If a variable α does not occur in a well-formed type, this type is well-formed
in a variable context where α does not occur. This simple fact is an important
step used to prove termination of unification. The next lemmas formalize this
notion.

Lemma 5 For all variables α1, α2 and all variable contexts V, if α1 ∈ V and
α2 6= α1 then α1 ∈ (V − {α2}).

Proof. Induction over V.

Lemma 6 Let τ be a well-formed type in a variable context V and let α be a
variable such that ¬occurs(α, τ). Then τ is well-formed in V − {α}.

Proof. Induction on the structure of τ , using Lemma 5 in the variable case.

4 The Unification Algorithm

We use the following standard presentation of the first-order unification algo-
rithm, where τ ≡ τ ′ denotes a decidable equality test between τ and τ ′:

Our formalization differs from the presented algorithm (Figure 1) in two
aspects:

– Since this presentation of the unification algorithm is general recursive, i.e.,
the recursive calls aren’t necessarily made on structurally smaller arguments,
we need to define it using recursion on proofs that unify ’s arguments form
a well-founded relation [6].

7 In type theory terminology, the unit type is a type that has a unique inhabitant and
the empty type is a type that does not have inhabitants. Under BHK-interpretation,
they correspond to a true and false propositions, respectively [20].

90

(1) unify([]) = []

(2) unify((α
e
= α) :: C) = unify(C)

(3) unify((α
e
= τ) :: C) = if occurs(α, τ) then fail else unify([α 7→ τ]C) ◦ [α 7→ τ]

(4) unify((τ
e
= α) :: C) = if occurs(α, τ) then fail else unify([α 7→ τ]C) ◦ [α 7→ τ]

(5) unify((τ1 → τ2
e
= τ → τ ′) :: C) = unify((τ1

e
= τ) :: (τ2

e
= τ ′) :: C)

(6) unify((τ
e
= τ ′) :: C) = if τ ≡ τ ′ then unify(C) else fail

Fig. 1. Unification algorithm.

– Instead of returning just a substitution that represents the argument con-
straint unifier, we return a proof that such substitution is indeed its most
general unifier or a proof explaining that such unifier does not exist, when
unify fails.

These two aspect are discussed in Sections 4.1 and 4.2, respectively.
It is worth mentioning that there are some Coq extensions that make the def-

initions of general recursive functions and functions defined by pattern matching
on dependent types easier, namely commands Function and Program, respec-
tively. However, according to [24], these are experimental extensions. Thus, we
prefer to use well established approaches to overcome these problems: 1) use of
a recursion principle derived from the definition of a well-founded relation [6]
and 2) annotate every pattern matching construct in order to make explicit the
relation between function argument and return types.

4.1 Termination Proof

The unification algorithm always terminates for any list of equalities, either by
returning their most general unifier or by establishing that there is no unifier. The
termination argument uses a notion of degree of a list of constraints C, written
as degree(C), defined as a pair (m,n), where m is the number of distinct type
variables in C and n is the total size of the types in C. We let (n,m) ≺ (n′,m′)
denote the usual lexicographic ordering of degrees.

Textbooks usually consider it “easy to check” that each clause of the unifica-
tion algorithm either terminates (with success or failure) or else make a recursive
call with a list of constraints that has a lexicographically smaller degree. Since
the implemented unification function is defined by recursion over proofs of lexi-
cographic ordering of degrees, we must ensure that all recursive calls are made
on smaller lists of constraints. In lines 3 and 4 of Figure 1, the recursive calls are
made on a list of constraints of smaller degree, because the list of constraints
[α 7→ τ]C will decrease by one the number of type variables occurring in it. This
is formalized in the following lemma:

Lemma 7 (Substitution application decreases degree) For all variables
α ∈ V, all well-formed types τ and well-formed lists of constraints C, it holds

91

that
degree([α 7→ τ]C) ≺ degree((α

e
= τ) :: C)

Proof. Induction over C.

On line 5 of Figure 1, we have that the recursive call is made on a constraint
that has more equalities than the original but has a smaller degree, as shown by
the following lemma.

Lemma 8 (Fewer Arrows implies lower degree) For all well-formed types
τ1, τ2, τ

′
1, τ
′
2 and all well-formed lists of constraints C, it holds that

degree((τ1
e
= τ ′1, τ2

e
= τ ′2) :: C) ≺ degree((τ1 → τ2

e
= τ ′1 → τ ′2) :: C)

Proof. Immediate from Lemma 1.

Finally, the recursive calls in lines 2 and 6 also decrease the degree of the input
list of constraints, according to the following:

Lemma 9 (Less constraints implies lower degree) For all well-formed types
τ , τ ′ and all well-formed list of constraints C, it holds that

degree(C) ≺ degree({τ e
= τ ′} :: C)

Proof. Immediate from Lemma 2.

4.2 Soundness and Completeness Proof

Given an arbitrary list of constraints, the unification algorithm either fails or
returns its most general unifier. We have the following properties:

– Soundness: the substitution produced is a unifier of the constraints.
– Completeness: the returned substitution is the least unifier, according to the

substitution ordering defined in Section 3.2.

A substitution S is called a unifier of a list of constraints C according to
whether unifier(C, S) is provable, where unifier(C, S) is defined by induction on
C as follows:

unifier([], S) = True

unifier((τ
e
= τ ′) :: C′, S) = S(τ) = S(τ ′) ∧ unifier(C′, S)

A substitution S is a most general unifier of a list of constraints C if, for any
other unifier S′ of C, there exists S1 such that S′ = S1 ◦ S; formally:

least(S,C) = ∀S′. unifier(C, S′)→ ∃S1.∀α. (S1 ◦ S)(α) = S′(α)

The type of the unification function is a dependent type that ensures the follow-
ing property of the returned substitution S:

92

(
unifier(C, S) ∧ least(S,C)

)
∨UnifyFailure(C)

where UnifyFailure(C) is a type that encodes the reason why unification of C
fails. There are two possible causes of failure: 1) an occurs check error, 2) an
error caused by trying to unify distinct type constructors.

In the formalization source code, the definition of the unify function contains
“holes”8 to mark positions where proof terms are expected. Instead of writing
such proof terms, we left them unspecified and use tactics to fill them with
appropriate proofs. In the companion source code, the unification function is
full of such holes and they mark the position of proof obligations for soundness,
completeness and termination for each equation of the definition of unify .

In order to prove soundness obligations we define several small lemmas that
are direct consequences of the definition of the application of substitutions, which
are omitted for brevity. Other lemmas necessary to ensure soundness are sketched
below. They specify properties of unification and application of substitutions.

Lemma 10 For all type variables α, types τ, τ ′ and substitutions S, if S(α) =
S(τ ′) then S(τ) = S([α 7→ τ ′] τ).

Proof. Induction over the structure of τ .

Lemma 11 For all type variables α, types τ , variable contexts V and constraint
sets C, if S(α) = S(τ) and unifier(C, S) then unifier([α 7→ τ]C, S).

Proof. Induction over C using Lemma 10.

Completeness proof obligations are filled by scripted automatic proof tactics
using Lemma 3.

5 Automating Proofs

Most parts of most proofs used to prove properties of programming languages
and of algorithms are exercises that consist of a lot of somewhat tedious steps,
with just a few cases representing the core insights. It is not unusual for mecha-
nized proofs to take significant amounts of code on uninteresting cases and quite
significant effort on writing that code. In order to deal with this problem in our
development, we use Ltac, Coq’s domain specific language for writing custom
tactics, and Coq built-in automatic tactic auto, which implements a Prolog-
like resolution proof construction procedure using hint databases within a depth
limit.

The main Ltac custom tactic used in our development is a proof state simpli-
fier that performs several manipulations on the hypotheses and on the conclusion.

8 A hole in a function definition is a subterm that is left unspecified. In Coq, holes
are represented by underscores and such unspecified parts of a definition are usually
filled by tactic generated terms.

93

It is defined by means of two tactics, called mysimp and s. Tactic mysimp tries to
reduce the goal and repeatedly applies tactic s to the proof state until all goals
are solved or a failure occurs.

Tactic s, shown in Figure 2, performs pattern matching on a proof state using
Ltac match goal construct. Patterns have the form:

[h1 : t1,h2 : t2 ... |- C] => tac

where each of ti and C are expressions, which represents hypotheses and con-
clusion, respectively, and tac is the tactic that is executed when a successful
match occurs. Variables with question marks can occur in Ltac patterns, and
can appear in tac without the question mark. Names hi are binding occurrences
that can be used in tac to refer to a specific hypothesis. Another aspect worth
mentioning is keyword context. Pattern matching with context[e] is successful
if e occurs as a subexpression of some hypothesis or in the conclusion. In Figure
2, we use context to automate case analysis on equality tests on identifiers and
natural numbers, as shown below

[|- context[eq_id_dec ?a ?b]] =>

destruct (eq_id_dec a b) ; subst ; try congruence

Tactic destruct performs case analysis on a term, subst searchs the context
for a hypothesis of the form x = e or e = x, where x is a variable and e is
an expression, and replaces all occurrences of x by e. Tactic congruence is a
decision procedure for equalities with uninterpreted functions and data type
constructors [6].

Ltac s :=

match goal with

| [H : _ /\ _ |- _] => destruct H

| [H : _ \/ _ |- _] => destruct H

| [|- context[eq_id_dec ?a ?b]] =>

destruct (eq_id_dec a b) ; subst ; try congruence

| [|- context[eq_nat_dec ?a ?b]] =>

destruct (eq_nat_dec a b) ; subst ; try congruence

| [x : (id * ty)%type |- _] =>

let t := fresh "t" in destruct x as [x t]

| [H : (_,_) = (_,_) |- _] => inverts* H

| [H : Some _ = Some _ |- _] => inverts* H

| [H : Some _ = None |- _] => congruence

| [H : None = Some _ |- _] => congruence

| [|- _ /\ _] => split

| [H : ex _ |- _] => destruct H

end.

Ltac mysimp := repeat (simpl; s) ; simpl; auto with arith.

Fig. 2. Main proof state simplifier tactic.

94

Tactic inverts* H generates necessary conditions used to prove H and af-
terwards executes tactic auto.9 Tactic split divides a conjunction goal in its
constituent parts.

Besides Ltac scripts, the main tool used to automate proofs in our devel-
opment is tactic auto. This tactic uses a relatively simple principle: a database
of tactics is repeatedly applied to the initial goal, and then to all generated
subgoals, until all goals are solved or a depth limit is reached.10 Databases to
be used — called hint databases — can be specified by command Hint, which
allows declaration of which theorems are part of a certain hint database. The
general form of this command is:

Hint Resolve thm1 thm2 ... thmn : db.

where thmi are defined lemmas or theorems and db is the database name to
be used. When calling auto a hint database can be specified, using keyword
with. In Figure 2, auto is used with database arith of basic Peano arithmetic
properties. If no database name is specified, theorems are declared to be part of
hint database core. Proof obligations for termination are filled using lemmas 7,
8 e 9 that are included in hint databases. Failures of unification, for a given list
of constraints C, is represented by UnifyFailure and proof obligations related
to failures are also handled by auto, thanks to the inclusion of UnifyFailure

constructors as auto hints using command

Hint Constructors UnifyFailure.

6 Related Work

Formalization of unification algorithms has been the subject of several research
works [8–11].

In Paulson’s work [8] the representation of terms, built by using a binary
operator, uses equivalence classes of finite lists where order and multiplicity
of elements is considered irrelevant, deviating from simple textbook unification
algorithms ([13, 12]).

Bove’s formalization of unification [9] starts from a Haskell implementation
and describes how to convert it into a term that can be executed in type the-
ory by acquiring an extra termination argument (a proof of termination for the
actual input) and a proof obligation (that all possible inputs satisfy this termi-
nation argument). This extra termination argument is an inductive type whose
constructors and indices represent the call graph of the defined unification func-
tion. Bove’s technique can be seen as an specific implementation of the technique
for general recursion based on well founded relations [26], which is the one im-
plemented on Coq’s standard library, used in our implementation. Also, Bove
presents soundness and completeness proofs for its implementation together with

9 This tactic is defined on a tactic library developed by Arthur Charguraud [25].
10 The default depth limit used by auto is 5.

95

the function definition (as occurs with our implementation) as well as by pro-
viding theorems separated from the actual definitions. She argues that the first
formalization avoids code duplication since soundness and completeness proofs
follow the same recursive structure of the unification function. Bove’s implemen-
tation is given in Alf, a dependently typed programming language developed at
Chalmers that is currently unsupported.

McBride [10] develops a unification function that is structurally recursive
on the number of non-unified variables on terms being unified. The idea of its
termination argument is that at each step the unification algorithm gets rid
of one unresolved variable from terms, a property that is carefully represented
with dependent types. Soundness and completeness proofs are given as separate
theorems in a technical report [27]. McBride’s implementation is done on OLEG,
a dependently typed programming language that is nowadays also unsupported.

Kothari [11] describes an implementation of a unification function in Coq
and proves some properties of most general unifiers. Such properties are used
to postulate that unification function does produce most general unifiers on
some formalizations of type inference algorithms in type theory [28]. Kothari’s
implementation does not use any kind of scripted proof automation and it uses
the experimental command Function in order to generate an induction principle
from its unification function structure. He uses this induction principle to prove
properties of the defined unification function.

Avelar et al.’s proof of completeness [29] is not focused on the proof that
the unifier S of types τ , returned by the unification algorithm, is the least of
all existing unifiers of τ . It involves instead properties that specify: i) dom(S) ⊆
FV(τ), ii) the contra-domain of S is a subset of FV(τ)− dom(S), and iii) if the
unification algorithm fails then there is no unifier. The proofs involve a quite
large piece of code, and the program does not follow simple textbook unification
algorithms. The proofs are based instead on concepts like the first position of
conflict between terms (types) and on resolution of conflicts. More recent work of
Avelar et al. [30] extends the previous formalization by the description of a more
elaborate and efficient first-order unification algorithm. The described algorithm
navigates the tree structure of the two terms being unified in such a way that,
if the two terms are not unifiable then, after the difference at the first position
of conflict between the terms is eliminated through a substitution, the search of
a possible next position of conflict is computed through application of auxiliary
functions starting from the previous position.

7 Conclusion

We have given a complete formalization of termination, soundness and complete-
ness of a type unification algorithm in the Coq proof assistant. To the best of
our knowledge, the proposed formalization is the first to follow the structure
of termination proofs presented in classical textbooks on type systems [13, 12].
Soundness and completeness proofs of unification are coupled with the algorithm
definition and are filled by scripted proof tactics using previously proved lemmas.

96

The developed formalization has 610 lines of code and around 94 lines of com-
ments. The formalization is composed of 31 lemmas and theorems, 34 type and
function definitions and 2 inductive types. Most of the implementation effort has
been done on proving termination, which takes 293 lines of our code, expressed
in 21 theorems. Compared with Kothari’s implementation, that is written in
more than 1000 lines, our code is more compact.

We intend to use this formalization to develop a complete type inference
algorithm for Haskell in the Coq proof assistant. The developed work is available
online [19].

References

1. Peyton Jones, S.: Haskell 98 Language and Libraries: the Revised Report. (2003)
2. Milner, R., Tofte, M., Harper, R.: Definition of standard ML. MIT Press (1990)
3. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst.

Sci. 17(3) (1978) 348–375
4. Pottier, F., Rémy, D.: The essence of ML type inference. In Pierce, B.C., ed.:

Advanced Topics in Types and Programming Languages. MIT Press (2005) 389–
489

5. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.
ACM 12(1) (1965) 23–41

6. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer Verlag (2004)

7. Bove, A., Dybjer, P., Norell, U.: A brief overview of agda — a functional lan-
guage with dependent types. In: Proceedings of the 22nd International Conference
on Theorem Proving in Higher Order Logics. TPHOLs ’09, Berlin, Heidelberg,
Springer-Verlag (2009) 73–78

8. Paulson, L.C.: Verifying the unification algorithm in lcf. CoRR cs.LO/9301101
(1993)

9. Bove, A.: Programming in Martin-Löf type theory: Unification - A non-trivial ex-
ample (November 1999) Licentiate Thesis of the Department of Computer Science,
Chalmers University of Technology.

10. McBride, C.: First-order unification by structural recursion. J. Funct. Program.
13(6) (2003) 1061–1075

11. Kothari, S., Caldwell, J.: A machine checked model of idempotent mgu axioms for
lists of equational constraints. In Fernandez, M., ed.: Proceedings 24th Interna-
tional Workshop on Unification. Volume 42 of EPTCS. (2010) 24–38

12. Mitchell, J.C.: Foundations of Programming Languages. MIT Press, Cambridge,
MA, USA (1996)

13. Pierce, B.C.: Types and programming languages. MIT Press, Cambridge, MA,
USA (2002)

14. McBride, C., McKinna, J.: The view from the left. J. Funct. Program. 14(1)
(2004) 69–111

15. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7) (2009)
107–115

16. Barthe, G., Dufay, G., Jakubiec, L., de Sousa, S.M.: A formal correspondence
between offensive and defensive javacard virtual machines. In Cortesi, A., ed.:
VMCAI. Volume 2294 of Lecture Notes in Computer Science., Springer (2002)
32–45

97

17. Gonthier, G.: The four colour theorem: Engineering of a formal proof. In Kapur,
D., ed.: ASCM. Volume 5081 of Lecture Notes in Computer Science., Springer
(2007) 333

18. Gonthier, G.: Engineering mathematics: the odd order theorem proof. In Gia-
cobazzi, R., Cousot, R., eds.: POPL, ACM (2013) 1–2

19. Ribeiro, R., et al.: A mechanized textbook proof of a type unification algorithm
— on-line repository. https://github.com/rodrigogribeiro/unification (2015)

20. Sørensen, M., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Number
v. 10 in Studies in Logic and the Foundations of Mathematics. Elsevier (2006)

21. Chlipala, A.: Certified Programming with Dependent Types - A Pragmatic Intro-
duction to the Coq Proof Assistant. MIT Press (2013)

22. de Bruijn, N.: Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the church-rosser theorem. Inda-
gationes Mathematicae (Proceedings) 75(5) (1972) 381 – 392

23. Charguéraud, A.: The locally nameless representation. J. Autom. Reasoning 49(3)
(2012) 363–408

24. Coq Developement Team: Coq Proof Assistant — Reference Manual.
http://coq.inria.fr/distrib/current/refman/ / (2014)

25. Pierce, B.C., Casinghino, C., Gaboardi, M., Greenberg, M., Hriţcu, C., Sjoberg,
V., Yorgey, B.: Software Foundations. Electronic textbook (2015)

26. Nordström, B.: Terminating general recursion. BIT Numerical Mathematics 28(3)
(1988) 605–619

27. McBride, C.: First-order unification by structural recursion — correctness proof
28. Naraschewski, W., Nipkow, T.: Type inference verified: Algorithm w in is-

abelle/hol. J. Autom. Reason. 23(3) (November 1999) 299–318
29. Avelar, A.B., de Moura, F.L.C., Galdino, A.L., Ayala-Rincón, M.: Verification of

the completeness of unification algorithms à la robinson. In Dawar, A., de Queiroz,
R.J.G.B., eds.: Logic, Language, Information and Computation, 17th International
Workshop, WoLLIC 2010, Brasilia, Brazil, July 6-9, 2010. Proceedings. Volume
6188 of Lecture Notes in Computer Science., Springer (2010) 110–124

30. Avelar, A.B., Galdino, A.L., de Moura, F.L.C., Ayala-Rincón, M.: First-order
unification in the PVS proof assistant. Logic Journal of the IGPL 22(5) (2014)
758–789

98

Time Performance Formal Evaluation of
Complex Systems

Valdivino Alexandre de Santiago Júnior1 and Sofiène Tahar2

1 Instituto Nacional de Pesquisas Espaciais (INPE)
Av. dos Astronautas, 1758, São José dos Campos, São Paulo, SP, Brazil.

valdivino.santiago@inpe.br
2 Concordia University

1455 De Maisonneuve Blvd. West, Montreal, QC, Canada.
tahar@ece.concordia.ca

Abstract. Formal verification methods, such as Model Checking, have
been used for addressing performance/dependability analysis of systems.
Such formal methods have several advantages over traditional techniques
aiming at performance/dependability analysis such as the use of a single
computational technique for evaluation of any measure and all complex
numerical computation steps are hidden to the user. This paper reports
on the use of Probabilistic Model Checking for time performance eval-
uation of complex systems. We propose an approach, TPerP, that al-
lows a professional to clearly address time performance analysis based
on Continuous-Time Markov Chain (CTMC). Our approach takes into
consideration several types of delay analyzes. We applied it to a balloon-
borne high energy astrophysics scientific experiment where we dealt with
CTMCs that had around 30 million reachable states and 75 million tran-
sitions, and we concluded that the current definition used in the balloon
system is inadequate in terms of performance.

1 Introduction

Studies about performance evaluation of systems date back to the early 1900s
where single queues, Markov Chains, networks of queues and Stochastic Petri
Nets have been used for this purpose. Particularly, Markov Chains have been
applied to performance assessment since around 1950 [1].

Performance evaluation is thus a mature field. However, formal verification
methods, such as Model Checking and Theorem Proving, have also been used for
addressing performance/dependability analysis of systems. Such formal methods
have several advantages over traditional techniques (e.g. simulation) aiming at
performance/dependability analysis. For instance, temporal logic offers a high
degree of expressiveness and flexibility where most standard performance mea-
sures (e.g. transient probabilities, long-run likelihoods) can be easily expressed.
Moreover, it is possible to specify complex measures in a succinct way by nesting
temporal logic formulas [2].

Model Checking is a fully algorithmic approach towards performance eval-
uation where a single computational technique is used for assessment of any

99

possible measure, and its time and space complexity is attractive. In the worst
case scenario, the time complexity is linear in the size of the measure specifica-
tion (logic formula), and polynomial (order 2 or 3, at most) in the number of
states of the stochastic process. Regarding space complexity, in the worst case,
it is quadratic considering the number of states of the stochastic process [2, 3].
Not less important, especially for practitioners, using Model Checking for perfor-
mance evaluation is interesting because all algorithmic/implementation details,
all detailed and complex numerical computation steps are hidden to the user.

In this paper, we report on the use of Probabilistic Model Checking for
time performance evaluation of complex systems. We organized the activities
accomplished in this work on an approach, Time Performance Evaluation via
Probabilistic Model Checking (TPerP), that allows a professional to clearly
address time performance analysis based on Continuous-Time Markov Chain
(CTMC) and Probabilistic Model Checking [3–6]. Even though TPerP is based
on standard steps defined for Model Checking, it takes into consideration several
types of delay analyzes and provides directives so that industry professionals may
use it for the development of real and complex systems/software. We applied it
to a balloon-borne high energy astrophysics experiment under development at
the Instituto Nacional de Pesquisas Espaciais (INPE) in Brazil. We dealt with
CTMCs that had around 30 million reachable states and 75 million transitions
and thus Probabilistic Model Checking confirmed to be a suitable solution for
the performance analysis of complex systems. We concluded that the current
definition used in the balloon system is inadequate in terms of performance.

This paper is structured as follows. Section 2 presents our approach, TPerP.
Section 3 shows the characterization of the problem providing details about the
case study. Results and considerations by applying TPerP to the space system
are in Section 4. Section 5 presents related work. In Section 6, conclusions and
future directions are mentioned.

2 The TPerP Approach

TPerP takes advantage of Probabilistic Model Checking and CTMC to assist
in time performance analysis of complex system/software projects. The TPerP
approach is shown in Figure 1.

The first step that should be accomplished is to define the parameters to
be addressed. These parameters are variables that affect the time performance
of the system. TPerP aims at finding the most suitable/optimal values of such
parameters. Some examples of these variables are the amount of packages a
buffer of a hardware device must store, the size of a packet to be sent from one
equipment to another, and the number of sensor measurements to be sent to a
central management computer. All these parameters are considered taking into
account the time performance perspective.

In computer networking or telecommunications, there are various types of
delays (di). TPerP considers the following ones: (i) Propagation Delay: PD =
l/s. It is the ratio between the link length (l) and the propagation speed (s)

100

Input:
specifications

and design
documents

Define
parameter (pi)

Is there pi
to assess?

Select type
of delay (di)

Is there di
to assess?

Select Require-
ments (RQi)

Calculate
CTMC’s

parameter
rates (λi)

Describe the
system in a
high-level
modeling
language

and simulate
the created

CTMC model

Start
Quantitative

Analysis

QA done?

Formalize reqs:
Pattern QA

Apply Model
Checking and

evaluate results

Start
Satisfaction

Analysis

SA done?

Formalize reqs:
Pattern SA

Apply Model
Checking and

evaluate results

Output:
report of time
performance

analysis

yes

yes

no

no

no

no

yes

yes

Fig. 1. The TPerP approach. Caption: QA = Quantitative Analysis; SA = Satisfaction
Analysis

over the specific medium. In wireless communication, the speed is the light’s
propagation speed; (ii) Transmission Delay: TxD = PDU size/bit rate. It is
the amount of time from the beginning until the end of a message transmission.
It depends on the size of the Protocol Data Unit (PDU) and the speed set for
the physical transmission medium; and (iii) Time for PDU Generation: TPG.
This is the time needed to create/mount a PDU such as as packet or a frame.
It basically depends on the requirements for generating system’s data.

101

It is possible that one di can be indeed a combination of two or all of the
delays defined above. In addition to these, other delays such as queue processing
delays can be addressed. Once a type of delay is chosen, TPerP suggests to select
the quantitative requirements based on the system/software specifications.

The next step is to calculate CTMC’s parameter rates, λi. There should be
defined as many λi as the amount of relevant flows of data transmission between
communicating units. Besides, the calculation of λi should be done considering
the piece of information that is transmitted per unit of time resolution. Al-
though other ways to calculate the parameter rates are possible, we would like
to emphasize two of them:

a) Local PDU influence.

λi =
bit rate

PDU size× time res . (1)

In this case, λi is calculated simply due to the size of the PDU of the local
flow of data transmission;

b) Diverse processing delays and encapsulation influence.

λi =
bit rate(

PDU size+

(∑

j

pdj +
∑

k

enk

)
× bit rate

)
× time res

. (2)

Here,
∑

j

pdj and
∑

k

enk represent, respectively, the influence of delays such

as queue processing and the impact of other sizes mainly related to the en-
capsulation features of network architecture models such as Open Systems
Interconnection (OSI) and The Consultative Committee for Space Data Sys-
tems (CCSDS). Note that in order to use Equation 2, it is necessary to
consider at least one influence (processing delays or encapsulation) or both.

Let us assume that a certain flow of data transmission between two computing
devices has the following characteristics: PDU size = 65,535 Bytes, bit rate = 1
Gbps, queuing and end system delays (encoding, decoding) = 50 ms. Let us
also assume that a encoding system is used where each Byte of data is assigned
a 10-bit code like the 8b/10b encoding used in Gigabit Ethernet. In addition,
let us consider that a certain requirement, RQi, demands that the system must
meet a time bound in the range of milliseconds. Thus, the parameter rate is in
accordance with Equation 2:

λ =
109

(65535× 10 + 0.05× 109)× 1000
= 0.019741. (3)

In Equation 3, λ means that, for each millisecond, 0.019741 of a PDU is
received by the destination device.

102

Describing the system in a high-level language supported by a Probabilistic
Model Checker such as PRISM [4] is the next step. TPerP suggests the tradi-
tional procedure where CTMCs are not obtained in a straightforward way, but
rather generated automatically from higher-level descriptions in languages such
as stochastic Petri nets, stochastic process algebras [5], or state-based languages
[4]. This description is read into a Stochastic/Probabilistic Model Checker which
then automatically creates a CTMC based on it. Besides, it is very important to
simulate the CTMC model thoroughly in order to avoid an excessive number of
false positive counterexamples. The simulation should be carried out by means
of the features (outputs) provided by Model Checkers, for example, checking if
there are transitions between states of the CTMC model consistent with the
expected behavior of the system, and according to the defined parameter rates.

TPerP provides some guidelines to develop the description of the system.
In Model Checkers that allow synchronization, our approach suggests using it
as much as possible so that modules can make transitions simultaneously. Using
auxiliary variables, such as boolean ones, to indicate the end of certain processing
is not advisable. Such variables increase the state space and, for the purpose of
time performance analysis modeling, they may be replaced by synchronization.
For instance, in PRISM, some parts of the modules may be as shown below.

module device1

...

[action1] var1 = max_var1 -> rate1 : (var1’ = 0);

...

module device2

...

[action1] var2 < max_var2 -> 1 : (var2’ = var2 + 1);

...

We can see that action1 synchronizes device1 and device2 avoiding the use
of a boolean variable to state that a certain PDU is ready to be transmitted
from one device to another.

2.1 Quantitative Analysis

Probabilistic Property Specification Templates (ProProST) is a specification pat-
terns system for probabilistic properties as they are used for quality requirements
[7]. ProProST complements and extends existing patterns systems [8, 9], in that
it allows to specify probabilistic properties as they are required to formulate
quality properties. ProProST provides a solution in the form of a formal speci-
fication template for Continuous Stochastic Logic (CSL) [3].

Specification patterns systems are very important for Model Checking real
world applications since they provide templates/guidelines so that professionals
can use them in order to formalize their requirements/properties. Based on this
fact, TPerP directs the practitioner to use the Probabilistic Until pattern of
ProPoST [7] for CSL:

P./p[Φ1 U [t1,t2] Φ2]. (4)

103

In TPerP, we call this Pattern for Quantitative Analysis (Pattern QA in
Figure 1) and it is presented in Equation 5:

(α,P=?[pdu notsent U≤T pdu received]). (5)

However, there are three remarks if we compare ProProST’s formula (Equa-
tion 4) with TPerP’s formula (Equation 5). First, some Model Checkers such as
PRISM allow to specify properties in a quantitative way. In other words, rather
than just verifying and answering true or false whether or not a probability is
above or below a certain bound, such tools allow to return the actual probabil-
ity of some behavior of the model under consideration. For time performance
evaluation this is very suitable because in many situations we are interested in
knowing what is the optimal value of a parameter pi based on the time con-
straints defined in the requirements. If we know the exact value of a probability,
we are able to respond more adequately this question. TPerP suggests using the
P operator in this way: P=?. As a result, we will have the value of the probability
for the paths starting in the initial state ι.

Naturally, several PDUs may be transmitted from one device to another.
Therefore, it is interesting when accomplishing a time performance evaluation
to consider a fine-grained analysis, i.e. to take into account α states from where
to start the analysis instead of doing it from the initial state ι. Thus, α in
TPerP’s formula (Equation 5) means precisely to start the analysis from the
states that indicate that a PDUk is ready to be sent from the source device but
which has not yet been transmitted to the destination device. Thus, TPerP takes
the average values of probabilities for the paths that satisfy the path formula
[pdu notsent U≤T pdu received], such paths start in α states.

The third remark is about the time interval [t1, t2]. By default, TPerP in-
stantiates this time interval as [0, T]. But it is perfectly possible to change the
lower bound from 0 to other real number just assuring that t1 ≤ t2.

Let us consider the following requirement from the automotive industry [10]:
If the system’s diagnostic request IRTest is set, then the infrared lamps are turned on
after at most 10 seconds. Thus, a possible physical architecture has an Electronic
Control Unit (ECUdiag) responsible for ordering the diagnostic request and other
unit (ECUlamp) which indeed turns the infrared lamps on. So, communication
could take place via one of the protocols used in the automotive industry such as
the Controller Area Network (CAN). Hence, the formalization of the requirement
is as follows:

(α,P=?[request notsent k U≤10 request received− lampson k]). (6)

In Equation 6, the state formula request notsent k means that the kth re-
quest (e.g. a CAN frame or a PDU of a CAN-based higher-layer protocol) is
ready, in the ECUdiag, to be sent to the ECUlamp but has not yet been trans-
mitted. The state formula request received − lampson k means that not only
this kth request has been transmitted and received by ECUlamp but also that
the ECUlamp turned the lamps on. The state formulas are usually characterized

104

by means of model variables that indicate the states in which the PDU has not
been sent (notsent) and that the same PDU has been received (received).

After applying Model Checking and evaluating the results, it should be de-
cided whether the quantitative analysis must be ended or not. It is very beneficial
that “new” requirements are created by modifying (usually to a larger value) the
time constraints defined in the original specifications’ requirements. This activ-
ity is very useful to find out how inadequate is a particular solution of a system
in terms of performance. Therefore, the quantitative analysis should be repeated
for each new defined requirement (new time value).

2.2 Satisfaction Analysis

The satisfaction analysis proposed by TPerP is in line with the traditional verifi-
cation way of properties assessment in Model Checking. This step is particularly
suited to realize whether an existing system/software solution is in accordance
with system/software time requirements. If a solution does not satisfy a time
requirement, thus we can determine which are the necessary modifications in
the solution to achieve this goal.

Again the Probabilistic Until pattern of ProPoST [7] for CSL is used, starting
the analysis from α states as explained in the previous section. In TPerP, we
denote this Pattern for Satisfaction Analysis (Pattern SA in Figure 1) and it is
given by:

∃(α,P≥bound[pdu notsent U≤T pdu received]). (7)

A note should be made on the ∃ quantifier in this TPerP’s formula (Equa-
tion 7). We took advantage of Model Checkers such as PRISM that al-
low to reason whether there are some paths that satisfy the path formula
[pdu notsent U≤T pdu received], such paths start in α states, with a proba-
bility greater than or equal to a probability bound.

It is important to stress that, by using ∃, we are not going into the for-
mal details of the qualitative fragment of Probabilistic Computation Tree Logic
(PCTL) or CSL. Path quantifiers, ∀ and ∃, present in the syntax of CTL were
replaced by the probabilistic operator Pbound in PCTL and consequently in CSL.
We just relied on the benefits of some tools that enable us to reason about a
fine-grained time performance analysis.

Let us consider again the real-time requirement from the automotive industry
[10] presented in Section 2.1. Its formalization in accordance with Pattern SA
can be:

∃(α,P≥0.98[request notsent k U≤10 request received− lampson k]). (8)

Similarly to the quantitative analysis, it should be decided whether the sat-
isfaction analysis continues or not, in accordance with the same reasoning of
creating new requirements by varying time. Likewise, the satisfaction analysis
should be repeated for each new defined requirement.

105

3 Case Study: Characterization of the Problem

protoMIRAX is a hard X-ray imaging telescope [11] which has been developed at
the Instituto Nacional de Pesquisas Espaciais (INPE) in Brazil. This scientific
experiment will be launched by a balloon and it will operate between 40 to
42 km of altitude. The main objective of protoMIRAX is to carry out imaging
spectroscopy of selected bright X-ray sources to demonstrate the performance of
a prototype of the MIRAX satellite’s instrument. A very simplified view of the
protoMIRAX’s physical architecture is shown in Figure 2.

 EVP (115.2 kbps)

OBDHXRC CMD/HK (115.2 kbps)

HK (115.2 kbps)

SCI TM (500 kbps)

HK TM (115.2 kbps)

TC (9.6 kbps)

ACS

GS

Space Segment Ground Segment

L-Band
link

FCTS

Fig. 2. Simplified physical architecture of the protoMIRAX balloon experiment

The On-Board Data Handling Subsystem (OBDH) is responsible for acquir-
ing, formatting and transmitting all TeleMetry (TM) data that come from sev-
eral subsystems (X-ray Camera (XRC), Attitude Control Subsystem (ACS)) of
protoMIRAX’s space segment to the Ground Station (GS). The OBDH is also
responsible for receiving and retransmitting, when necessary, various types of
TeleCommands (TCs) sent by the GS to the space segment. For each X-ray pho-
ton detected by the XRC, a 6-Byte packet is created encasing the time stamp,
x−y position, and energy (pulse height) of the event (X-ray photon). This 6-Byte
unit of information is called an event packet (EVP) and such event packets are
sent every 1 second to the OBDH by means of a 115.2 kbps RS-422 unidirectional
serial interface. XRC generates 40 event packets/s.

In order to transmit scientific data TM (SCI TM) to ground, a 500 kbps
synchronous channel connects the OBDH with the Flight Control and Telecom-
munications Subsystem (FCTS). Housekeeping data TM (HK TM) are sent to
the GS via a serial RS-232 channel operating at 115.2 kbps.

The total size of TC and TM (focus of this research) packets are variable and
defined according to each space mission. The problem that needs to be solved by
this research is as follows. As the OBDH continuously stores on-board and sends
to the GS all TM data (scientific, housekeeping, etc.) it obtains, what is the
most suitable (optimal) size of the scientific data TM packet, with event packets
created by the XRC and sent to the OBDH, so that we have the minimum delay
of such scientific data stored on-board and the same data that are visualized on
the GS in real-time? In previous INPE’s balloon scientific instrument, this delay
was in the range of hour. A suitable performance analysis was not accomplished
for this previous project.

106

4 Application of TPerP

We applied TPerP to the protoMIRAX instrument. We defined one parameter,
p1, which is the size of the scientific data TM packet. Thus, we would like to know
what is the most suitable (optimal) value of p1. We will denote this optimal value
as OP EV P . XRC generates 40 event packets/s and transmits to the OBDH
which formats and generates a scientific data TM packet to be sent to the GS.
OP EV P is a value which ranges from 1 to 108. In other words: (i) Minimum
size of TM packet (OP EV P = 1; Size in Bytes = 274). This implies 1 × 40
event packets. Once the OBDH receives the 40 event packets in each second, it
formats, stores the data in its memory, and transmits them straight to the GS;
and (ii) Maximum size of TM packet (OP EV P = 108; Size in Bytes = 26,596).
This implies 108 × 40 event packets. In other words, the OBDH waits for the
arrival of 108 units of 40 event packets and, after that, the OBDH sends such
data to the GS.

4.1 Transmission Delay

We chose two types of delays where the Transmission Delay (TxD) was the first
one. Thus, one performance requirement was taken into account: RQ1 - The delay
between the scientific data TM packet stored in the OBDH’s computer memory and
the same data received by the GS must be, at maximum, 500 milliseconds.

Four parameter rates were considered according to 4 flows of data transmis-
sion, and all such rates were calculated taken into account a resolution in ms:
(i) λevp = EV P rate/1000 = 0.04. This is the XRC’s event packets genera-
tion rate; (ii) λxrc sci = (bit ratex−o)/(PDU sizex × 1000) = 0.045714. This
rate relates to the transmission of a unit (40) of event packets from the XRC
to the OBDH. Note that it is a local PDU influence rate (Equation 1); (iii)
λobdh sci = (bit rateo−g)/((PDU sizeo + (qd+ od)× bit rateo−g)× 1000). This
rate relates to the transmission of scientific data (event packets), after being
completely formatted, from the OBDH to the GS. It is a diverse processing
delay rate (Equation 2) where qd it is the queue processing delay within the
software embedded into the OBDH’s computer, and od refers to other delays
due to further required processing. Note that the size of the OBDH’s PDU
(PDU sizeo) is directly proportional to OP EV P . Hence, for OP EV P = 1,
λobdh sci = 0.003285, and for OP EV P = 108, λobdh sci = 0.001378; and (iv)
λall hk = (bit ratehk−o−g)/((PDU sizeh +(qd+od)×bit ratehk−o−g)×1000) =
0.001525. This rate relates to the transmission of housekeeping data from several
subsystems (XRC, OBDH, ACS) to the OBDH which then sends housekeeping
information to the GS. It is also a diverse processing delay rate.

We used PRISM and hence we described our system using its language, and
simulated the behavior of the CTMC model. Our models range from 546,530
reachable states and 1,647,070 transitions (OP EV P = 1) to 29,785,885
reachable states and 75,502,215 transitions (OP EV P = 108). After re-
alizing that the CTMC model truly reflects our system, we formalized RQ1 as

107

proposed by TPerP:

(α,P=?[onboard TM k U≤500 ground TM k]). (9)

The state formula onboard TM k means that the kth scientific data TM
packet is formatted and ready, in the OBDH, but has not yet been transmitted
to the GS while the state formula ground TM k means that such kth packet
has been transmitted and received by the GS. As explained in Section 2.1, α are
the states from where to start the analysis because they represent the situations
where PDU k is ready to be sent from the OBDH but such PDU has not yet
been sent and received by the GS.

We did several experiments and created several graphics varying the time in
accordance with 0 ≤ t ≤ T, where T = 500 ms. Due to space restrictions we
will not show them. The current solution defined for the protoMIRAX system
is OP EV P = 1 (minimum). Analyzing the results of the Model Checking, we
noticed that such a solution is not a good option because the average value of
the probability is too low (0.3316) when T = 500 ms.

As OP EV P increases, we could see a significant improvement on the average
value of the probability when T = 500 ms. However, using a large value of
OP EV P is not the best solution. When OP EV P = 108 (maximum), the
average value of the probability for T = 500 ms is only 0.4924. Figure 3 shows the
mean values of probabilities for T = 500 ms for all possible values of OP EV P .
We perceive that there is a set of optimal values: 12 ≤ OP EV P ≤ 19. The
highest mean probability is due to OP EV P = 15 (0.6954).

We continued the quantitative analysis in order to find out how unsuitable
was the current solution (OP EV P = 1). Thus, we changed RQ1 and created a
new requirement where the time is now 1 hour. We noticed a small improvement
but the average value of the probability reaches a limit still too low (0.3581).
Importantly, the result of this analysis does not claim that the scientific data
will last one hour, or even more, to reach ground (GS). The maximum value of
the probability for OP EV P = 1 is, in fact, 0.8065. However, a low mean value
of probability means that, on average, significant delays may occur with greater
probability when the operation of the protoMIRAX system.

Regarding the satisfaction analysis, we accomplished it in order to answer this
question: given the current characteristics of the protoMIRAX system (packet
sizes, communication rates, etc.) is RQ1 satisfied? The previous quantitative
analysis has provided an indication of what value, or interval, of OP EV P would
be the most appropriate. Such analysis also suggests that the current solution,
OP EV P = 1, is inappropriate. But nothing was said concerned the satisfaction
of RQ1. We formalized RQ1 in accordance with TPerP:

∃(α,P≥0.98[onboard TM k U≤500 ground TM k]). (10)

In Table 1, we see that RQ1 is NOT satisfied in accordance with the current
characteristics of the protoMIRAX experiment. No value of OP EV P was such
that the CTMC model satisfied RQ1 (T = 0.5 s). Note that the current char-
acteristics of the protoMIRAX system (packet sizes, communication rates) only

108

Fig. 3. TxD: Average values of probabilities considering T = 500 ms (all OP EV P)

begins to fulfill the time performance requirements from T ≥ 2 s but, even so,
for some values of OP EV P (10, 13, 15, 17, and 30). It is important to stress
that neither for the minimum (1) nor for the maximum (108) value of OP EV P
the requirement is satisfied when T = 2 s. In addition, the minimum value (1)
and current solution does not satisfy the requirements even if we consider T = 1
day (86,400 s). This is another result that corroborates the previous conclusion:
current solution (OP EV P = 1) is inadequate.

Table 1. TxD: Satisfaction of time performance requirements

OP EV P Time (seconds)

0.5 1 2 5 10 86,400

1 7 7 7 7 7 7

10 7 7 3 3 3 3

13 7 7 3 3 3 3

15 7 7 3 3 3 3

17 7 7 3 3 3 3

30 7 7 3 3 3 3

108 7 7 7 3 3 3

109

4.2 Total Time

For protoMIRAX, the Propagation Delay is neglected due to the small distance
of operation of the balloon compared to the light’s propagation speed. How-
ever, it is interesting to consider the Time for PDU Generation (TPG). For this
system, such a time is basically defined as a function of OP EV P . That is, if
OP EV P = 10 thus 1 scientific data TM packet will be ready every 10 seconds
(approximately) to be sent to ground. We considered the Total Time which is
based on TPG and TxD: Total T ime = TPG+ TxD.

We repeated the process suggested by TPerP for this new delay. The require-
ment is basically the same as previously proposed but with T = 30 s. Since TPG
is at least one second, there is no sense in demanding the system to meet a re-
quirement in the range of milliseconds. The semantics to create the CTMC did
not change but the parameter rates did (λi calculated with resolution in s): (i)
λevp = EV P rate = 40; (ii) λxrc sci = (bit ratex−o)/(PDU sizex+(OP EV P×
bit ratex−o)). Note the influence of the encapsulation feature (Equation 2) pre-
sented in the calculation of this rate due to its dependency on OP EV P ; (iii)
λobdh sci = (bit rateo−g)/(PDU sizeo + (qd + od + OP EV P) × bit rateo−g).
In this case, we have both dependencies: processing delays and encapsulation;
and (iv) λall hk = (bit ratehk−o−g)/(PDU sizeh + (qd + od + OP EV P) ×
bit ratehk−o−g). Again, diverse processing delays and encapsulation influence
were used.

Analyzing the results of the Model Checking where 0 ≤ t ≤ T, T = 30s, we
realized that, initially, OP EV P = 1 had a better performance compared with
the other values. This is explained by the lower TPG when OP EV P = 1. How-
ever, it was evident that the average value of the probability when OP EV P = 1
reaches again a low limit (0.6057). The interval 13 ≤ OP EV P ≤ 17 is a good
option, although OP EV P = 10 was the value which had the highest average
value of probability (0.8103). In Figure 4, we see more clearly the mean values
of probabilities considering all values of OP EV P .

Concerning the satisfaction analysis, the protoMIRAX system also did NOT
satisfy the requirement initially proposed (T = 30 s). No value of OP EV P
given in Table 1 was such that the requirement could be satisfied. Increasing
T to 60 s, then OP EV P = 10 and OP EV P = 13 were the only ones to
meet the requirement and thus none of the other values, including the minimum
(OP EV P = 1), satisfied the property for T = 60 s.

4.3 Considerations about the Evaluation conducted via TPerP

Based on the time performance analysis accomplished via TPerP, we can con-
clude: (i) the current solution adopted in the protoMIRAX system, OP EV P =
1, is inadequate. This conclusion is valid not only if we consider the Transmis-
sion Delay but also the Total Time; (ii) the interval 13 ≤ OP EV P ≤ 17 is a
good alternative to solve this performance issue. As a first option, we suggest
OP EV P = 15 (average value of the interval) to be used in the protoMIRAX
system. It means a TM packet with 3,718 Bytes. This value is particularly suited

110

Fig. 4. Total Time: Average values of probabilities considering T = 30 s (all OP EV P)

if more emphasis is given to a shorter Transmission Delay; and (iii) if we desire
a lower Total Time, a second alternative is OP EV P = 10 (packet with 2,488
Bytes). This value also performed well in the TxD analysis, although it was not
as good as OP EV P = 15. The advantage in using OP EV P = 10 rather than
OP EV P = 15 would be the fact of having more frequent updating of scientific
data visualized on the GS’s computers.

We can highlight some points given the results presented by using TPerP for
this space system, aiming to apply our approach to other types of systems. For
applications that need to store the acquired data and transmit them to another
remote system, using a minimum value of a parameter (size of memory buffer,
size of a packet) may be, at first, advantageous because, usually, this implies less
processing demands (for example, less complex memory management). However,
not always this minimum value may be the most appropriate (as we showed in
this study), especially considering real-time systems where performance require-
ments may have greater relevance.

Different types of delays may require different solutions for the optimal values
of the parameters that are being evaluated. The decision to choose the most
suitable value of the parameters will depend on a priority of the considered
delays.

111

5 Related Work

In this section, we will focus on some relevant studies that use formal verification
methods aiming at performance/dependability evaluation of systems.

Probabilistic Model Checking was applied to address usability concerns that
involve quantitative aspects of a user interface for a groupware system [5]. There
are usability issues that are influenced by the performance of the groupware
system rather than by its functional behavior. Our approach allows a more re-
fined analysis considering the size of PDUs to estimate the rates compared with
their work. In addition, the CTMC model they developed is very simple (19
states) which raises doubts whether the same results would be achieved for more
complex models.

Probabilistic Model Checking was also used to analyze dependability proper-
ties of a embedded controller-based system [4]. Properties like the probability of
the system shutting itself down, the expected amount of time spent in different
classes of states of the model (using reward-based properties), expected number
of reboots, were taken into account. The basic difference between TPerP and
this work is that we aimed at evaluating the system time performance consid-
ering its normal operational behavior, and in [4] the authors aimed to assess
dependability-related issues.

In [6], the authors showed how CSL can be used to specify state- and path-
based dependability properties of systems being modeled as CTMC. Although
dependability was the focus and properties in CSL to reason about probabilities
of Quality of Service (QoS) were considered, some time-performance require-
ments were assessed. This paper is more a proof of concept to show the poten-
tial of the recently, at that time, introduced CSL for dependability/performance
analysis.

A report on the use of the COrrectness, Modeling and Performance of
Aerospace SyStems (COMPASS) toolset for correctness, dependability, and per-
formance analysis of a satellite system-level design was presented in [12]. The
greatest motivation behind their research is having a single, integrated, sys-
tem model that covers several aspects (discrete, real-time, hybrid, probabilistic)
rather than using various (tailored) models covering different aspects. The case
study is interesting and complex (50 million states) and they accomplished sev-
eral analyzes. However, the performability evaluation analysis ran out of memory
after 9 hours. Moreover, the analysis was conducted when the satellite project
was in its Phase B where requirements were not fully detailed. Thus, it is not very
clear if they were able to use detailed and defined requirements as we did in our
case study and also whether the performance analysis accomplished considers
the same type of time perspective and granularity that we carried out.

In a follow-up paper, authors of [12] published another work where they
presented the application of the COMPASS toolset to the same project but
addressing Phase C of the satellite’s system engineering lifecycle [13]. Thus,
there were many more design details than in the previous attempt. However, they
focused on diagnosability, not performability, analysis which was intractable in
the previous work as it needed more computing resources than they had available.

112

Performance modeling of concurrent live migration operations in cloud com-
puting systems was presented in [14]. The authors used CTMC and Probabilistic
Model Checking as we did. They made some assumptions in their model so that
they could accomplish the analysis in a shorter time. For instance, migration
requests for sender servers are distributed in a uniform way, and thus they could
simplify the model for a large number of servers with the ratio of the number
of sender and receiver servers. This is clearly an attempt to deal with the state
space explosion problem. It is not evident if this uniform assumption is consistent
with the real characteristics of such systems.

We can point out the following differences and in some cases advantages of
our approach compared with these previous studies: (i) TPerP has well-defined
activities for the application of Probabilistic Model Checking for evaluating a
specific type of performance measure (delay). It is vital that systematic pro-
cedures are proposed so that formal methods can have a wide acceptance in
the industrial practice; (ii) we clearly define equations to calculate the parame-
ter rates of the CTMC model considering local PDU influence, queue processing
delays, encapsulation influence due to network architecture models, and time res-
olution; and (iii) with the exception of the studies [12, 13], all remaining papers
that we mentioned used very small case studies. We dealt with complex models
and so we believe that our approach is suitable for large scale applications.

6 Conclusions

In this paper we report on the use of Probabilistic Model Checking to evaluate
time performance of complex systems. We organized the activities that we carried
out in TPerP, an approach that analyzes several types of delay and goes towards
a wide acceptance of formal methods in practice. Our approach defines clear steps
to be followed by professionals by providing guidelines to calculate parameter
rates, and suggesting the use of a specification patterns system.

We applied TPerP to a complex space application under development at
INPE aiming at finding the optimal/most suitable size of the scientific data
TM packet, so that there is a minimum delay of such scientific data stored on-
board and the same data that are visualized on the ground. We found that
the current definition of the balloon-borne experiment is inadequate and we
suggest different sizes for the TM packet: OP EV P = 15 if we consider a shorter
Transmission Delay; or OP EV P = 10 if the Total Time is the driving factor.
CTMC models up to 30 million reachable states and 75 million transitions were
analyzed showing the usefulness of our approach.

Future directions include to propose a method for the automatic transla-
tion of the system/software behavior into the high-level modeling language of
a Probabilistic Model Checker such as PRISM. This step is quite interesting
because it can prevent errors in (manual) translating the system solution into
the language of the Model Checker. It is also interesting to investigate the use
of other ProPoST’s patterns and find out the impact on the time performance
analysis. Finally, application to other case studies (aerospace domain, automo-

113

tive industry, etc.) should be addressed to consider the generalization of our
approach.

Acknowledgments

This work was supported by a CNPq BSP grant, Institutional Process Number
455097/2013-5, Individual Process Number 170143/2014-7.

References

1. G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Networks and
Markov Chains. Jonh Wiley & Sons, New York, NY, USA, 1998.

2. C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Performance evaluation
and model checking join forces. Commun. ACM, 53(9):76–85, 2010.

3. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms
for continuous-time markov chains. IEEE Trans. Software Engineering, 29(6):524–
541, 2003.

4. M. Kwiatkowska, G. Norman, and D. Parker. Controller dependability analysis
by probabilistic model checking. Control Engineering Practice, 15(11):1427–1434,
2006.

5. M. H. ter Beek, M. Massink, and D. Latella. Towards model checking stochastic as-
pects of the thinkteam user interface. In Interactive Systems. Design, Specification,
and Verification, volume 3941 of LNCS, pages 39–50. Springer, 2006.

6. B. R. Haverkort, H. Hermanns, and J.-P. Katoen. On the use of model checking
techniques for dependability evaluation. In Proc. IEEE Symp. Reliable Distributed
Systems, pages 228–237. IEEE, 2000.

7. L. Grunske. Specification patterns for probabilistic quality properties. In Proc.
Int. Conf. Software Engineering, pages 31–40. ACM, 2008.

8. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In Proc. Int. Conf. Software Engineering, pages 411–
420. ACM, 1999.

9. S. Konrad and B. H. C. Cheng. Real-time specification patterns. In Proc. Int.
Conf. Software Engineering, pages 372–381. ACM, 2005.

10. A. Post and J. Hoenicke. Formalization and analysis of real-time requirements: A
feasibility study at BOSCH. In Verified Software: Theories, Tools, Experiments,
volume 7152 of LNCS, pages 225–240. Springer, 2012.

11. J. Braga, F. D’Amico, M. A. C. Avila, A. V. Penacchioni, J. R. Sacahui, V. A.
Santiago Júnior, F. Mattiello-Francisco, C. Strauss, and M. A. A. Fialho. The pro-
toMIRAX Hard X-ray Imaging Balloon Experiment. Astronomy & Astrophysics,
580:A108, 2015.

12. M.-A. Esteve, J.-P. Katoen, V. Y. Nguyen, B. Postma, and Y. Yushtein. Formal
correctness, safety, dependability, and performance analysis of a satellite. In Proc.
Int. Conf. Software Engineering, pages 1022–1031. IEEE Press, 2012.

13. M. Bozzano, A. Cimatti, J.-P. Katoen, P. Katsaros, K. Mokos, V. Y. Nguyen,
T. Noll, B. Postma, and M. Roveri. Spacecraft early design validation using formal
methods. Reliability Engineering & System Safety, 132:20 – 35, 2014.

14. S. Kikuchi and Y. Matsumoto. Performance modeling of concurrent live migration
operations in cloud computing systems using PRISM Probabilistic Model Checker.
In Proc. IEEE Int. Conf. Cloud Computing, pages 49–56. IEEE, 2011.

114

Test Case Generation from Natural Language
Requirements using CPN Simulation

Bruno Cesar F. Silva1, Gustavo Carvalho1, and Augusto Sampaio1

1Universidade Federal de Pernambuco - Centro de Informática, 50740-560, Brazil
{bcfs,ghpc,acas}@cin.ufpe.br

Abstract. We propose a test generation strategy from natural language
(NL) requirements via translation into Colored Petri Nets (CPN), an
extension of Petri Nets that supports model structuring and provides
a mature theory and powerful tool support. This strategy extends our
previous work on the NAT2TEST framework, which involves syntactic
and semantic analyses of NL requirements and the generation of Data
Flow Reactive Systems (DFRS) as an intermediate representation, from
which target formal models can be obtained for the purpose of test case
generation. Our contributions include a systematic translation of DFRSs
into CPN models, besides a strategy for test generation. We illustrate
our overall approach with a running example.

Keywords: test generation, CPN, model simulation

1 Introduction

Since the so-called software crisis (in the Sixties), when the term software engi-
neering originated, difficulty of understanding the user needs, ambiguous speci-
fications, poorly specified and interpreted requirements are still common issues.
In the field of requirements engineering, several studies have been conducted
focusing on the use of (semi-)formal methods to specify, model and analyse
requirements, besides automatically generating test cases, resulting in greater
maturity and in the construction of underlying theories and supporting tools.

According to Myers [14], as formal methods can be used to find errors in
requirements such as inconsistency and incompleteness, they play an important
role in the earlier discovery of errors and, thus, reducing costs and correction
effort. In this light, we have devised a strategy [2] that generates test cases
from natural language requirements. In this strategy, the system behaviour is
formally represented as a Data-flow Reactive System (DFRS). Later, this model
is translated into a target formalism for generating test cases. The purpose of
the NAT2TEST tool is to be easily extensible to various target formalisms.

Although the use of CSP [6], SCR [5] and IMR [3] have been explored, each
one has advantages and limitations. For instance, test generation from SCR and
IMR is based on commercial tools, which is a practical advantage, but, on the
other hand, is not formal, as no explicit conformance relations are considered.
Differently, the test strategy for CSP is formal and can be proved sound, with an

115

explicit conformance notion. In this case, the FDR tool1 is used to generate test
cases as counterexamples of refinement verifications and, thus, it demands the
complete expansion of the underlying label transition system, which can easily
lead to state explosion problems.

Therefore, here we explore the use of Colored Petri Nets (CPN) as an alterna-
tive extension of the NAT2TEST strategy where simulation of CPNs is used for
generating test cases. To simulate a CPN it is not necessary to explore its com-
plete state space first and, thus, we minimise state explosion problems. In other
words, we are capable of generating test cases for more complex systems since
it is not necessary to enumerate all its states first, but they can be computed
dynamically during simulation.

Also, we benefit from the diversity and maturity of CPN tools2. For instance,
besides simulation we can also perform model checking. Another promising op-
portunity is to make use of the CPN ML language, a functional programming
language based on Standard ML. Furthermore, a testing theory based on CPN
can also be entirely formal, although our focus here is on its feasibility. The main
contributions of this paper are the following:

– A systematic translation of DFRSs into CPN models;
– A strategy for test case generation from CPN models via simulation;
– An example to illustrate our overall approach.

Section 2 introduces the NAT2TEST strategy and CPNs. Section 3 explains
how to generate CPN models from DFRSs. Section 4 describes how to generate
test vectors from CPN models via simulation. Section 5 addresses related work,
and presents our conclusions and future directions.

2 Background

Here, we provide a brief explanation of the NAT2TEST strategy and CPNs.

2.1 NAT2TEST Strategy

In this section we briefly describe the NAT2TEST (NATural language require-
ments to TEST cases) strategy for generating test cases from requirements writ-
ten in natural language. It is tailored to generate tests for Data-Flow Reactive
Systems (DFRS): a class of embedded systems whose inputs and outputs are al-
ways available as digital signals. The input signals can be seen as data provided
by sensors, whereas the output data are provided to system actuators.

It receives as input system requirements written using the SysReq-CNL, a
Controlled Natural Language (CNL) specially tailored for editing unambiguous
requirements of data-flow reactive systems. As output, it produces test cases.
This test-generation strategy comprises a number of phases (see Figure 1). The
three initial phases are fixed: (1) syntactic analysis, (2) semantic analysis, and
(3) DFRS generation; the remaining phases depend on the internal formalism.

1 http://www.cs.ox.ac.uk/projects/fdr/
2 http://cpntools.org/

116

Fig. 1. NAT2TEST strategy

The syntactic analysis phase receives as input the system requirements, and
performs two tasks: it verifies whether these requirements are in accordance with
the SysReq-CNL grammar, besides generating syntactic trees for each correctly
edited requirement. The second phase maps these syntax trees into an informal
NL semantic representation. Afterwards, the third phase derives an intermediate
formal characterization of the system behaviour (DFRS) from which other formal
notations can be derived. The possibility of exploring different formal notations
allows analyses from several perspectives, using different languages and tools,
besides making the strategy extensible, as discussed in the previous section.

Data-Flow Reactive Systems A DFRS model [4] provides a formal repre-
sentation of the requirements semantics. It has a symbolic and an expanded
representation. Briefly, the symbolic version is a 6-tuple: (I, O, T, gcvar, s0, F).
Inputs (I) and outputs (O) are system variables, whereas timers (T) are used to
model temporal behaviour. There is a global clock denoted gcvar. The element
s0 is the initial state. The last element (F) represents a set of functions, each
one describing the behaviour of one system component.

The expanded DFRS comprises a (possibly infinite) set of states, and a tran-
sition relation between states. This expanded representation is built by applying
the elements of F to the initial state to define function transitions, but also
letting the time evolve to define delay transitions. This expanded representation
can be seen as a semantics for symbolic DFRSs.

117

Figure 2 illustrates a DFRS for a simplified version of the control system
for safety injection in a nuclear power plant (NPP) described in [11]. If the
water pressure is too low (lower than 9 units), the system injects a coolant
into the reactor. In Figure 2, one can note that the corresponding DFRS has
one input and one output variable (the water pressure and the pressure mode,
respectively).

The system behaviour is captured by the function the safety injection system.
It has four entries. Each entry comprises a 3-tuple: a static guard, a timed guard
(here, empty), and the expected system reaction (a list of assignments). The
possible pressure modes are high, low, and permitted. While these values are
represented in the DFRS as numbers (high 7→ 0, low 7→ 1, permitted 7→ 2), they
are represented in the corresponding CPN as strings for legibility purposes.

In Figure 2, the first requirement (REQ001) captures the system reaction
when the current pressure mode is low (the pressure mode = 1), and the water
pressure becomes greater than or equal to 9. As in this example the system
reaction does not depend upon the time elapsed, we only have static guards.
When the situation previously described happens, the pressure mode changes to
permitted (the pressure mode := 2). Similarly, the other requirements describe
when the pressure mode changes to (from) low, permitted, and high.

Fig. 2. An example of DFRS (variables, types and functions)

2.2 Colored Petri Nets

Colored Petri Nets (CPN) are an extension of high-level Petri nets – a graphical
modelling language with formally defined syntax and semantics. As described in
[8], the formal definition of a CPN is given by a 9-tuple (Σ, P, T, A, N, C, G,
E, I), satisfying the following properties:

– Σ is a finite set of non-empty color sets (types).

118

– P is the finite set of all places.

– T is the finite set of all transitions.

– A is the finite set of all arcs such that P ∩ T = P ∩A = T ∩A = ∅
– N is the node function such that N : A→ P × T ∪ T × P
– C is the color function such that C : P → Σ

– G is the guard expression function such that G : T → Expr, and
∀t ∈ T : [Type(G(t)) = Bool ∧ Type(V ar(G(t))) ⊆ Σ]

– E is the arc expression function such that E : A→ Expr, and
∀a ∈ A : [Type(E(a)) = C(p(a))MS ∧ Type(V ar(E(a))) ⊆ Σ],
where p(a) is the place of N(a);

– I is the initialization function such that I : P → Expr, and
∀p ∈ P : [Type(I(p)) = C(p)MS]

We denote by Expr the set of expressions provided by the inscription lan-
guage (CPN ML), and by Type(e) the type of an expression e ∈ Expr, i.e.,
the type of V ar(e) (the values obtained when evaluating e). The subscript MS
denotes the multiset of the associated place.

Informally, a CPN model expresses both the states and the events of a system.
Events are represented by transitions (drawn as rectangles) and the states are
represented by places (drawn as ellipses or circles). These two kinds of nodes
are connected by arcs that indicate the direction in which tokens (data values)
are moved. Arcs are used to connect places with transitions, and vice-versa,
but never two places or two transitions. Places hold collections of tokens and,
thus, represent local states (markings). The global state (or global marking) of
a model is represented by the distribution of tokens throughout its places. The
places also have an initial marking representing the initial local state. Figure 3
shows part of the CPN obtained for the simplified NPP (explained in Section 3).

As described in [15], a transition typically represents an event that occurs
in the model. When this event occurs, the transition is said to fire. When a
transition is enabled it means that it is ready to fire. When a transition fires,
it is able to remove tokens from its input places and to produce new tokens
on its output places. The inscriptions in the arcs leading to a transition define
the quantity of tokens needed for enabling the transition. Moreover, qualitative
constraints can be specified for the tokens from the input places. This can be
done by the use of pattern matching or guards in the transition.

A guard is a predicate that must evaluate to true for enabling the transi-
tion. For a given transition, if it is possible to select a set of tokens from the
input places while satisfying these constraints, this transition is enabled. If an-
other transition also depends on some of the same tokens for being enabled,
the transitions are said to be in conflict. This property is part of what makes
(Colored) Petri Nets a very strong tool for modelling distributed and concurrent
systems with shared resources, parallel processes and other characteristics that
come with this type of systems.

The graphical definition of CPNs is supplemented by declarations of func-
tions, operations, constants, variables, color sets and priorities; all of them in a

119

functional programming language (CPN ML [9]): an extension of the more com-
monly known Standard ML [13]. Therefore, CPN models differ from traditional
Petri Nets by the fact that the tokens have types (color sets) and values.

The CPN modelling language also supports the specification of hierarchically
structured models as a collection of connected modules (or pages). This makes
it possible to work with different levels of abstraction. A module is itself a CPN
model (possibly hierarchical too). Structuring is performed through two mecha-
nisms: fusion places or substitution transitions. Here, we use the former. A fusion
place is a set containing multiple places that may be found in different modules.
This allows interaction to traverse boundaries of the modules in the model.

CPN also allows the specification of time-based behaviour [10]. This is ac-
complished adding time stamps to tokens. In this way, delays are expressed as
timing annotations in arcs and transitions. Although the DFRS is able to deal
with discrete and continuous time representation, we are not dealing with time
in our CPN representation yet.

3 CPN Model Generation

Intuitively, the behaviour of a DFRS is encoded as transitions that modify the
corresponding output variables, which are modelled as CPN places. Therefore,
the target of these transitions are these output places, and their source are
auxiliary places that provide to the transitions the system inputs. The generation
of CPN models from DFRSs is accomplished in three steps.

In the first step, input variables and their types are translated to CPN vari-
ables and color sets, respectively. In second step, output variables are mapped to
places along with the corresponding color set. In the last step, the DFRS func-
tions are represented in the CPN model as transitions. In what follows, we detail
these steps. To illustrate the relevant concepts, here and in the next section, we
consider the simplified NPP briefly described in Section 2.1.

Representing input variables For each input variable of the DFRS, a CPN
variable is created along with the corresponding color set (type). Sometimes, the
system reaction depends upon the current, but also the previous input value.
In such cases, besides creating a variable to represent the system input, we
also create another variable to store the previous input value. For instance,
considering the simplified NPP, we create two variables to represent the water
pressure: wp (water pressure) and pwp (previous water pressure), whose type
(color set) is INTWP – an integer ranging from 0 to 11.

Representing output variables In this case, they are represented by places
to denote the system state, along with variable for transmitting the previous
and current values, similarly to input variables. Color sets are also created to
represent the type of the output variables. When transitions that modify an
output variable are fired, it leads to the corresponding place changing its marking

120

and, thus, the value of the corresponding CPN variable accordingly. A place has
as initial marking the initial value of the corresponding output variable.

Considering the simplified NPP example, we have a single output variable
that represents the pressure mode. There are three possible modes: high, low,
and permitted. Therefore, we create a place (Pressure Mode), a variable (pm –
pressure mode), and a color set (PRESSURE – an enumeration comprising these
three values). This place is reached, for instance, when the transition REQ001
is fired (see Figure 3). As explained in what follows, CPN transitions are created
to represent the system requirements. The arc leading to the place Pressure
Mode has as inscription permitted, since the requirement REQ001 describes the
situation when the pressure mode becomes permitted.

Representing functions For each entry of a DFRS function, a page is cre-
ated to represent the behaviour of this entry. It simplifies visual inspection of
the model, since each page details just one possible system reaction. For eas-
ier traceability of CPN pages to the requirements, the page is named after the
requirement related to the considered entry.

Each page comprises some places and one transition. The transition (named
after the same requirement) represents a possible system reaction – how the
output variables should be updated. Therefore, this transition has outgoing arcs
to one or more places (the ones that represent output variables) that it should
modify when fired. Besides the places that represent output variables, there
are four other places (Input, Next Input, Next TO, and Test Oracles) that are
auxiliary elements used for generating test cases (later explained in Section 4.1).

To give a concrete example, consider the simplified NPP and the entry related
to REQ001 : (the pressure mode = 1 ∧ ¬(prev(the water pressure) >= 9) ∧
the water pressure >= 9, ∅, the pressure mode := 2). It means that when the
pressure mode is 1 (low), and the water pressure is greater than or equal to 9,
but it was not greater than or equal to 9 in the previous state (prev), the system
shall change the pressure mode to 2 (permitted). We note that, as previously
said, string enumerations are represent in DFRSs as numbers, whereas we use
the original strings in the CPN for legibility purposes.

For this entry, we create the page REQ001. In this page, there is a transition
REQ001. To be enabled, the guard associated to this transition needs to evaluate
to true. This guard ([not(pwp >= 9), (wp >= 9), (pm = low), (n = i)]) is a direct
translation of the guards of the corresponding function entry. The variable pwp
stands for the previous value of the water pressure. The last element of this
guard (n = i) is required to ensure the order in which this transition processes
the system inputs (later explained in Section 4.1).

Besides satisfying its guard, a transition may also need to know the current
and previous values of the system inputs, along with the value of the system
outputs. Note that the aforementioned guard also depends upon the value of a
system output – the pressure mode (pm). These values (tokens) are sent to the
transition REQ001 by the arcs emanating from the places Input and Pressure
Mode. When this guard evaluates to true, and the required tokens are available,

121

Fig. 3. Page created to represent the requirement REQ001

the transition fires and assigns permitted to the pressure mode. As previously
said, for every entry of each DFRS function, a page similar to this one is created.

4 Generating Test Vectors Based on CPN Simulation

In order to generate test cases via CPN simulation, it is necessary to complement
the model generated in the previous section with some auxiliary elements. This
is the subject of Section 4.1. Section 4.2 presents how test vectors are generated
via simulation of a CPN.

4.1 Auxiliary Components

After constructing a CPN to represent a DFRS (see Section 3), we now create
auxiliary components, which are used to generate test cases. These components
are always the same, but parametrized by the number of inputs and outputs.
Considering the constant InputQty, which is defined beforehand to limit the
number of generated inputs, the following auxiliary elements are created.

Generating entries A page (Generator) is created to generate input values
randomly. When fired, the transition Generate Inputs generates the system in-
puts, and transmits them, along with an index i, to the place Input (see Figure 4).
This index is used to ensure the order the generated inputs are consumed by the
transitions that represent the system behaviour. This index is initially 0, and is
incremented with the aid of the place Next. We note that the generated inputs
are also an input to the transition Generate Inputs. It is necessary because when
generating the next inputs, the token sent to Inputs might comprise the newly
generated values, but also the previous values of the inputs. When the number

122

Fig. 4. Page created to generate the inputs randomly

of generated inputs reaches InputQty, the transition Generate Inputs becomes
disabled. At this moment, all generated inputs (tokens) are stored in Input, and
ready to be consumed by the other transitions.

Dealing with no system reaction A page (NoAttendedReq) similar to those
that represent the requirements (DFRS functions) is created. Unlike those, al-
though it has a transition (noReq) that consumes the inputs (tokens in the place
Input) and increments the input ordering index, this transition does not change
the value of the places that represent output variables. This transition is en-
abled when no other transition is enabled, and it represents the idea that when
no system reaction is expected for a given input, the system does not change its
outputs (their values remain the same). To ensure that noReq is only enabled
when no other transition is enabled, it has a lower priority (P LOW).

Ordering the generated test vectors While the place Next Input is used to
define the order in which the inputs are processed, the place Next TO is used to
order the obtained test vectors. When a transition related to a requirement (or
the noReq) fires, it produces a token that represents a test vector: the received
inputs, along with the expected results. As one can see in Figure 5, this token
begins with an index z. This index, which is controlled by Next TO, establishes
an order for the tokens stored in Test Oracles. Another element of this tuple is

123

a label to track which requirement produced the output. This label allows us
to relate generated test vectors with requirements and, thus, extract coverage
information with respect to the system requirements.

Fig. 5. Page created to deal with no system reaction

Creating test case file The page TestCase stores the steps (test vectors) of the
generated test cases in a csv file. This page has two transitions to manipulate the
csv files: Write File and Close File. The transition Write File is enabled when
all inputs are processed, that is, when the index i (received from Next Input)
is greater than the defined number of inputs of the test case. The created test
vectors, which are stored in the place Test Oracles and ordered by the index z,
are sent to this transition when it fires.

When fired, this transition executes the associated code segment (shown
below) that creates a csv file. First, it creates a file (TC.csv), and adds to it
a header – the name of the columns, which are named after the system input
and output variables. Afterwards, it appends to this file a test vector every time
the transition Write File is fired. The other transition (Close File) has lower
priority and is enabled when all outputs are processed. When it fires, it closes
the file previously created. These transitions are shown in Figure 6.

if r=0.0 then outfile := TextIO.openOut("TC.csv") else ();

if r=0.0 then TextIO.output(!outfile,Head) else ();

if r<=(Real.fromInt (InputQty)) then

TextIO.output(!outfile, saida (r,wp,pm,req)) else ();

124

Fig. 6. Page created to save the test cases in a file

Repeated places Fusion sets are created for places that are repeated in more
than one page. For instance, the place Input is contained in all pages, except in
TestCase, so the fusion set Inputs is associated to all the places Input (see a thin
rectangle at the bottom of this place in Figures 3, 4 and 5). The same occurs to
the places Test Oracles, so the fusion set Tests is created. This place does not
occur in the page Generator.

The simplicity behind the creation of these auxiliary components, which are
in essence the same despite the system being modelled, shows how it is straight-
forward to extend the CPN that models a DFRS for the purpose of generating
test cases.

4.2 Test Vectors Generation

Once generated the model, as previously explained in Section 3, it is possible
to generate test cases automatically via CPN simulation: it randomly produces
inputs, along with the expected outputs. The tool (CPN Tools) has a number of
resources to run simulations; for instance, it can be performed with user interven-
tion or automatically, it can also be repeated n times (simulation replications).
Besides generating test cases, simulations can be used to validate the system
requirements.

The proposed model is constructed so that the simulation takes place in
three steps: generation of random inputs, processing the inputs by the transi-
tions obtained from the system requirements (or by the transition noREQ), and
recording the test case file. These steps are detailed below.

125

Entries generation In the first step, the inputs are randomly produced by
using the ran function. As initial values are considered those defined in the
DFRS, which are reflected as the initial marking of the place Input. The number
of inputs is initially preset and stored in the constant InputQty. The entries are
sorted with the support of place Next. Considering the NPP example, Figure 7
shows 7 entries randomly generated. Initially, the water pressure is 0. Later, it
is 10, 4, 7, 2, 3, 1, 11. We note that the second element of the generated tokens
refers to the previous value of the water pressure.

Fig. 7. Generating random entries

System reaction In the next step, for each input, the model verifies whether
there is at least one enabled transition. If so, this transition is fired, and, as a
result, it is obtained the expected system reaction. When firing a transition, it
produces as output a tuple. This tuple comprises an ordering index, the previous
and current values of the inputs and outputs, besides a label to track which
requirements produced the output. The outputs are sorted with the support of
the place Next TO. If for a given input there is no expected system reaction, the
transition defined in the page NoAttendedReq is fired. It produces as output a
new tuple keeping the output values the same. Considering the NPP example,
Figure 8 shows three test vectors generated and stored in Test Oracles via CPN
simulation.

126

Fig. 8. Obtaining the expected system reaction

Test vectors Finally, in the last phase, the transition Write File records the
test cases in a csv file. To accomplish this task, a code segment is used (shown in
Section 4.1), which is executed when this transition fires. The place Next Output
is used to keep the ordering of the outputs.

In the csv file, the generated test vectors are shown in a tabular form (see Ta-
ble 1). The first column (TIME) is just the ordering index previously explained.
The next two columns lists the system input, as well as the corresponding ex-
pected output. The last column provides traceability information between the
expected output with the system requirements – no req. refers to a test vector
that was generated by firing the transition noReq.

Initially, when the water pressures changes from 0 to 10 (time 0.0 and 1.0,
respectively), first, the pressure mode changes to permitted (according to the
requirement REQ001), then, immediately after, it changes to high (according
to the requirement REQ002). Afterwards, there is no transition associated with
a requirement that can fire, and thus, the transition noReq fires (repeating the
last vector).

Therefore, as one can see, the test generation approach proposed here behaves
according to the following cyclic pattern: first, it performs as many transitions
related to requirements as possible; when all of these transitions are not enabled,
it performs the noReq transition; finally, it receives new inputs.

The process for generating test cases via simulation of CPN does not involve
complex and intensive computations. Particularly, the reached system states are
dynamically computed considering the randomly generated inputs. For instance,
this approach contrasts with strategies that need to explore the system complete

127

Table 1. Example of a test case for the simplified NPP

TIME I: the water pressure O: the pressure mode REQ. Traceability

0.0 0 low no req.

1.0 10 permitted REQ001

1.0 10 high REQ002

1.0 10 high no req.

2.0 4 permitted REQ004

2.0 4 low REQ003

2.0 4 low no req.

3.0 7 low no req.

4.0 2 low no req.

5.0 3 low no req.

6.0 1 low no req.

7.0 11 permitted REQ001

7.0 11 high REQ002

7.0 11 high no req.

8.0 11 high no req.

state space first and, thus, minimises state explosion problems. To generate more
relevant test cases, the generation of inputs could be performed in a semi-random
fashion in order to satisfy, for instance, user-defined coverage criteria. This im-
provement is a future work topic.

5 Conclusion

We presented in this work a variation of the NAT2TEST strategy that gen-
erates test cases from natural-language requirements via simulation of Colored
Petri Nets (CPN). To accomplish this task, we define a systematic translation
procedure that encodes the internal model of the NAT2TEST approach (Data-
Flow Reactive System – DFRS) as a CPN. Afterwards, auxiliary components
are added to the CPN to allow generation of test cases via simulation. Further-
more, this model is also suitable to analyses that might uncover problems in the
original requirements, although this has not been the purpose of this paper.

There are several approaches to derive test cases from (semi-)formal models
or directly from requirements expressed in some (controlled) natural language.
Here we concentrate on approaches based on Petri nets.

A simple approach to generate test cases using CPN is proposed in [1]. The
advantage of this approach is that the specification based on CPN can be val-
idated by simulation (as in our case), but the state space analysis can lead to
state explosion, unlike our approach, since the reached states are computed on
demand. However, to perform analysis such as requirement completeness and
consistency, it is likely that the complete state would need to be visited and,
thus, our strategy would also fall into the state space problem.

An efficient approach for building a test suite using the PN-ioco conformance
relation is proposed in [12]. Differently from our approach, it does not consider as

128

input NL requirements. In [7], a method is proposed to convert UML 2.0 activity
diagrams to a CPN model and apply the Random Walk Algorithm to create test
sequences, differently from our strategy that is based on NL requirements. On
the other hand, it considers coverage criteria when generating test cases.

In [16], two techniques are proposed for concurrent systems. One uses CPN-
Tree and the other uses Colored Petri Net Graph (CP-graph). CPN-Graph is con-
sidered as finite state machines (FSM) and existing test case generation methods
based on FSM are applied. In CPN-Tree method the reachability trees reduced
by the equivalent marking technique are used to achieve the practical test suite
length. Again, the techniques are dependent on the data. Therefore, the major
drawback of the existing approaches are possible state space explosion (non-
scalability), which is minimised in our approach since we generate test cases via
simulation.

As future work, we intend to: (1) apply our approach to more complex
examples, (2) compare the obtained results with the other variations of the
NAT2TEST strategy, and (3) enhance our CPN model to consider temporal
properties of the requirements, besides hybrid systems.

Acknowledgments. We thank Embraer for the partnership related to the
NAT2TEST framework and, particularly, Braulio Horta and Ricardo Filho for
their valuable contribution. This work was supported by the National Institute
of Science and Technology for Software Engineering (INES3), funded by CNPq
and FACEPE, grants 573964/2008-4 and APQ-1037-1.03/08.

References

1. Cai, L., Zhang, J., Liu, Z.: A CPN-based Software Testing Approach. JSW 6(3),
468–474 (2011)

2. Carvalho, G., Barros, F., Carvalho, A., Cavalcanti, A., Mota, A., Sampaio, A.:
NAT2TEST Tool: from Natural Language Requirements to Test Cases based on
CSP. In: International Conference on Software Engineering and Formal Methods.
Springer International Publishing (2015)

3. Carvalho, G., Barros, F., Lapschies, F., Schulze, U., Peleska, J.: Model-Based Test-
ing from Controlled Natural Language Requirements. In: Artho, C., lveczky, P.C.
(eds.) Formal Techniques for Safety-Critical Systems, Communications in Com-
puter and Information Science, vol. 419, pp. 19–35. Springer International Pub-
lishing (2014)

4. Carvalho, G., Carvalho, A., Rocha, E., Cavalcanti, A., Sampaio, A.: A Formal
Model for Natural-Language Timed Requirements of Reactive Systems. In: Merz,
S., Pang, J. (eds.) Formal Methods and Software Engineering, International Confer-
ence on Formal Engineering Methods ICFEM, Lecture Notes in Computer Science,
vol. 8829, pp. 43–58. Springer International Publishing (2014)

5. Carvalho, G., Falcão, D., Barros, F., Sampaio, A., Mota, A., Motta, L., Blackburn,
M.: NAT2TESTSCR: Test case generation from natural language requirements
based on SCR specifications. Science of Computer Programming 95, Part 3(0), 275
– 297 (2014)

3 www.ines.org.br

129

6. Carvalho, G., Sampaio, A., Mota, A.: A CSP Timed Input-Output Relation and a
Strategy for Mechanised Conformance Verification. In: Formal Methods and Soft-
ware Engineering, LNCS, vol. 8144, pp. 148–164. Springer Berlin Heidelberg (2013)

7. Farooq, U., Lam, C., Li, H.: Towards automated test sequence generation. In:
Software Engineering, 2008. ASWEC 2008. 19th Australian Conference on. pp.
441–450 (March 2008)

8. Jensen, K.: Coloured Petri Nets – Basic Concepts, Analysis Methods and Practical
Use. Springer-Verlag1 (1996)

9. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. Springer Berlin Heidelberg (2009)

10. Jrgensen, J., Tjell, S., Fernandes, J.: Formal requirements modelling with exe-
cutable use cases and coloured petri nets. Innovations in Systems and Software
Engineering 5(1), 13–25 (2009)

11. Leonard, E., Heitmeyer, C.: Program synthesis from formal requirements specifica-
tions using apts. Higher-Order and Symbolic Computation 16(1-2), 63–92 (2003)

12. Liu, J., Ye, X., Li, J.: Colored Petri nets model based conformance test generation.
In: Computers and Communications (ISCC), 2011 IEEE Symposium on. pp. 967–
970 (June 2011)

13. Milner, R., Harper, R., Tofte, M.: The Definition of Standard ML. MIT Press
(1990)

14. Myers, G., Sandler, C., Badgett, T.: The Art of Software Testing. John Wiley
(2004)

15. Tjell, S.: Model-based Testing of a Reactive System with Coloured Petri Nets. In:
Hochberger, C., Liskowsky, R. (eds.) Informatik. LNI, vol. 94, pp. 274–281. GI
(2006)

16. Watanabe, H., Kudoh, T.: Test suite generation methods for concurrent systems
based on coloured Petri nets. In: Software Engineering Conference, 1995. Proceed-
ings., 1995 Asia Pacific. pp. 242–251 (Dec 1995)

130

Verifying Transformations of Java programs
using Alloy

Tarciana Dias da Silva, Augusto Sampaio, and Alexandre Mota

Universidade Federal de Pernambuco - Centro de Informática
50740-560, Pernambuco, Brazil
{tds,acas,acm}@cin.ufpe.br

Abstract. In this paper we verify Java transformations by using a
fourth–stage strategy. Initially we embed models in Alloy: a metamodel
for a subset of the Java, a model for each program transformation be-
ing investigated, and another one for a program called Validator that
exercises methods of each side of the transfomation. Secondly, we use
the Alloy Analyzer to find valid instances, corresponding to pairs (left
and right-hand sides of a program transformation) and instances of the
V alidator. If instances can be found, this means they describe well–
formed programs as long as transformation conditions, structural and
type constraints are formally stated in our models. Thirdly we devel-
oped a tool that translates the Alloy instances to Java; finally, these are
executed and the results used to verify whether there are any dynamic
semantic problems in the resulting programs.

Keywords: Java, Program Transformations, Alloy, Validation

1 Introduction

Program transformation (particularly, refactoring) is current practice in software
development. Usually, such transformations are available in IDEs, like Eclipse
or NetBeans. Unfortunately, in general neither the implementation nor a more
abstract specification of the transformation itself are validated. This can cause
behavioral changes as well as compilation errors after each transformation ap-
plication, which is clearly unproductive.

Works such as [1, 2] validate tools that implement refactorings. In [1], the
authors address the absence of precise refactoring specifications in modern avail-
able IDEs. They provide a high-level specification of common refactorings, but
in terms of pseudocode, in order to facilitate implementations. The authors also
compare their refactoring engine with the Eclipse one, using the Eclipse internal
test suite. They also give a formal correctness proof for their refactorings.

The work in [2] presents a technique to test Java refactoring engines based
on the generation of Java programs. The authors use Alloy for the generation
of random instances (supported by a Java metamodel), and translate them to
Java. In [2], after verifying that a generated instance is compilable, they apply
a refactoring (available in some IDE) on such an instance and a new program
is obtained. These programs (before and after a refactoring) are subjected to a

131

test campaign, where behavioral changes, as well as compilation errors caused
by the application of the refactoring, are evaluated. Unfortunately, both [1] and
[2] have some drawbacks: when some test fails, it is not clear what the source of
the problem is. It can be in the refactoring specification or in its implementation.

Complementarily to testing, formal languages provide a mathematically solid
reasoning mechanism to establish the soundness of transformations. In [8], a set
of algebraic laws is proposed for a subset of Java. Soundness is proved based
on a formal semantics. In [9] a set of behavior-preserving transformation laws
for a sequential object-oriented language is proposed with reference semantics
(rCOS). The work described in [6] proposes laws in the Java context but neglects
soundness proofs; the central barrier is the lack of a complete formal semantics
for Java. The work in [10] enhances the one in [9] and proposes a set of algebraic
laws for reasoning about object oriented programs with a reference semantics.

In the present work we propose a slightly different approach that combines
(bounded) model finding and testing. We propose a strategy to validate Java
program transformations grounded on a formal infrastructure built in Alloy [5].
Fig. 1 shows an overview of our strategy. In (1) we embed models in Alloy: a
metamodel for a subset of the Java, a model for each transformation (law) being
investigated and another one of a program generator that exercises methods of
each side of the transformation; we call this a Validator. Apart from syntactic
aspects, the embedded metamodel embodies a static semantics via constraints
that ensures type correctness. Therefore, in our approach, the only potential
issues caused by a transformation are behavioural ones. In (2), for a given trans-
formation, we use the Alloy Analyzer to generate instances (representations) of
the left–hand side (LS) and the right–hand side (RS) of the Alloy model of the
transformation, as well as instances of the Validator. In (3), we use E-JDolly
(an extension that we developed of the JDolly [2] tool) to translate these Alloy
instances into concrete Java programs. If no valid instances are found, the trans-
formation is unsatisfiable meaning that there is some predicate inconsistency,
which denotes a specification error. In this direction, the Alloy Analyzer can
detect syntax and static semantics problems. Finally, for each instance of the
transformation model, we run the validator on the programs for LS and RS, and
the results of the executions are compared; if they are not the same, then there is
a behavioural non-conformance in the transformation, also meaning a transfor-
mation specification error. In this way, the Validator class can capture problems
related to dynamic semantics. Preliminary results showed that transformation
failures can be detected during the specification analysis, without the need to
implement them in a source language or submitting them to a more elaborated
test campaign as did in [1, 2]. Instead we use the Alloy Analyzer, with adequate
models, and simple validating tests, in the Validator class.

In summary, the main contributions of this work are:

– a metamodel for a subset of Java in Alloy that is compliant to the Java Lan-
guage Specification [3] and generates only compilable programs, differently,
for instance, from [2];

132

– a model in Alloy representing each transformation. This model allows the
generation of the left– and right–sides of a transformation (in the Alloy
abstract syntax notation or Alloy instances format) and can be seen as a
precise transformation specification;

– a formal transformation engine, E–JDolly, which translates the Alloy ab-
stract syntax notation to the Java one;

– a Validation tool that checks (1) if all the constraints specified in the model
are consistent, avoiding the generation of programs with structural or static
semantics problems and (2) dynamic semantic problems, that cannot be
identified by the Alloy Analyzer but are identified in our strategy by testing
(through the Validator class).

Section 2 provides an overview of the algebraic style for presenting the trans-
formation laws. A brief introduction to Alloy as well as a metamodel for a subset
of Java in Alloy is presented in Section 3. Section 4 proposes a strategy for gen-
erating pairs of instances of programs corresponding to a given transformation
as well as the generation of the Validator instances. Section 5 presents our ex-
tension to the JDolly framework, called E–JDolly. Section 6 describes how our
tool can detect transformation specification errors which would cause compila-
tion or behavioral problems. Section 7 addresses related work. Finally, Section 8
describes conclusions and topics for future investigation.

Fig. 1. Overview of the strategy.

2 Overview of the Algebraic Style

Typically, in the object–oriented paradigm, an algebraic law establishes the
equivalence between two programs according to a program context represented
by the entire set of class declarations (cds), a Main class (Main), and also con-
sidering that some provisos are respected. In the presentation style used in [8],
also adopted here, conditions marked with (↔) must hold when performing the
transformation in both directions; conditions marked with (→) must hold for
the transformation from left to right, and those with (←) from right to left. In
addition, ads, cnds, and mds represent the attribute, constructor, and method
declarations, respectively; T represents an attribute type; and the symbol ≤
represents the subtype relation between classes.

Law 1 (Fig. 2) captures a transformation that moves an attribute to a su-
perclass and also the inverse transformation (from right to left). This inverse
transformation is used as one of the examples in this paper, where the attribute
of class B is moved to class C. The proviso (←) of this law states that the at-
tribute can be moved provided it does not already belong to the set of attributes
of the class C (1). Besides, there must be no access to this attribute by any

133

subclass of B, excluding the subclasses of C (2). The proviso (→) of this law
is more simple: the attribute can be pulled up to class B provided there must
be no declaration of this field in its subclasses. The constraints established by
this algebraic law are reflected in the law–specific model (Fig. 1, (1)), detailed
in Section 4.

Fig. 2. Law 1 (move attribute to superclass and the inverse). Law 6 in [6]

Law 2 in Fig. 3 captures the moving of an original method to its superclass
and the inverse transformation. This is similar to the push down method refac-
toring, mentioned in many works such as [1, 2]. The proviso (↔) states that the
method can be pulled up or pushed down provided there is no access to super or
private attributes in its body (1). In addition the method is not declared in any
subclasses of B (2) and is not private (3). The proviso (→) requires there is no
other method with the same signature and arguments in class B (right) (1) and
the body of the method being pulled up do not contain any uncast occurrences
of the keyword this or expressions in the form ((C)this).a, for any protected
attribute a in the set of attributes of C class (2). Finally, proviso (←) requires
there is no method declaration in C class (left) and (2) is similar to the condition
(← (2)) of Law 1 (Fig. 2). As already mentioned, transformations in this style
are the main input for our validation strategy.

3 Java metamodel embedding in Alloy

An Alloy specification can be represented by signatures, fields, constraints (facts,
predicates or assertions) and functions. Each element declared as a signature rep-
resents a type and can also be associated to other elements by fields (or relations)
along with their types. For instance, Fig. 4 shows a type Class (and other types it
relates with) that owns the following fields: id, extend, methods and fields whose
types, in turn, are, respectively: ClassId, Class, Method, Field. The keyword one
in the declaration of the relation id indicates multiplicity—in this case it means
that a type Class can only be associated with exactly one ClassId. Additionally,
the relation extend associates the class declared in the signature with at most
one element of type Class—this is ensured by the keyword lone. The relations
methods and fields represent the set of elements of types Method and Field, re-
spectively. Observe that ClassId, MethodId and FieldId are all subsignatures or

134

Fig. 3. Law 2 (move method to superclass and the inverse). Law 14 in [6]

extensions of type Id. Subsignatures in Alloy are subsets mutually disjoint of
parent signatures. As can be seen, in our Java metamodel specification, the sig-
natures and their respective relations are analogous to classes and associations
in the UML class diagram (see Fig. 4—left).

Code 1.1. Representation of the MethodInvocation signature

1 s i g MethodInvocation extends StatementExpress ion {
2 pExp : lone PrimaryExpression ,

3 methodInvoked : one Method ,

4 param : lone Type

5 }

Running the Alloy Analyzer on a specification creates an Alloy model (in-
stances). Each Alloy instance is composed by the objects generated for each
signature defined in the specification. The relationships among these objects
rely on constraints, which are Java well-formedness rules in this paper. Fig. 4
(left) is a subset of our Java metamodel depicted in Fig. 5. It is used to show a
connection between UML and Alloy. Code 1.1 shows MethodInvocation in Alloy.
The pExp and param relations link a MethodInvocation with at most one Prima-
ryExpression and Type, respectively. In the last case, for simplification purposes.
This constraint can be seen in the associations with MethodInvocation in Fig. 5.

3.1 Well-formedness rules

To ensure the well-formedness rules, some predicates and facts are specified in
our Java metamodel like noCalltoUndefinedField (see Code 1.2). Such predicates
avoid, for example, access to an undefined field. Predicate noCalltoUndefined-
Field states that in all cases where the access to the field is through a PrimaryEx-
pression such as newCreator (fa.pExp.cf = c), then there are two possibilities:
(1) the field belongs to the fields of the class c associated to the newCreator
expression (fa.fieldInvoked in c.fields), and the field is public or it has no acces-
sibility qualifier (#(fa.fieldInvoked.acc) = 0)—for simplification purposes, we

135

Fig. 4. An UML class diagram and its representation in Alloy

assume that all classes are in the same package, there is no Package element in
our model; or (2) the field belongs to the fields of some class in the parent level
of class c ((fa.fieldInvoked in (c.ˆextend).fields)), and is not private nor with a
default accessibility qualifier. On the other hand, when the access to the field is
through a PrimaryExpression such as this, what changes is that the associated
field must lie in the class itself; and when the access is through super, the field
must lie in classes in the parent level of class c and must not be private.

Code 1.2. Predicate noCalltoUndefinedField

1 pred noCal l toUnde f inedFie ld [] {
2 a l l c : Class , f a : F i e ldAcces s | (f a . pExp . c f = c) =>

3 (f a . f i e l d Invoked in c . f i e l d s &&

4 (f a . f i e l d Invoked . acc in pub l i c | | #(fa . f i e l d Invoked . acc) = 0))

5 | |
6 ((f a . f i e l d Invoked in (c . ˆ extend) . f i e l d s) &&

7 (f a . f i e l d Invoked . acc ! in p r i v a t e | | #(fa . f i e l d Invoked . acc) = 0))

8 a l l c : Class , f a : F i e ldAcces s | (f a . pExp in t h i s) =>

9 (f a . f i e l d Invoked in c . f i e l d s)

10 a l l c : Class , f a : F i e ldAcces s | (f a . pExp in super) =>

11 (f a . f i e l d Invoked in c . f i e l d s && fa . f i e l d Invoked . acc ! in p r i v a t e)

12 }

Due to space limitation, it is not possible to explore all details of our Java
metamodel specification but the complete code is publicly available.1. We define
its elements as close as possible to the ones in the Java Language Specification
[3]. Even considering a subset of the language and some simplifications, the well-
formedness rules guarantee a 100% of compilable programs, different from the
model presented in [2], which generates only a 68,8% of compilable programs.

4 Metamodel for Transformations and V alidator

A second metamodel, for each algebraic law, is also specified in Alloy. This one
uses the metamodel described in the previous section to represent the elements,
such as classes and provisos, involved before and after the transformation de-
scribed by the algebraic law (see Section 2). Hence, the Alloy Analyzer can
simultaneously generate the Alloy instances for the programs on the left– and
right–hand sides (as well as the instances representing the V alidator for them)
of each transformation.

1 They can be downloaded from http://www.cin.ufpe.br/˜tds/phd/JTransformations.

136

Fig. 5. Java metamodel embedded in Alloy

Fig. 6 illustrates a (simplified) set of related objects in an Alloy instance,
generated by the law–specific Alloy model (Code 1.3). Recall that in Law 1
(Section 2), we have three classes A, B, and C. We can see object instances of
different types such as type Class like Class6 (which represents the A class in
Law 1 (Fig. 2)), and subsignatures of type Class like BRight, BLeft, CRight,
CLeft (see line 3, Code 1.3) and Validator (see line 3, Code 1.13); the ones
in white dotted rectangles are subsignatures of type id like ClassId 0 (of type
ClassId) and FieldId 0 (of type FieldId). The gray dashed ones are of type
Field like Field2 (the one that is being moved from right to left) and the ones
in dotted dark gray are of type Method. Observe that the relations among all of
these elements are represented by the arrows. For instance, the object instance
Class6 is in the extend relation of both BLeft and BRight. We opt to generate
only one class (Class6), instead of two like ALeft and ARight, because there is
no special rule concerned with the A classes and this minimizes the complexity
of the Alloy model—by reducing the number of signatures and verifications.

Fig. 6. Example of an Alloy instance generated, with its main elements

Code 1.3. Simplification of the Law 1 (Fig. 2) coding main part

1 module lawSpec i f i cMode l

2 open val idatorModel

3 one s i g BRight , CRight , BLeft , CLeft extends Class {}
4 pred law1RightToLeft [] {
5 twoClas se sDec la rat ionInHie rarchy []

137

6 mirroringOfTwoClassesDeclarationsExceptForTheFieldMoved []

7 law1 []

8 }
9 run law1RightToLeft f o r 10 but 15 Id , 15 Type , 15 Class

The Alloy predicate named law1RightToLeft (Code 1.3, lines 5 through 7)
groups all the necessary predicates to be called in order to capture the transfor-
mation described in Law 1 (Fig. 2) (right to left). The first one, named twoClass-
esDeclarationInHierarchy, is shown in Code 1.4. It requires that there must be
at least one class in the B’s extend relation (lines 2 and 3), which is the A class—
the left or the right–hand side (line 3). This is ensured in the Class signature
(first metamodel, Section 3) because there the extend relation has at most one
class (extend: lone Class). Besides, BRight is required to be in the CRight’s ex-
tend relation (line 5) and BLeft in the CLeft’s extend relation (line 6). In other
words, CRight is the BRight’s son and CLeft is the BLeft’s son. In addition,
these classes are required to have at least 2 sons (lines 15 and 16)—only to make
the set of classes more interesting. The predicate called from lines 8 to 11, named
noMirrorClassExtendsTheOther, is auxiliar and is used to avoid left classes to
extend the right ones and vice-versa, because in fact these classes are the same
but in different chronological order (before and after the transformation). For
the same reason, the predicate c1DoesNotContainc2Reference is called (lines 13
and 14) to avoid left classes referencing right ones and vice-versa. The predicate
in Code 1.4 is used in all laws that follow the structural pattern described in
Law 1, with classes A, B and C in a hierarchy, which is also the case for Law 2.

Code 1.4. Predicate twoClassesDeclarationInHierarchy

1 pred twoClas se sDec la rat ionInHie rarchy [] {
2 some BRight . extend

3 some BLeft . extend

4 BRight . extend = BLeft . extend

5 BRight in CRight . extend

6 BLeft in CLeft . extend

7 a l l b l : BLeft , br : BRight , c l : CLeft , c r : CRight |
8 noMirrorClassExtendsTheOther [br , b l] &&

9 noMirrorClassExtendsTheOther [cr , c l] &&

10 noMirrorClassExtendsTheOther [br , c l] &&

11 noMirrorClassExtendsTheOther [cr , b l]

12 a l l c1 : (∗ extend) . BRight , c2 : (∗ extend) . BLeft

13 | c1DoesNotContainc2Reference [c1 , c2] &&

14 c1DoesNotContainc2Reference [c2 , c1]

15 #(extend . BRight) > 2

16 #(extend . BLeft) > 2

17 }

The next predicate in Code 1.3, named mirroringOfTwoClassesDeclaration-
sExceptForTheFieldMoved guarantees that left and right classes are the mirror
from each other except for the field being moved by the transformation. This
means that methods of BRight and BLeft, and those of CRight and CLeft, have
a correspondence as well as their fields. This is also required for their extend
relation as a simplification. Hence, there must exist a symmetry of the internal
fields and methods of classes which are B’s sons (except for the C’s ones).

138

Finally, the last predicate in Code 1.3 is law1. It is shown in Code 1.5 and
moves the field f from right to left through the predicate movingASpecificField-
FromRightToLeft and restricts access to this field through predicate restrictFiel-
dAccess. The former is shown in Code 1.6 and ensures that the field f exists only
in BRight and CLeft classes (lines 2 and 3), but not in the other classes (line
4). The latter is shown in Code 1.7 and is an embedding of the proviso (← (2))
of Law 1 (Fig. 2). It requires that classes that inherit from B (except for the
C ones) do not have access to the specific field moved. Thus, the predicate re-
strictFieldAccess guarantees that there is no FieldAccess whose class in its pExp
relation of newCreator type (see Fig. 5) is in the set of classes that are subtypes
of BRight but not from CRight (predicate classInBSubtypesButNotCSubtypes),
referenced in line 1 and detailed in Code 1.8.

Code 1.5. Predicate for Law 1 (Fig. 2)

1 pred law1 [] {
2 one f : F i e ld | movingASpecif icFieldFromRightToLeft [f] &&

3 r e s t r i c t F i e l dA c c e s s [f]

4 }

Code 1.6. Predicate that moves the field from BRight to CLeft

1 pred movingASpecif icFieldFromRightToLeft [f : F i e ld] {
2 f in BRight . f i e l d s

3 f in CLeft . f i e l d s

4 a l l c :{ Class−BRight−CLeft} | f ! in c . f i e l d s

5 CRight . f i e l d s = CLeft . f i e l d s − f

6 BRight . f i e l d s − f = BLeft . f i e l d s

7 }

Code 1.7. Predicate that restricts the access to the field moved.

1 pred r e s t r i c t F i e l dA c c e s s [f : F i e ld]{
2 no c f i : F i e ldAcces s | classInBSubtypesButNotCSubtypes [c f i . pExp . c f]

3 && c f i . f i e l d Invoked=f

4 }

Code 1.8. Predicate that states c is subtype of B (excluding C subtypes)

1 pred classInBSubtypesButNotCSubtypes [c : Class] {
2 c in (∗ extend . BRight − ∗ extend . CRight) | |
3 c in (∗ extend . BLeft − ∗ extend . CLeft)

4 }

Law 2 (Fig. 3) is defined in our Alloy model in almost the same way as Law 1
in Fig. 2, since they typically follow the same template. Code 1.9 shows the trans-
formation from right to left, which is equivalent to the push down method refac-
toring. Predicate mirroringOfTwoClassesDeclarationsExceptForTheMethod, in line
3, is similar to the predicate mirroringOfTwoClassesDeclarationsExceptForThe-
FieldMoved explained earlier. So it is also the case of the predicates movin-
gASpecificMethodFromRightToLeft and restrictMethodAccess, invoked in predi-
cate law2, in line 3. The predicate law2Proviso1 (Code 1.11) is the most signifi-
cant difference between the specifications from Law 1 (Fig. 2) and Law 2 (Fig. 3).
This predicate captures what is specified in proviso (↔) (1) in Law 2: no super
or private attributes appear in the body of the method being moved. Since the
only way for this fact to happen in our model is through an AssignmentExpres-
sion, then the predicate states that for all AssignmentExpression inside the body

139

of the method being moved (m.b.statements.((*tail).first)))—line 2, Code 1.11–
there is no pExpressionLeft of that assignment whose pExp relation (in case of a
MethodInvocation) is in the super set of signature instances (line 2, Code 1.12) or
no pExpressionLeft whose fieldInvoked (in case of a FieldAccess) has the private
accessibility (line 3, Code 1.12). See also Fig. 5 to remember these relationships.

Code 1.9. Predicate that captures the transformation from right to left in Law 2.

1 pred law2RightToLeft [] {
2 twoClas se sDec la rat ionInHie rarchy []

3 mirroringOfTwoClassesDeclarationsExceptForTheMethod []

4 law2 []

5 }

Code 1.10. Predicate law2.

1 pred law2 [] {
2 one m:Method | movingASpecificMethodFromRightToLeft [m] &&

3 re s t r i c tMethodAcces s [m] && law2Proviso1 [m]

4 }

Code 1.11. Predicate that captures the proviso (↔),Law 2.

1 pred law2Proviso1 [m:Method] {
2 a l l ae : AssignmentExpression | (ae in m. b . statements . ((∗ t a i l) . f i r s t)) =>

3 noSuperOrPrivateFie ldAccess [ae .∗ pExpress ionRight]

4 }

Code 1.12. Predicate that captures no access to super or private attributes.

1 pred noSuperOrPrivateFie ldAccess [ae : AssignmentExpression] {
2 ae . pExpress ionLe f t . pExp ! in super | |
3 ae . pExpress ionLe f t . f i e l d Invoked . acc ! in p r i v a t e

4 }

The Validator model (simplified) is shown in Code 1.13. It states that the
V alidator class does not contain fields, sons or parents (line 5) and it only
contains one method (line 6), that is public (line 7), unique for this class (line
8 and 9) and that cannot be invoked (lines 10 and 11) by other methods in
other classes in the model. Since the method in the Validator instance will be
translated to a main method, then for every StatementExpression inside it, its
PrimaryExpression cannot be this or super. This is stated from lines 12 to 17.

Code 1.13. Simplification of the Validator model.

1 module va l idatorMode l

2 open javametamodel

3 s i g Va l idator extends Class {}
4 f a c t r ega rd ingVa l ida to rC la s s {
5 #Val idator . f i e l d s=0 && #(extend . Va l idator)=0 && #(Val idator . extend)=0

6 && #(Val idator . methods)=1

7 a l l m:Method | m in Val idator . methods => m. acc in pub l i c

8 a l l m:Method | a l l c :{ Class−Val idator } | (m in c . methods) =>

9 m ! in Val idator . methods

10 one m: method | no mi : MethodInvocation |
11 m in Val idator . methods && mi . methodInvoked = m

12 a l l ae : AssignmentExpression |
13 ae in Va l idator . methods . b . statements . ((∗ t a i l) . f i r s t) =>

14 noReferenceToThisOrSuperInAssignments [ae .∗ pExpress ionRight]

15 a l l m:Method | a l l mi : MethodInvocation | m in Val idator . methods &&

16 mi in (m. b) . statements . ((∗ t a i l) . f i r s t) =>

17 mi . pExp ! in t h i s && mi . pExp ! in super

18 }

140

5 E–JDolly
E-JDolly is a Java program that translates the Alloy instances (see Section 4)
into Java. E-JDolly redesigns JDolly [2]. Apart from the fact that our metamodel
is significantly different from the one used by JDolly in [2], E–JDolly takes
as input instances of a transformation specific model, as well as instances of
the V alidator. It then generates Java programs for the instances of left– and
right–hand sides of the transformation, as well as for instances of the V alidator;
furthermore, all these are guaranteed to be compilable.

E–JDolly identifies related (left and right) Java classes from an Alloy trans-
formation instance. For example, Fig. 6 shows an Alloy instance for our Alloy
specification, as explained in Sections 3 and 4. In Fig. 6, Class4 and Class2, as
well as Class5 and Class3, are related because they play corresponding roles on
the left– and the right–hand sides. CLeft and CRight are the easiest to identify,
as well as BRight and BLeft, because of their types. It is important to emphasize
that object instances of type Class are always generated as pairs.

After identifying related classes in the Alloy instances, E–JDolly maps an
Alloy abstract syntax tree into two Java abstract syntax trees (one for the left–
and another for righ–hand side of the transformation). Later these two Java
trees are stored in Java files, compiled and executed. Finally the ids of the
corresponding classes are identified (as default, the ids of the left classes are
used) because in the validation phase (see Section 6), they are executed by the
Validator class in both program contexts (left and right). Fig. 7 shows the class
diagram for Java classes generated by E–JDolly from the Alloy instance in Fig. 6.

Fig. 7. Left and right classes representing the transformation in Law 1.

6 Validating the transformations

The specifications shown in Section 4 for Law 1 and Law 2 generate only well–
formed pairs of programs (left– and right–hand sides of a transformation), ac-
cording to the exaustive analysis provided by the Alloy Analyzer and within a
given scope (line 9, Code 1.3). This guarantees no structural or static seman-
tic problems in the pairs of programs as well as in the Validator class. This is
confirmed by the Validate step (see (4) in Fig. 1) that compiles (in Java) each
side of each transformation (after the translation of the E–JDolly) and no errors
are found. In addition, the execution of the generated method in the Validator

141

class in each side of each transformation also testifies the absence of dynamic
execution problems.

In order to show that our strategy would detect structural and static semantic
problems, suppose we change the body in the predicate in Code 1.8, which is
referenced in Code 1.7, to the one presented in Code 1.14. In this new body,
the B (or C) class is not included as its own subtype, only their children are,
because there we are using transitive closure (ˆ) instead of a reflexive transitive
closure (∗). This modification causes the Alloy Analyzer to consider the model
as possibly inconsistent, and it does not generate any instances.

Code 1.14. Mutation of the predicate in Code 1.8

1 pred classInBSubtypesButNotCSubtypesWrong [c : Class] {
2 c in (ˆ extend . BRight − ˆ extend . CRight) | |
3 c in (ˆ extend . BLeft − ˆ extend . CLeft)

4 }

In order to better understand the error, first of all observe that the mod-
ification violates the proviso (←) of the Law 1 (Fig. 2). More specifically, D,
mentioned in this proviso, assumes the value of a class of type BRight when it
should not, because this class belongs to the set of the B’s subtype—it is B itself.
Mapping the situation to our model, a FieldAccess, using its pExp relation of type
newCreator (a subtype of PrimaryExpression), whose cf relation, in turn, is of
class BRight would be generated trying to access the specific field (relation field-
Invoked of FieldAccess signature) being moved by the transformation. However,
we have predicates that guarantee the symmetry among left and right classes,
as mentioned in Section 4, which implies in having the same FieldAcess element
signature, but with cf relation of class BLeft instead (in left–hand side classes).
This evaluation together with the predicate noCallToUndefinedField (Code 1.2)
is contraditory since there is no field in the class BLeft, only in BRight. Thus,
programs such as the ones presented in Fig. 8 are not generated. This program
shows the class ClassId 4 (left) trying to access the field (fieldid 2) (It is no
longer available because it was moved from the right to the left–hand side). We
have explored several variations of the transformation that generate syntactic
errors, and in all cases our Alloy model has not generated any instances, which
gives some evidence that the metamodel embedded in Alloy indeed captures the
syntax and static semantics of the considered Java subset.

With regard to dynamic semantic problems, suppose we change the specifi-
cation of Law 2, shown in Section 4, to apply a typical rule used in the push
down method refactoring: when, inside the body of a method to be pushed down,
there is an access to another method in the same class (through the keyword
this), then we change the access from this to super. The intention is to give
some flexibility to the application of the refactoring, instead of rejecting its ap-
plication or avoiding compilation errors if we consider the opposite direction: the
pull up method or the transformation in Law 2 from left to right. Then some
adjustments in the input program are performed.

As our model in Alloy is faithful to the algebraic law, a pair of programs to
represent this scenario would never be generated because this flexibility is not
contemplated. However, in order to show that a behavioral problem would be

142

found by our solution (when this flexibility is applied to the specification in our
Alloy model), we include some mutation as seen in Code 1.15.

Fig. 8. Classes showing anomalies in the program transformation.

Observe that, due to the change from this to super in some MethodInvocation
calls inside the body of the method being pushed down, the bodies (right and
left) of the method being moved are different; so we have to create two distinct
method signatures in Alloy (line 1, Code 1.15)— method M1 on the right–hand
side and M2 on the left. Note that the main difference of this specification to the
one discussed in Section 4 is in the predicate mutation (lines 21 to 27, Code 1.15),
where we guarantee for each MethodInvocation (in the M1 body) whose pExp
relation (type PrimaryExpression) is in the this set of signature instances (line
23) that there is another one (inside the M2 body) whose same relation (pExp)
is in the super set of signature instances (line 24).

With this new specification for Law 2 (from right to left), programs such as
the one in Fig. 9 are generated, with behavioral problems since, before the trans-
formation, when for instance we invoke the method methodid 1 from ClassId 6
(new ClassId 6().methodid 1()), the result was 2 and, after the transformation,
is 0. This occurs because, before, as methodid 1 is invoked on an instance of Clas-
sId 6 (new ClassId 6().methodid 1()), which in turn invokes methodid 0(), using
the qualifier this, the keyword this refers to the implementation of the method
methodid 0 in ClassId 6, which yields 2. On the other hand, after the trans-
formation, methodid 1() invokes methodid 0 of the super class of the ClassId 6
class, which yields 0. Observe that the test itself (new ClassId 6().methodid 1())
does not need to be sofisticated to catch behavioral problems but instead the
programs where these tests would be applied.

Code 1.15. Mutation of the Law2 specification

1 one s i g M1, M2 extends Method {}
2 pred law2RightToLef t Incorrect [] {
3 twoClas se sDec la rat ionInHie rarchy []

4 mirroringOfTwoClassesDeclarationsExceptForTheMethod []

5 law2Mutation []

6 }
7 pred law2Mutation [] {
8 movingASpecificMethodFromRightToLeftMutation [] &&

9 re s t r i c tMethodAccessRight [M1] && res t r i c tMethodAcce s sLe f t [M2] &&

143

10 law14Proviso1 [M1] && law14Proviso1 [M2]

11 }
12 pred movingASpecificMethodFromRightToLeftMutation [] {
13 M1 in BRight . methods

14 M2 in CLeft . methods

15 a l l c :{ Class−BRight} | M1 ! in c . methods

16 a l l d :{ Class−CLeft} | M2 ! in d . methods

17 CRight . methods = CLeft . methods − M2

18 BRight . methods − M1 = BLeft . methods

19 mutation []

20 }
21 pred mutation [] {
22 a l l mi : MethodInvocation | some mi2 : MethodInvocation |
23 (mi in M1. b . statements . (∗ t a i l) . f i r s t && mi . pExp in t h i s) =>

24 (mi2 in M2. b . statements . (∗ t a i l) . f i r s t && mi2 . pExp in super &&

25 equalsMethodInvocat ion [mi , mi2] &&

26 equalsMethod [M1, M2, mi , mi2])

27 }

Fig. 9. Classes generated according to incorrect specification shown in Code 1.15.

7 Related Work

Many authors refer to preconditions incompleteness as the main source of pro-
gram misbehavior after refactoring application. In [12] a library containing pre-
conditions and ways to check them is available in different languages. A type
constraint–based approach is proposed in [13] to check preconditions of refac-
torings. We complement both works as our strategy allows one to specify a
transformation (where preconditions are a mandatory part–see Section 2) and
validate formally.

Expressing transformations correctly for complex languages like Java is dif-
ficult. Algebraic laws help by focusing on compositionality. A common feature
of all the works in this direction, described in Section 1, is that they are based
on extremely simplified languages, when compared to languages like Java. The
advantage is that these languages have a formal semantics and allow one to prove
soundness of the transformations.

Apart from what was mentioned about the work in [2], this work uses the
Saferefactor tool [7] to assert whether there are any behavioral discrepancies
among the left– and right–hand side programs (this last one generated by some

144

IDE plugin implementation). When a test fails, its origin can be the specification
or the implementation engine. As aforementioned, the work in [1] provides a high-
level specification of common refactorings. Their specification are based on the
concepts of dependency preservation, language extensions, and microrefactor-
ings. Their refactoring engine is implemented as an extension to the JastAddJ
Java compiler [14]. In addition, the engine is verified using both correctness
proofs and three test suites: their own, one for Eclipse and one for IntelliJ (pub-
licly available). Despite this, the work [2] found bugs in the engine presented by
[1]. Nevertheless, again, it is not known if the error comes from a specification or
implementation flaw. In our case the flaw is always in the refatoring specification.

8 Conclusions and Future Work

This work presents a strategy for validating Java program transformations and
algebraic laws relying on formal verification techniques (particularly, Alloy and
the Alloy Analyzer). The strategy consists in building a metamodel for a subset
of Java along with a model for each transformation (law) being investigated
and for a program generator (the Validator) that exercises methods of each
side of the transformation, through a random sequence of statements generated
inside its main method. The Alloy Analyzer produces, from these models, Alloy
instances that represent a set of classes in Java involved in a transformation
so that it is possible to identify the ones before and after the transformation.
E–JDolly translates the Alloy instances into Java programs. Afterwards, the
Validator class is executed and its main method applied in the context of the
classes generated for the left– and the right–hand sides of a transformation. This
enables detecting behavioral errors; compilation errors are inherently avoided by
our metamodel that considers both syntactic and static semantic analysis.

The Alloy Analyzer acts, with an adequate model, as a powerful test gen-
erator since it generates, according to the transformation scenario (modeled in
law–specific model, Section 4), different possibilities of classes, their relationships
and properties such as methods and attributes, elements inside method bodies as
well as the other properties included in our Java metamodel (Section 3). Thus,
structural problems are avoided through the own specification whilst with simple
validating tests, as done with the class Validator, Section 6, behavioral problems
can also be detected, similar to the ones shown in [1, 2]. Once the specification is
validated, then a developer can implement the transformations with some con-
fidence. In addition, as a future work, our refactoring Alloy implementation can
be easily coupled in an IDE for implementing transformations in specific pro-
grams. It only requires an additional translator: from Java to Alloy, in such a
way that this process would be transparent to the IDE user.

Our experiments so far helped to validate our own metamodel and the al-
gebraic laws proposed in [8], and adapted for Java in [6]. Despite the results
already achieved, there are some interesting directions for extending the pro-
posed strategy. As a next step we aim at enhancing our strategy by adding steps
to consider LS’ (Fig. 1) as an input to refactoring engines such as Eclipse. By ap-
plying the engine refactoring implementation, we get a new right–side program
(RS”) in Java. We then translate this Java code back to Alloy and compare it

145

with LS’ within the Alloy Analyzer. This allows a way of checking the soundness
of refactoring engines in a more rigorous way than testing. Besides, we intend
to design a controlled experiment to further compare our strategy with the ones
proposed in [1, 2].

Acknowledgments. This work was supported by the National Institute of
Science and Technology for Software Engineering (INES2), funded by CNPq
and FACEPE, grants 573964/2008-4 and APQ-1037-1.03/08.

References
1. Schäfer, M. Specification, Implementation and Verification of Refactorings, Phd

Thesis, 2010.
2. Soares, G., Gheyi, R., Massoni, T: Automated Behavioral Testing of Refactoring

Engines. In: IEEE TSE Transactions on Software Engineering, vol. 39, number 2,
pp 147–162. (2013)

3. Java Language Specification, http://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
4. Jackson, D., Schechter, I., and Shlyahter, I.: Alcoa: the Alloy constraint analyzer.

In: 22nd ICSE International Conference on Software Engineering, pp 730–733. ACM
Press, New York (2000)

5. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press.
(2006)

6. Duarte, R., Mota, A., Sampaio, A.: Introducing concurrency in sequential Java via
laws. In: Information Processing Letters. vol. 111, issue 3, pp 129–134, elsevier.
(2011)

7. Soares, G., Gheyi, R., Serey, D., Massoni, T.: Making program refactoring safer. In:
IEEE Software, vol. 27, pp 52–57. (2010)

8. Borba, P., Sampaio, A., Cavalcanti, A., and Cornelio, M.: Algebraic reasoning for
object-oriented programming. In: Science of Computer Programming, vol. 52, pp
53–100 (2004).

9. Silva, L., Sampaio, A., and Liu, Z.: Laws of object-orientation with reference se-
mantics. In: 6th IEEE SEFM International Conference on Software Engineering
and Formal Methods, pp 217–226, Washington (2008).

10. Palma, G. Algebraic Laws for Object Oriented Programming With References,
Phd Thesis, 2015.

11. Naumann, D., Sampaio, A., Silva, L.: Refactoring and representation independence
for class hierarchies. In: Theoretical Computer Science, vol. 433, pp 60–97 (2012).

12. Overbey, J.L., Johnson, R.E.: Differential precondition checking: A lightweight,
reusable analysis for refactoring tools. In: 26th IEEE/ACM ASE International Con-
ference on Automated Software Engineering, pp 303–312, New York (2011).

13. Tip, F., Kiezun, A. and Baumer, D.: Refactoring for generalization using type con-
straints. In: 18th ACM SIGPLAN OOPSLA Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, pp 13–26, New York (2003).

14. Ekman, T. and Hedin, G.: The JastAdd Extensible Java Compiler. In Object–
Oriented Programming, Systems and Languages (OOPSLA), pages 1–18. ACM
Press (2007)

2 www.ines.org.br

146

Instantiation Reduction in Iterative
Parameterised Three-Valued Model Checking

Nils Timm and Stefan Gruner

Department of Computer Science, University of Pretoria, South Africa
{ntimm,sgruner}@cs.up.ac.za

Abstract. We introduce an enhanced approach to parameterised three-
valued model checking (PMC) based on iterative parameterisation. The
model is parameterised until it is precise enough for a definite verification
result. Results from past iterations are reused to reduce the number of
parameter instances in future iterations. Our approach is based on a SAT
encoding. In the initial iteration we construct an over-approximation of
all possible instances in later iterations. For this over-approximation we
compute the set of all satisfying interpretations. All subsequent iterations
are then accomplished by validating whether for each instance one of the
precomputed interpretations is satisfying as well, which is less costly than
solving each SAT instance from scratch. Our iterative parameterisation
approach leads to a substantial speed-up of PMC.

1 Introduction

Three-valued abstraction [11] is an established technique in software verification.
It proceeds by generating a state space model of the system to be analysed over
the values true, false and unknown, where the latter value represents the loss
of information due to abstraction. The evaluation of temporal logic properties
on such models is three-valued model checking (3MC) [3]. In case of an unknown
result, the abstraction is typically refined by adding more predicates over the
systems variables until a level of abstraction is reached where the property can
be definitely proved or refuted. With each additional predicate the state space
grows exponentially. Thus, such a classical refinement does not guarantee that
eventually a model can be constructed that is both precise enough for a definite
outcome and small enough to be manageable with the available resources.

At SBMF ’14 we introduced parameterised three-valued model checking (PMC)
[12] as an extension of 3MC. Predicates and transitions in PMC models can be
associated with the values true, false, unknown, or with expressions over Boolean
parameters. Parameterisation is an alternative way to state that the value of cer-
tain predicates or transitions is not known and that the checked property has
to yield the same result under each possible parameter instantiation. PMC is
thus conducted via evaluating a property on all instantiations, whose number is
exponential in the number of parameters. Parameterisation particularly allows
to establish logical connections between unknowns in the model: It enables to
represent facts like ‘a certain pair of transitions has unknown but complemen-
tary truth values’. Such facts can be automatically derived from the system to

147

be verified, and covering these facts in a model can significantly enhance the
precision in verification. In many cases it is possible to replace a large number
of classical refinement steps by a single parameterisation step in order to obtain
the necessary precision for a definite result. In [13] we introduced a propositional
logic encoding of PMC problems that allows to perform PMC via SAT solving.
The solving performance of our SAT-based approach profits from conflict clause
sharing between the SAT instances. However, the number of instances associated
with an encoding is still exponential in the number of parameters.

Here we introduce an enhanced approach to PMC that substantially over-
comes the exponential overhead of parameterisation that existed in [12, 13]. Pa-
rameterisation is typically applied iteratively until the model is precise enough
for a definite result. We show that in an iterative approach partial results from
past iterations can be used to narrow the number of relevant instantiations in
future iterations. Technically, a parameterisation step splits each instantiation
of the current iteration into two instantiations of the subsequent iteration. This
allows us establish a successor relation between the instantiations of different
parameter iterations. We prove that if a property holds for a certain instantia-
tion of the current iteration then it also holds for all its successor instantiations
in future iterations. Hence, in each iteration only those instantiations have to
be considered for which no predecessor exists that fulfils the property. Such an
instantiation reduction works for disproving temporal logic properties as well.

Moreover, our iterative approach allows to significantly reduce the computa-
tional costs for checking individual instantiations. The initially non-parameterised
model can be straightforwardly transferred into an over-approximation (wrt. the
validity of temporal logic properties) of all parameter instantiations in later iter-
ations. We exploit this fact as follows: In the first iteration we compute the set of
all paths witnessing the property of interest in the over-approximation. In each
subsequent iteration, instead of conducting model checking from scratch for each
instantiation, we only have to track the paths from the over-approximating set in
the instantiations in order to determine whether any of them witnesses the prop-
erty here too. The savings of this approach become evident in our SAT-based
PMC scenario: The computation of all witness paths in the over-approximation
reduces to the computation of all satisfying interpretations of the initial encod-
ing, which can be efficiently performed via AllSAT techniques [15, 8, 14]. Now all
subsequent iterations can be accomplished by just validating whether for each
SAT instantiation one of the precomputed interpretations is satisfying as well.

Our new concepts instantiation reduction and interpretation validation thus
enhance PMC on the one hand by reducing the number of instantiations that
have to be processed per iteration, and on the other hand by reducing the effort
for processing individual instantiations. This enables us to profit from the extra
precision of parameterisation without suffering from the previous drawbacks. We
implemented a bounded model checker for PMC problems that employs iterative
parameterisation and applies our optimisations. Preliminary experiments show
that our new approach leads to a substantial speed-up of PMC.

148

2 Background: Parameterised 3-Valued Model Checking

We briefly review pure three-valued model checking (3MC) [3] and parameterised
three-valued model checking (PMC) [12]. A more extensive introduction can be
found in [12, 13]. The key feature of 3MC is a third truth value ⊥ (i.e. unknown)
for transitions and labels, which is used to model uncertainty. PMC additionally
allows Boolean parameter expressions, which enable to establish logical connec-
tions between unknown parts. As models we use Kripke structures:

Definition 1 (Parameterised Three-Valued Kripke Structure). A pa-
rameterised three-valued Kripke structure over a set of atomic predicates AP
and an ordered set of Boolean parameters Xn = (x1, . . . , xn) is a parameterised
tuple M (Xn) = (S , s0,R(Xn),L(Xn)) where

– S is a finite set of states and s0 ∈ S is the initial state,
– R(Xn) : S × S → {true,⊥, false} ∪ BE (Xn) is a transition function with

∀ s ∈ S : ∃ s ′ ∈ S : R(Xn)(s, s ′) ∈ {true,⊥} ∪ BE (Xn) where BE (Xn)
denotes the set of Boolean expressions over Xn ,

– L(Xn) : S ×AP → {true,⊥, false}∪BE (Xn) a label function that associates
a truth value or parameter expression with each predicate in each state.

An instantiation of a parameterised three-valued Kripke structure M (Xn) is a
pure three-valued Kripke structure M (Bn) where Bn ∈ {true, false}n . A struc-
ture is also pure if Xn = ∅. An example for a pure three-valued Kripke structure
M and a parameterised Kripke structure M (x1) is depicted below.

s0M ::

s2

s1

p = false

p = true

p = false

⊥

true

⊥

true

true

s0M (x1) ::

s2

s1

p = false

p = true

p = false

x1

true

¬x1

true

true

A parameterised three-valued Kripke structure can be obtained by parameteris-
ing a pure three-valued Kripke structure according to the rules from [12]. This
enhances the precision but also leads to an exponential increase of the num-
ber of parameter instantiations that have to be considered. For instance, if the
transitions (s0, s1) and (s0, s2) of our example structure M correspond to a com-
plementary branch (e.g. if-then-else) in the modelled system, then M (x1) is a
sound parameterisation of M .

In the following we first introduce 3MC and then generalise it to PMC. A
path π of a structure M is a sequence s0s1s2 . . . with R(si , si+1) ∈ {true,⊥}. π(i)
denotes the i -th state of π, whereas πi denotes the i -th suffix π(i)π(i + 1) . . . of
π. By ΠM we denote the set of all paths of M starting in the initial state. We
use the temporal logic LTL for specifying properties with regard to paths.

Definition 2 (Syntax of LTL). Let AP be a set of atomic predicates and
p ∈ AP. The syntax of LTL formulae ψ is given by

ψ ::= p | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | Gψ | Fψ | ψUψ.

149

In 3MC we operate under the three-valued Kleene logic L3 [7]. Based on L3,
LTL formulae can be evaluated on paths Kripke structures:

Definition 3 (Three-Valued Evaluation of LTL). Let M = (S , s0,R,L)
over AP be a pure three-valued Kripke structure. Then the evaluation of an
LTL formula ψ on a path π ∈ ΠM , written [π |= ψ], is defined as follows

[π |= p] := L(π(0), p)

[π |= ¬ψ] := ¬ [π |= ψ]

[π |= ψ ∨ ψ′] := [π |= ψ] ∨ [π |= ψ′]

[π |= Gψ] :=
∧

i∈N(R(π(i), π(i + 1)) ∧
[
πi |= ψ

]
)

[π |= Fψ] :=
∨

i∈N(
[
πi |= ψ

]
∧ ∧i−1

j=0 R(π(j), π(j + 1)))

Complete LTL definitions can be found in [12]. 3MC [3] is now defined as follows:

Definition 4 (Three-Valued LTL Model Checking). Let M = (S , s0,R,L)
over AP be a three-valued Kripke structure. Moreover, let ψ be an LTL formula
over AP. The universal value of ψ in M is [M |=U ψ] :=

∧
π∈ΠM

[π |= ψ]. The
existential value of ψ in M is [M |=E ψ] :=

∨
π∈ΠM

[π |= ψ].

Universal model checking can always be transferred into existential model check-
ing based on the equation [M |=U ψ] = ¬ [M |=E ¬ψ]. In 3MC there exist three
possible outcomes: true, false and ⊥. For our example structure M we get
[M |=U G¬p] = ¬[M |=E Fp] = ⊥. Hence, M is not precise enough for a
definite result. From now on, we only consider the existential case, since it is the
basis for SAT-based bounded model checking [2] which we later apply.

3MC can always be reduced to two instances of two-valued model check-
ing (2MC) if the LTL formula is restricted to LTL+, i.e. negation-free LTL.
LTL+ formulae are evaluated on complement-closed structures. In these struc-
tures each p ∈ AP has a complementary p̄ ∈ AP such that L(s, p) = ¬L(s, p̄).
Every structure can be extended to a complement-closed one, without increasing
the number of states. For the evaluation on complement-closed structures, each
LTL formula can be transferred into an equivalent LTL+ formula. Thus, the
restriction to LTL+ does not limit the expressiveness. The reduction of 3MC to
2MC is based on completions of complement-closed structures.

Definition 5 (Completion). Let M = (S , s0,R,L) over AP be a three-valued
Kripke structure. Then M p = (S , s0,R

p ,Lp) is the pessimistic completion and
M o = (S , s0,R

o ,Lo) is the optimistic completion with ∀ s, s ′ ∈ S and ∀ p ∈ AP:

Lp(s, p) :=

{
false if L(s, p) = ⊥
L(s, p) else

Rp(s, s ′) :=

{
false if R(s, s ′) = ⊥
R(s, s ′) else

Lo(s, p) :=

{
true if L(s, p) = ⊥
L(s, p) else

Ro(s, s ′) :=

{
true if R(s, s ′) = ⊥
R(s, s ′) else

The following lemma from [3] establishes the reduction from 3MC to 2MC:

150

Lemma 1. Let M = (S , s0,R,L) be a complement-closed three-valued Kripke
structure and ψ an LTL+ formula. Then the following holds:

[M |=E ψ] =





true iff [M p |=E ψ] = true
false iff [M o |=E ψ] = false
⊥ else

Hence, if a formula holds for the pessimistic completion then it also holds for the
three-valued Kripke structure. The same applies to false results obtained for the
optimistic completion. All definitions wrt. pure 3MC can be straightforwardly
generalised to PMC [12], since PMC reduces to multiple instances of 3MC.

Definition 6 (Parameterised Three-Valued LTL+ Model Checking).
Let M (Xn) = (S , s0,R(Xn),L(Xn)) be a parameterised three-valued Kripke struc-
ture over AP and X = (x1, . . . , xn). Moreover, let ψ be an LTL+ formula over
AP. The existential value of ψ in M (Xn), written [M (Xn) |=E ψ], is defined as

[M (Xn) |=E ψ] :=





true if ∀Bn ∈ {t , f }n ([M (Bn)p |=E ψ] = true)

false if ∀Bn ∈ {t , f }n ([M (Bn)o |=E ψ] = false)

⊥ else

We call M (Bn)p a pessimistic instantiation where the parameters are instanti-
ated wrt. Bn and the ⊥’s are set to false. In an optimistic instantiation M (Bn)o

the ⊥’s are set to true instead. If checking a property yields true for all pes-
simistic instantiations, this result is transferred to the parameterised structure.
The same holds for false results for all optimistic instantiations. In all other
cases PMC returns ⊥. For our example M (x1), we get [M (x1) |=E Fp] = true
since Fp holds existentially for both M (true)p and M (false)p . In contrast to
the pure three-valued M , the parameterised M (x1) captures the fact that the
transition values of (s0, s1) and (s0, s2) are unknown but also complementary,
which gives us the necessary precision for a definite result. The gain of precision
comes at the cost of an increase of the number of instantiations exponential in
the number of parameters. Each instantiation corresponds to a distinct model
checking problem that has to be solved. Subsequently, we will show that in iter-
ative parameterisation, both the effort for solving each instance and the number
of instances to be considered can be significantly reduced.

3 PMC via Path Tracking

Rule-based parameterisation [12] is an alternative to classical refinement: Instead
of adding predicates to an abstract model, the value of selected transitions and
predicates is changed from ⊥ to logical expressions over a parameter set Xn .
Such a parameterisation is typically applied iteratively until a definite result in
model checking can be obtained, or until classical refinement is inevitable for
a definite outcome. In contrast to classical refinement, parameterisation does
not affect the state space. If π is a path of a three-valued Kripke structure

151

M , then π is also a path or at least corresponds to a sequence of states in
any parameterisation M (Xn) and its possible instantiations. For instance, the
path π = s0s2s2 . . . from the Kripke structure M in our running example from
Section 2 also exists in the parameterised Kripke structure M (x1). Moreover,
this π is a path in the instantiation M (true) and it corresponds to a sequence of
states in M (false). This allows us consider the same π in the context of different
Kripke structures. In terms of LTL properties this means that we can evaluate a
formula ψ on a particular path resp. sequence π in a Kripke structure M or any
parameterisation M (Xn) and its instantiations M (Bn). In order to make clear
which Kripke structure is currently in use, we refer to the evaluation of ψ on π
in M by [π |= ψ]M . The semantics of this evaluation follows from Definition 3.

Now we show that in case of an unknown result for a 3MC problem [M |=E ψ],
paths discovered in M can be exploited for solving any corresponding param-
eterised problem [M (Xn) |=E ψ] more efficiently. According to Lemma 1, the
outcome of 3MC is unknown if the following holds: [M p |=E ψ] = false and
[M o |=E ψ] = true. Hence, there exist paths in the optimistic completion M o

that witness the property ψ, but no such path exists in the pessimistic com-
pletion M p . The optimistic completion is an over-approximation of M in terms
of the existential validity of LTL+ properties. This over-approximation relation
also holds between M o and any instantiation M (Bn)y , y ∈ {o, p}, of a parame-
terisation M (Xn) of M . With regard to paths we get the following lemma:

Lemma 2. Let M (Xn) be an arbitrary parameterisation of a three-valued Kripke
structure M over AP, and let ψ be an LTL+ formula over AP. Then for any
Bn ∈ {true, false}n and any y ∈ {o, p} the following holds:

∀π ∈ ΠM (Bn)y [π |= ψ]M (Bn)y = true ⇒ [π |= ψ]M o = true

Proof. See http://www.cs.up.ac.za/cs/ntimm/proofLemma2.pdf

Hence, each path π that witnesses a property ψ in any instantiation of a param-
eterisation of M is also a witness for ψ in the optimistic completion M o . The
set Πψ

M o = {π ∈ ΠM o | [π |= ψ]M o = true} is thus a superset of the set of all
paths π with [π |= ψ]M (Bn)y = true for any M (Bn)y , y ∈ {o, p}. This fact can be
exploited to reduce the effort for performing PMC with iterative parameterisa-
tion. Solving a parameterised model checking problem [M (Xn) |=E ψ] requires
to determine whether for each instantiation M (Bn) there exists a path π with
[π |= ψ]M (Bn)p = true, or whether for all paths [π |= ψ]M (Bn)o = false holds.
In general, this involves the exhaustive exploration of the state space of each
instantiation. Provided that we already have computed the set Πψ

M o we now can
solve [M (Xn) |=E ψ] (and any other parameterisation of the original problem)

by just iterating over the paths in Πψ
M o due to of the aforementioned superset

relation. Lemma 2 together with Definition 6 gives us the following theorem:

Theorem 1. Let M (Xn) be the parameterisation of a three-valued Kripke struc-
ture M over AP, and let ψ be an LTL+ formula over AP. Furthermore, let
Πψ

M o = {π ∈ ΠM o | [π |= ψ]M o = true}. Then the following holds:

152

[M (Xn) |=E ψ] =





true iff ∀Bn ∈ {t , f }n ∃π ∈ Πψ
M o [π |= ψ]M (Bn)p = true

false iff ∀Bn ∈ {t , f }n ∀π ∈ Πψ
M o [π |= ψ]M (Bn)o = false

⊥ else

Thus, instead of conducting model checking from scratch for each possible in-
stantiation of M (Xn), we only need to track the paths from Πψ

M o on each in-
stantiation. For our running example we have already seen that model check-
ing the initially non-parameterised problem [M |=E Fp] yields unknown. We
now compute the set of witness paths for Fp in the optimistic completion
M o , which is ΠFp

M o = {π1 = (s0s1s2 . . .), π2 = (s0s2 . . .)}. Due to Lemma 2

we have that ΠFp
M o is a superset of all paths π with [π |= Fp] for each (opti-

mistic or pessimistic) instantiation of any parameterisation of M . The parame-
terised model M (x1) from our running example has the two possible pessimistic

instantiations M (true)p and M (false)p . By tracking the paths from ΠFp
M o we

can show that in both instantiations there exists a path that witnesses Fp:
[π1 |= Fp]M (false)p = true and [π2 |= Fp]M (true)p = true. Now Theorem 1 allows
us to conclude that [M (x1) |=E Fp] = true. We have solved a parameterised
three-valued model checking problem by just tracking witness paths previously
discovered in the corresponding pure three-valued model.

Iterative parameterisation of an initially non-parameterised problem thus
allows to exploit information obtained in past iterations in order to reduce the
search space for witness paths in future iterations. The computational savings
of conducting PMC via path tracking will become evident when PMC is reduced
to propositional logic satisfiability, which we discuss from Section 5 on.

4 Instantiation Reduction in Iterative Parameterisation

The basic concept of PMC is to verify each possible instantiation of a param-
eterised model and to check whether the results are consistent, i.e. true for all
pessimistic instances or false for all optimistic ones. Inconsistency, i.e. some true
and some false results, may be ruled out via further parameterisation, which
however leads to an exponential increase in the number of instantiations. Here
we show that in iterative parameterisation not necessarily all of these instan-
tiations have to be considered. Partial results from past iterations can be used
to reduce the number of relevant instantiations in the current iteration. We il-
lustrate such a reduction based on another example: the three-valued Kripke
structure M ′ and its parameterisations M ′(x1) and M ′(x1, x2) depicted below.

s0M ′ ::

s2

s1

p = ⊥

p = ⊥

p = true

⊥

true

⊥

true

true

s0M ′(x1) ::

s2

s1

p = ⊥

p = ⊥

p = true

x1

true

¬x1

true

true

s0M ′(x1, x2) ::

s2

s1

p = x2

p = ¬x2

p = true

x1

true

¬x1

true

true

Checking the property Fp yields the following results: [M ′ |=E Fp] = ⊥,
[M ′(x1) |=E Fp] = ⊥ and [M ′(x1, x2) |=E Fp] = true. Hence, the iteration

153

that introduced the second parameter1 x2 has brought the necessary precision
for a definite result in verification. The following tree characterises the iterations
and the pessimistic instantiations2 that have to be considered in order to prove
that Fp holds for our example problem with iterative parameterisation:

[M ′p |=E Fp] = f

[M ′(t)p |=E Fp] = f[M ′(f)p |=E Fp] = t

[M ′(t, t)p |=E Fp] = t[M ′(f , t)p |=E Fp] = t [M ′(t, f)p |=E Fp] = t[M ′(f , f)p |=E Fp] = t

In the third iteration we get consistently true results for all possible instan-
tiations of M ′(x1, x2)

p , which allows us to conclude that Fp holds. However,
checking all instances is actually not necessary under iterative parameterisa-
tion. Note that we obtained the partial result [M ′(false)p |=E Fp] = true in the
previous iteration. It is easy to show that any instantiation of a further parame-
terisation of M ′(false) satisfies equally many or more LTL+ properties than the
pessimistic instantiation M ′(false)p . The argument here is that parameterisation
always involves a replacement of selected ⊥’s by parameter expressions. While
these ⊥’s would be set to false under a pessimistic instantiation, the replacing
parameter expressions might also take the value true in an instantiation of a
further parameterised model, which generally leads to the satisfaction of more
LTL+ properties. Thus, for our running example we can immediately conclude

[M ′(false)p |=E Fp] = true ⇒ ∧
[M ′(false, false)p |=E Fp] = true

[M ′(false, true)p |=E Fp] = true

which saves us the explicit consideration of the instantiations M ′(false, false)p

and M ′(false, true)p and thus significantly reduces the computational effort for
solving our example PMC problem. Lemma 3 generalises the capabilities for
instantiation reduction in iterative parameterisation:

Lemma 3. Let M (Bn) be an instantiation of a parameterised three-valued Kripke
structure M (Xn) and let M (Bn)(Xm) be a further parameterisation of M (Bn).
Then for any ψ ∈ LTL+ the following holds:

1 This parameterisation step indicates that the value of the unknown predicate p is
inverted by taking the transition from s0 to s2, which might be a fact automatically
derived from the modelled system via our parameterisation rules defined in [12].

2 The optimistic instantiations that are considered for attempting to disprove the
property yield a similar tree.

154

1. [M (Bn)p |=E ψ] = true ⇒ ∀Bm ∈ {t , f }m [M (Bn)(Bm)p |=E ψ] = true

2. [M (Bn)o |=E ψ] = false ⇒ ∀Bm ∈ {t , f }m [M (Bn)(Bm)o |=E ψ] = false

Proof. See http://www.cs.up.ac.za/cs/ntimm/proofLemma3.pdf

This lemma establishes the useful relation between results obtained for an instan-
tiation M (Bn)y , y ∈ {o, p}, and for any ‘successor’ instantiation M (Bn)(Bm)y ,
that allows us to cut down the number of instantiations to be considered in
future iterations. In our iterative approach to PMC we thus memorise cases
where a true result for a pessimistic instantiation or a false result for an op-
timistic instantiation was obtained. In subsequent iterations the consideration
of instances that originate from the further parameterisation of these cases is
no longer necessary. Lemma 3 together with Definition 6 gives us the following
theorem:

Theorem 2. Let M (Xn) = (S , s0,R(Xn),L(Xn)) be a parameterised three-valued
Kripke structure over AP and X = (x1, . . . , xn). Moreover, let ψ be an LTL+

formula over AP. Then the following holds:

[M (Xn) |=E ψ] =





true iff ∀(Bn) ∈ {t , f }n with ¬ ∃m ≤ n : [M (Bn−m)p |=E ψ] = t :

([M (Bn)p |=E ψ] = true)

false iff ∀(Bn) ∈ {t , f }n with ¬ ∃m ≤ n : [M (Bn−m)o |=E ψ] = f :

([M (Bn)o |=E ψ] = false)

⊥ else

The (boxed) constraints on the number of parameter instantiations that need
to be considered in order to solve a PMC problem allow to perform PMC with
iterative parameterisation with significantly less computational effort. For our
running example we were e.g. able to reduce the number of relevant instantiations
in the third iteration by half. Theorem 2 can be straightforwardly combined
with Theorem 1 which enables us to profit from instantiation reduction and
path tracking at the same time. In the following sections we will show that
our enhancements of PMC can be transferred to SAT-based PMC. We start
with a brief review of the basics of SAT-based parameterised three-valued model
checking.

5 Background: SAT-Based Bounded PMC

In [13] we showed that a PMC problem can be encoded as a parameterised
propositional logic formula and then solved by applying SAT solving to each
formula instance, which we briefly review here. A prerequisite is to bound the
length of the considered paths by some k ∈ N. By ΠMk

we denote the set of
all k-bounded paths in a Kripke structure M . Such finite prefixes π(0) . . . π(k)
can still represent infinite paths if the prefix has a k -loop, i.e. the last state π(k)

155

has a successor state that is also part of the prefix. For the bounded evaluation
of LTL+ properties we have to distinguish between paths with and without a
k -loop.

Definition 7 (Three-Valued Bounded Evaluation of LTL+). Let M =
(S , s0,R,L) over AP be a complement-closed three-valued Kripke structure, let
k ∈ N and let π be a path of M without a k-loop. Then the k-bounded evaluation
of an LTL+ formula ψ on π, written

[
π |=i

k ψ
]

where i ∈ N with i ≤ k denotes
the current position along the path, is inductively defined as follows

[
π |=i

k p
]

:= L(π(i), p)[
π |=i

k ψ ∨ ψ′] :=
[
π |=i

k ψ
]

∨
[
π |=i

k ψ
′]

[
π |=i

k Gψ
]

:= false[
π |=i

k Fψ
]

:=
∨k

j=i([π |=j
k ψ] ∧ ∧j−1

l=i R(π(l), π(l + 1)))

If π has a k-loop, then [π |=i
k ψ] := [πi |= ψ]. Moreover, the existential value of

ψ in M under the bounded semantics is [M |=E ,k ψ] :=
∨
π∈ΠMk

[π |=0
k ψ].

If all k ∈ N are considered then the bounded semantics is equivalent to the un-
bounded one: [M |=E ψ] =

∨
k∈N[M |=E ,k ψ]. Typically, the bound is iteratively

increased until the property of interest can be either proven or a completeness
threshold is reached. The bounded semantics for 3MC can be extended to PMC:

Definition 8 (Bounded Parameterised Three-Valued Model Checking).
Let M (Xn) = (S , s0,R(Xn),L(Xn)) be a parameterised three-valued KS over AP
and Xn . Let ψ be an LTL+ formula over AP and k ∈ N. The existential value
of ψ in M (Xn) under the bounded semantics is

[M (Xn) |=E ,k ψ] :=





true if ∀Bn ∈ {t , f }n ([M (Bn)p |=E ,k ψ] = true)

false if ∀Bn ∈ {t , f }n ([M (Bn)o |=E ,k ψ] = false)

⊥ else

As shown in [13] bounded PMC can be reduced to the new satisfiability problem
SATX3. For a parameterised three-valued Kripke structure M (Xn) over AP and
Xn , an LTL+ formula ψ and a bound k ∈ N, a parameterised propositional logic
formula F (Xn)k is constructed such that [M (Xn) |=E ,k ψ] = SATX3(F (Xn)k).

Solving SATX3 reduces to solving classical SAT for each possible parameter
instantiation. We briefly review how F (Xn)k is constructed for a given PMC
problem. The construction of F (Xn)k is divided into the translation of M (Xn)
into a formula [[M (Xn)]]k and the translation of ψ into a formula [[ψ]]k . The
encoding of M (Xn) first requires to encode its states as Boolean formulae. For
this, a set of Boolean atoms {A,B , . . .} is introduced. Let PL be the set of
propositional formulae over {A,B , . . .} and the constants true and false. Then
an encoding of the states of a Kripke structure is defined as follows.

Definition 9 (State Encoding). Let M (Xn) = (S , s0,R(Xn),L(Xn)) be a pa-
rameterised Kripke structure. A Boolean encoding of its states corresponds to an
injective mapping e : S → PL where ∀ s ∈ S : e(s) is a conjunction of literals.

156

M (Xn) can now be translated into a formula [[M (Xn)]]k that characterises k -
bounded paths in M (Xn). As we consider states as parts of such paths, the state
encoding is extended by index values i ∈ {0, ..., k} where i denotes the position
along a path. We get an extended set of indexed atoms {A0,B0, ...,Ak ,Bk , ...}.

Definition 10 (Kripke Structure Encoding). Let M (Xn) = (S , s0,R(Xn),
L(Xn)) be a parameterised three-valued KS and e an encoding of its states. We
define Init0 as the predicate characterising the initial state of M (Xn) with

Init0 := e(s0)0

and Ti,i+1 as the predicate that characterises the transitions of M (Xn) with

Ti,i+1 :=
∨

s∈S

∨
s′∈S e(s)i ∧ e(s ′)i+1 ∧ R(Xn)(s, s ′).

Then the entire encoding of M (Xn) for a bound k ∈ N is defined as

[[M (Xn)]]k := Init0 ∧ ∧k−1
i=0 Ti,i+1

The second part of the encoding concerns the LTL+ formula ψ. This generally
requires to distinguish the cases where ψ is evaluated on a path with and without
a loop. Due to space limitations we only consider the case without a loop here.

Definition 11 (LTL+ Encoding without Loop). Let p be an atomic predi-
cate, ψ and ψ′ LTL+ formulae, and k , i ∈ N with i ≤ k.

[[p]]ik :=
∨

s∈S e(s)i ∧ L(s, p) [[Gψ]]ik := false

[[ψ ∨ ψ′]]ik := [[ψ]]ik ∨ [[ψ′]]ik [[Fψ]]ik :=
∨k

j=i [[ψ]]jk

The overall encoding of [M (Xn) |=E ,k ψ] is now F (Xn)k := [[M (Xn)]]k ∧ [[ψ]]0k .
F (Xn)k is defined over atoms but also over Xn and ⊥. Thus, SATX3 is not a
standard satisfiability problem. It reduces to multiple instances of classical SAT.

SATX3(F (Xn)k) :=





true if ∀Bn ∈ {t , f }n (SAT(F (Bn)pk) = true)

false if SAT(F (Xn)ok) = false

⊥ else

where F (Bn)pk = F (Xn)k [Xn/Bn][⊥/false] and F (Xn)ok = F (Xn)k [⊥/true].
Since SAT(F ((Xn)ok) = f is equivalent to ∀Bn ∈ {t , f }n (SAT(F ((Bn)ok) = f),
checking whether SATX3 yields false requires a single SAT test only. The result
of the SATX3 test is equivalent to the result of the encoded PMC problem [13]:

Lemma 4. Let M (Xn) be a parameterised three-valued Kripke structure over a
set of predicates AP, let ψ be an LTL+ formula over AP, and k ∈ N. Then

[M (Xn) |=E ,k ψ] = SATX3(F (Xn)k)

Thus, bounded PMC can be reduced to multiple instances of SAT. Subsequently,
we show that in iterative parameterisation, solving these instances can be effi-
ciently performed via interpretation validation in place of SAT solving.

157

6 Bounded PMC via Interpretation Validation

As we have seen, bounded PMC reduces to multiple instances of classical SAT
solving. Given a propositional logic formula F over a set of Boolean atoms A,
SAT is the (NP-complete) problem of determining whether there exists an in-
terpretation I : A → {true, false} that satisfies F . The previously introduced
encoding F (Xn)k of a bounded PMC problem [M (Xn) |=E ,k ψ] has the nice
feature that each interpretation that satisfies an instantiation of the encoding
exactly characterises a path in the corresponding model that witnesses the prop-
erty ψ within k steps [12]. Now we will show that, based on this feature, the
solving performance of SAT-based PMC with iterative parameterisation can be
considerably improved. De facto, we transfer our concept path tracking in ex-
plicit (non-encoded) PMC (Section 3) to the SAT scenario. Here the satisfiability
tests associated with an encoded problem can be replaced by the significantly less
expensive validation of satisfying interpretations discovered in earlier iterations.

For illustration, we consider again the pure three-valued Kripke structure M
and its parameterisation M (x1) from Section 2. For the states of M we choose
the encoding e(s0)i = ¬Ai ∧ ¬Bi , e(s1)i = ¬Ai ∧ Bi and e(s2)i = Ai ∧ ¬Bi

over the set of atoms A = {A0,B0, . . . ,Ak ,Bk}. The bounded model checking
problem [M |=E ,k Fp] can now be logically encoded as follows

Fk = Init0 ∧ ∧k−1
i=0 Ti,i+1 ∧ [[Fp]]0k

= (¬A0 ∧ ¬B0) ∧ ∧k−1
i=0 ((¬Ai ∧ ¬Bi ∧ ¬Ai+1 ∧ ¬Bi+1 ∧ true)

∨ (¬Ai ∧ ¬Bi ∧ ¬Ai+1 ∧ Bi+1 ∧ ⊥(s0,s1)) ∨ (¬Ai ∧ ¬Bi ∧ Ai+1 ∧ ¬Bi+1 ∧ ⊥(s0,s2))
∨ (¬Ai ∧ Bi ∧ Ai+1 ∧ ¬Bi+1 ∧ true) ∨ (Ai ∧ ¬Bi ∧ Ai+1 ∧ ¬Bi+1 ∧ true))

∧ ∨k
i=0 ((¬Ai ∧ ¬Bi ∧ false) ∨ (¬Ai ∧ Bi ∧ false) ∨ (Ai ∧ ¬Bi ∧ true))

Note that we annotated the ⊥’s in Fk with the transitions in M they are as-
sociated with, which helps to distinguish individual ⊥’s in the later parame-
terisation. Since M is pure three-valued, SATX3 reduces to two satisfiability
instances F p

k = Fk [⊥/false] and F o
k = Fk [⊥/true]. F p

k is the propositional logic
equivalent of the explicit PMC problem [M p |=E ,k Fp], whereas F o

k is the equiv-
alent of [M o |=E ,k Fp]. We get SAT(F p

k) = false and SAT(F o
k) = true, which

gives us unknown as the overall result. Hence, there exist interpretations that
satisfy F o

k but there is no interpretation that satisfies F p
k . Several approaches

for the efficient computation of all satisfying interpretations of a propositional
logic formula have been introduced [8, 15, 14], which we will discuss in detail
in the related work section. These approaches for solving the so-called AllSAT
problem allow us to compute the set IFo

k
= {I | I (F o

k) = true} of all interpre-
tations that make F o

k true. As stated before, each I ∈ IFo
k

exactly characterises

a k -bounded path π with [π |=0
k Fp]M o = true. For instance, the interpretation

I : A0 7→ false,B0 7→ false,A1 7→ false,B1 7→ true,A2 7→ true,B2 7→ false for a
2-bounded encoding F2 describes the path π = s0s1s2 in M . Since π contains the
unknown transition (s0, s1) we call it an unconfirmed witness for the property of
interest. Based on such unconfirmed witnesses the parameterisation rules we de-
fined in [12] can be automatically and iteratively applied, which, in this particular
case, gives us the parameterised Kripke structure M (x1) from our running exam-

158

ple. This parameterisation step can be straightforwardly lifted to the level of the
propositional encoding. Based on an analysis of the interpretations in IFo

2
the

current encoding can be parameterised to F (x1)2 := F2[⊥(s0,s1)/¬x1][⊥(s0,s2)/x1].
Solving SATX3(F (Xn)k) generally requires to solve SAT from scratch for

each instantiation of F (Xn)k . However, since each interpretation satisfying the
non-parameterised F o

k characterises a path π with [π |=0
k ψ]M o = true and

vice versa, we also have a one-to-one correspondence between the elements of
the set of interpretations IFo

k
and the set of paths Πψ

M o
k

(compare Section 3).

In accordance with the results from Section 3, IFo
k

is a superset of any IF(Bn)yk
where F (Bn)k = F (Xn)k [x1, . . . , xn/b1, . . . , bn] is an instantiation of an arbitrary
parameterisation F (Xn)k of Fk and y ∈ {o, p}. In an iterative approach, this
allows us to solve encoded PMC problems via interpretation validation. Theorem
1 together with Lemma 4 gives us the following theorem:

Theorem 3. Let [M (Xn) |=E ,k ψ] be a parameterisation of a bounded 3MC
problem [M |=E ,k ψ]. Moreover, let Fk and F (Xn)k be the corresponding propo-
sitional logic encodings and IFo

k
= {I | I (F o

k) = true}. Then:

[M (Xn) |=E ,k ψ] =





true iff ∀Bn ∈ {t , f }n ∃ I ∈ IFo
k

: I (F (Bn)pk) = true

false iff ∀ I ∈ IFo
k

: I (F (Xn)ok) = false

⊥ else

Hence, instead of solving one NP-complete SAT problem per instance we just
need to validate

∣∣IFo
k

∣∣ interpretations per instance, which requires linear time
and space per interpretation. For the optimistic completion F o

2 of our initially
non-parameterised example encoding we can efficiently compute the set IFo

2
via

AllSAT methods. IFo
2

consists of three interpretations I1, I2 and I3 characterising
the bounded paths π1 = s0s1s2, π2 = s0s0s2 and π3 = s0s2s2. In the next iteration
we consider each instantiation of the parameterised encoding F (x1)2 and validate
the interpretations: I1 satisfies F (false)p2 and I2 satisfies F (true)p2 . Thus, we
can conclude that [M (x1) |=E ,2 Fp] = true. Bounded PMC via interpretation
validation is straightforwardly compatible with instantiation reduction (compare
Section 4). In the next section we introduce our model checking framework for
PMC problems that implements our proposed enhancements.

7 PMC Framework with Iterative Parameterisation

We have developed a prototype (All)SAT-based bounded model checker for PMC
problems. It employs the solver library Sat4j [10] and implements the algorithm
for efficient AllSAT solving proposed in [15]. The checker iterates over the bound
k , starting with k = 0, and over possible parameterisations of the initially non-
parameterised input model. In each iteration that yields unknown it is checked
whether any parameterisation rule from [12] is applicable. If further parameter-
isation is currently not feasible the bound is incremented. Our checker supports
two modes: In the basic mode in each iteration all instances of the encoded
problem are processed via incremental SAT solving [6]: For acceleration, learned

159

conflict clauses are reused between the solvers processing different SAT instances,
in case the learning happened based on a common subformula. No instantiation
reduction is applied in the basic mode. The enhanced mode works as follows:
After every bound incrementation the AllSAT problem for the propositional
logic encoding F o

k is solved3, which gives us the set IFo
k

of all satisfying inter-
pretations. Between the AllSAT problems for different bounds we also employ
incremental solving, i.e. we reuse learned clauses. After every parameterisation
step we apply interpretation validation based on IFo

k
for the instantiations of

the parameterised encoding F (Xn)k . Via instantiation reduction we addition-
ally narrow the number of instantiations that actually have to be considered.
The following procedure characterises a single iteration and illustrates how our
enhancements have been implemented:

Data: current F (Xn)pk and IFo
k

for all Bn ∈ {true, false}n do
if SATResult(F (Bn−1)

p
k) = true then

SATResult(F (Bn)pk) := true

else
SATResult(F (Bn)pk) := validate(IFo

k
,F (Bn)pk)

Here SATResult is the database where we store satisfiability results. It allows
us to look up results from past iterations: If SATResult(F (Bn−1)

p
k) = true then

we can skip the computation of the SAT result for F (Bn)pk and immediately
conclude that it is true as well, which implements instantiation reduction. The
function call validate(IFo

k
,F (Bn)pk) returns whether any interpretation from IFo

k

is satisfying for F (Bn)pk , and thus, implements interpretation validation. We use
an analogous procedure for processing F (Xn)ok where false results from past
iterations are exploited in a similar way.

In preliminary experiments we compared the run-time of PMC in the basic
and the enhanced mode. We considered a number of initially non-parameterised
problems that we encoded in propositional logic and then iteratively param-
eterised until a definite result could be obtained. In the enhanced mode we
achieved substantial savings in verification time. While a more extensive exper-
imental evaluation is in preparation, we so far observed that the actual perfor-
mance gain due to the application of interpretation validation instead of SAT
solving results from the trade-off between the extra costs of solving AllSAT for
the initial problem and the savings in the later iterations: The more iterations
were needed, the more we generally saved in the enhanced mode. And, the smaller
the set IFo

k
, the more we profited from interpretation validation in PMC. – In

terms of a potential reduction of the size of IFo
k
, we can actually derive another

beneficial fact based on Lemma 3 and the encoding definitions: If an I ∈ IFo
k

does not satisfy any instantiation in the current iteration then it will also not
satisfy any instantiation in a future iteration. This allows to immediately remove
such an interpretation from IFo

k
, which involves further computational savings.

3 The encoding has been transferred into conjunctive normal form via Tseitin trans-
formation. Thus, we only consider interpretations that differ wrt. the valuation of
the original problem variables, and not wrt. newly introduced auxiliary variables.

160

8 Related Work

Iterative verification approaches with reuse of results have been considered in
several ways. An established approach is counterexample-guided abstraction re-
finement (CEGAR) [4]. The CEGAR-based model checker Yasm [9] reuses re-
sults between abstraction iterations as follows: Each iteration involves the com-
putation of the set of states from which an error can be definitely reached.
Instead of checking the error reachability from scratch in a subsequent itera-
tion, Yasm just checks whether any state from the previously computed set is
reachable. Another common approach is SAT-based incremental bounded model
checking [6]. Each iteration corresponds to solving a SAT instance that encodes
the model checking problem for a different bound. Results are reused in the sense
of sharing conflict clauses that have been learned based on common parts of the
SAT instances. While these approaches iterate over predicate abstractions and
bounds, our approach is based on iterative parameterisation. Each iteration in-
volves the consideration of all instantiations of a parameterised model. A related
approach is conditional model checking (CMC) [1]. Here the property is checked
under different conditions that restrict which part of the model is explored. Mul-
tiple checks under complementary conditions allow to obtain an ’unconditional’
result. CMC has so far not been considered in an iterative context. In our PMC
approach we do not check different parts of a model but different approximations
(parameter instantiations) of the system to be verified, that together yield an
exact result. Our approach relies on AllSAT, for which several memory and time
efficient solving techniques have been proposed. The technique from [15] uses
blocking clauses to avoid that the same interpretations are found again. It is
based on an incremental search for interpretations that prevents starting search
from scratch after an interpretation was found. Moreover, generated blocking
clauses are merged, which improves memory efficiency. Other AllSAT solving
techniques that follow similar concepts have been introduced in [8, 14].

9 Conclusion and Outlook

We introduced an iterative approach to SAT-based parameterised three-valued
model checking that substantially overcomes the former drawbacks of parameter-
isation in terms of computational costs. Our new concept instantiation reduction
allows to exploit results from past iterations in order to narrow the number of in-
stantiations that have to be considered in future iterations. With interpretation
validation we introduced a concept that significantly reduces the effort for solv-
ing the individual instantiations occurring in PMC. We proved the soundness
of our PMC-improving concepts and integrated them into a prototype model
checker. Preliminary experiments revealed that our approach leads to a practi-
cally relevant speed-up of PMC. It allows to profit from the extra precision of
parameterisation without suffering from the previous performance drawbacks.

We are currently working on a concept for instantiation reduction based on
results obtained for different bounds: Partial results for the instances of an en-
coding F (Xn)k can be also exploited for further reducing the number of relevant

161

instances of all subsequent encodings F (Xn+m)k+l . Another direction for fu-
ture research is the development of a concept for summarising interpretations in
IFo

k
into equivalence classes: For interpretations that characterise paths that are

bisimilar or stuttering equivalent wrt. the property of interest it is sufficient to
have just one representative in IFo

k
, which allows further computational savings

due to interpretation validation. We also plan to combine our iterative framework
with a classical abstraction refinement procedure: In case parameterisation and
bound incrementation do not yield the necessary precision for a definite result,
more predicates can be added to the abstract model. AllSAT-based Predicate
abstraction and refinement [5] can then work hand-in-hand with our AllSAT ap-
proach. Finally, the summarisation of all SAT instances occurring per iteration
to a single quantified Boolean formula (QBF) and the subsequent application of
QBF interpretation validation is another direction for future investigation.

References

1. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: Proceedings of the
ACM SIGSOFT FSE ’12. pp. 57:1–57:11. ACM, New York (2012)

2. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Handbook of Satisfiability 185, 457–481 (2009)

3. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: CAV 1999. pp. 274–287. LNCS, Springer Berlin Heidelberg (1999)

4. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: CAV, LNCS, vol. 1855, pp. 154–169. Springer (2000)

5. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Satabs: Sat-based predicate
abstraction for ansi-c. In: TACAS, LNCS, vol. 3440, pp. 570–574. Springer (2005)

6. Eén, N., Sörensson, N.: Temporal induction by incremental sat solving. Electronic
Notes in Theoretical Computer Science 89(4), 543–560 (2003)

7. Fitting, M.: Kleene’s three valued logics and their children. Fundamenta Informat-
icae 20(1-3), 113–131 (1994)

8. Grumberg, O., Schuster, A., Yadgar, A.: Memory efficient all-solutions sat solver
and its application for reachability analysis. In: Hu, A., Martin, A. (eds.) FMCAD,
LNCS, vol. 3312, pp. 275–289. Springer Berlin Heidelberg (2004)

9. Gurfinkel, A., Wei, O., Chechik, M.: Yasm: A software model-checker for verifica-
tion and refutation. In: CAV, LNCS, vol. 4144, pp. 170–174. Springer (2006)

10. Le Berre, D., Parrain, A.: The sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation 7, 59–64 (2010)

11. Timm, N.: Three-Valued Abstraction and Heuristic-Guided Refinement for Veri-
fying Concurrent Systems. Phd thesis, University of Paderborn (2013)

12. Timm, N., Gruner, S.: Parameterisation of three-valued abstractions. In: Formal
Methods: Foundations and Applications, pp. 162–178. Springer (2015)

13. Timm, N., Gruner, S., Sibanda, P.: Parallel sat-based parameterised three-valued
model checking. In: SPIN Symposium on Model Checking Software. Springer (2015)

14. Yu, Y., Subramanyan, P., Tsiskaridze, N., Malik, S.: All-sat using minimal blocking
clauses. In: VLSI Design 2014. pp. 86–91 (2014)

15. Zhao, W., Wu, W.: Asig: An all-solution sat solver for cnf formulas. In: 11th IEEE
International Conference on CAD/Graphics. pp. 508–513 (Aug 2009)

162

Mobile CSP

Jim Woodcock
∗
, Andy Wellings, and Ana Cavalcanti

Department of Computer Science

University of York

Abstract. We describe an extension of imperative CSP with primitives
to declare new event names and to exchange them by message passing
between processes. We give examples in Mobile CSP to motivate the lan-
guage design, and describe its semantic domain, based on the standard
failures-divergences model for CSP, but also recording a dynamic event
alphabet. The traces component is identical to the separation logic se-
mantics of Hoare & O’Hearn. Our novel contribution is a semantics for
mobile channels in CSP, described in Unifying Theories of Program-
ming, that supports: compositionality with other language paradigms;
channel faults, nondeterminism, deadlock, and livelock; multi-way syn-
chronisation; and many-to-many channels. We compare and contrast our
semantics with other approaches, including the π-calculus, and consider
implementation issues. As well as modelling reconfigurable systems, our
extension to CSP provides semantics for techniques such as dynamic
class-loading and the full use of dynamic dispatching and delegation.

1 Introduction and Overview

Model-driven systems engineering is gaining popularity in large-scale industrial
applications; it relies for its success on modelling languages that provide efficient
domain-specific abstractions for design, analysis, and implementation. There is
no single modelling language that can cover every aspect of a significant system,
let alone the complexities of systems of systems or cyber-physical systems. Ad-
equate modelling techniques must inevitably involve heterogeneous semantics,
and this raises the scientific question of how to fit these different semantics to-
gether: the model integration problem [15]. Our approach to understanding the
integration of models with diverse semantics is to study the different paradigms
in isolation and then find ways of composing them. We are not looking for a
unified language to encompass all language paradigms, but rather we seek to
unify theories to explain how they fit together and complement each other. This
is the research agenda of Unifying Theories of Programming (UTP) [12].

In this paper, we explore the paradigm of reconfigurable systems and pro-
grams, where we model interaction between system components (and even be-
tween systems themselves) by message passing along channels that form a flexible
topology that changes over time. We describe an extension of CSP [11, 22] with
∗
Corresponding author: Jim.Woodcock@york.ac.uk.

163

primitives to declare new event names and to exchange them in messages over
channels. Our semantics is an extended predicative form of the standard failures-
divergences semantic model for CSP, enhanced with imperative programming
features [12]. The traces component of this model is identical to the concurrent
separation logic semantics proposed earlier by Hoare & O’Hearn [13]. The novel
contribution of our work is a semantics in UTP that supports the following:

1. Compositionality with other language paradigms. A key feature of UTP is
the ability to combine different language features using Galois connections.

2. Formalisation of channel faults, nondeterminism, deadlock, livelock, multi-
way synchronisation. and many-to-many channels.

We start the paper in Sect. 2 by recalling the principal features of CSP and
of the π-calculus, its process-algebraic cousin with mobile channels. In Sect. 3,
we list a series of examples of increasing complexity that display the use of
mobile channels in modelling. Having motivated the use of mobility, we define
our semantic domain in Unifying Theories of Programming in Sect. 4, and give
the semantics of four key operators in Sect. 5: value and channel communications,
the creation of new channels, and parallel composition. In Sect. 6, we describe
the implementation in Java of an architectural pattern that uses mobile channels.
We conclude the paper by describing related and future work in Sects 7 and 8.

2 CSP

CSP is a formal language for describing patterns of interaction in concurrent sys-
tems [11, 22]; it is a process algebra based on message passing via channels. It has
formed the basis of the following languages: occam, the native programming lan-
guage for the inmos transputer microprocessors [32], and occam-π, its extension
with mobile processes and data [36]; Ada’s rendezvous mechanism [14]; JCSP,
the CSP library for Java [35]; PyCSP, the CSP library for Python [1]; Scala, the
strongly typed functional programming language [20], with its message-passing
semantics and Communicating Scala Objects; the Circus family of specifica-
tion and refinement languages [38, 39], including OhCircus [5], SlottedCircus [3],
CircusTime [27], and TravellingCircus [30, 31]; CML, the COMPASS Modelling
Language [41, 37]; CSP‖B and Mobile CSP‖B [33, 26, 34]; CSP-OZ and CSP#,
stateful, object-oriented versions of the language [10, 29]; rCOS, the component
modelling language [16]; and Ptolemy, the embedded systems modelling lan-
guage [28]. The main elements of CSP are described in Tab. 1.

Different aspects of semantics, such as determinism, nondeterminism, live-
lock, timing, and fairness, are dealt with in a hierarchy of semantic models,
all based on refinement as inverse behavioural inclusion: every implementa-
tion behaviour must be specified. A powerful refinement model-checker for CSP,
FDR3 [19], supports the language and a basic extension to timed systems.

The π-calculus [18] differs significantly from CSP in permitting channel names
to be communicated along the channels themselves, and in this way it is able
to describe concurrent computations whose network configurations may change

164

prefix a → P input c?x → P(x)
output c!e → P internal choice P u Q
external choice P 2 Q sequence P ; Q
parallel P ‖ Q abstraction P \ S
recursion µX • F (X) deadlock STOP
termination SKIP divergence CHAOS

Table 1. The main elements of CSP.

during the computation. As well as treating channel names as first-class citizens,
the π-calculus has a further primitive, (νx)P , that allows for the creation of a
new name allocated as a constant within P . An axiom, known as scope extrusion,

(ν x)P | Q = (ν x)(P | Q) if x is not a free name of Q

describes how the scope of a bound name x may be extruded, as would be
necessary before an action outputting the name x from P to Q .

In CSP, channel communications are events, and input and output commands
are merely abbreviations for choices over event synchronisations:

c?x : T → P(x) =̂ 2 x : T • c.x → P(x) c!e → Q =̂ c.e → Q

So a theory of mobile events underpins a theory of mobile channels. In this
paper, we propose an extension of imperative CSP with mobile events; this
language supports MobileCircus, an extension of the Circus modelling language.
Both language extensions are based on a natural notion of refinement of failures-
divergences, which distinguishes them from the π-calculus.

3 Motivation and Examples

One of the main areas underpinned by research in formal methods is software for
high-integrity and safety-critical systems. For example, recent work on a subset
of Java for safety-critical systems (SCJ) is based on the programming model
being defined in SCJ-Circus [6, 42, 7, 8], which is an extension to Circus whose
semantics is defined using UTP. Together with formal models of the SCJ virtual
machine, this allows the full semantics of an SCJ application to be defined [9].

SCJ is conservative in order to comply with guidelines for certification, such
as DO-178C [25]; however, within the SCJ development team, there is the recog-
nition that high-integrity software is generally becoming progressively more com-
plex. To this end, they define different compliance levels. The most expressive
programming model is supported at Level 2 compliance, and the SCJ team accept
that certification of Level 2 applications requires significantly more effort and
evidence than at Level 0 or Level 1 compliance. Even the Level 2 programming
model is unable to exploit fully the power of the Java programming language due
to the concerns over the ability to produce convincing certification evidence for

165

programs that support dynamic class-loading, potentially across a network. It
is also anticipated that some certification authorities may limit the use of other
Java features to constrain the amount of dynamic dispatching and delegation
that can occur in object-oriented programming languages (although the recent
work in DO-178C shows that such techniques are becoming more accepted [25]).

The examples in this section illustrate some of the more dynamic behaviour
that programs can exhibit, for which concise and intuitive formal models are
required. The extension to CSP proposed in this paper provides semantics for
techniques such as dynamic class-loading and the full use of dynamic dispatching
and delegation. This can then be used in supporting evidence to allow certifica-
tion of more complex systems to be considered in the future.

Example 1 (Frequent Flyer). Meyer gives an example of dynamic binding in
Eiffel [17]: a person who is in a frequent flyer programme connects to a server with
their membership number; they receive in reply a connection to another server
according to their membership level: Blue, Silver , or Gold , and connections are
made over the corresponding mobile channels blue, silver , and gold .

FFConnect = connect?p : MemberNo →
if p ∈ Blue then service!blue → SKIP
else if p ∈ Silver then service!silver → SKIP
else if p ∈ Gold then service!gold → SKIP
else STOP

The process FFConnect serves a one-shot transaction. It waits for a membership
number p input on the connect channel; it then analyses the value of p, and
returns an appropriate channel name on the service channel. The code is a
specification of the implementation in Eiffel that uses dynamic binding. �

Example 2 (Airline Check-in). An airline check-in system behaves as follows.
The system consists of a collection of passengers, a clerk who assigns passengers
to check-in desks, and the employees at the desks themselves. The behaviour of
a passenger who wants to travel to a particular destination is as follows:

Passenger(dest) = new p • checkin!(p, dest)→ p?bc → P(bc)

The passenger generates a fresh channel p for the visit to a desk, and then
communicates that channel and the destination over the checkin channel to the
clerk. The passenger then waits to receive a boarding card over channel p. The
clerk receives the channel name and destination from a passenger and then waits
for a desk to become free, which is signalled on the next channel with a channel
name cd . The passenger then goes and does something else (P(bc)).

Clerk = checkin?(p, d)→ next?cd → cd !(p, d)→ Clerk

The clerk then uses cd to inform the desk about the next passenger and their
destination. Desk(i) describes the behaviour of an airline representative. The
representative generates the fresh channel name cd and sends it over the next

166

channel for use by the clerk. The representative then waits to receive a commu-
nication on cd that tells them of the next passenger and their destination. The
transaction is finalised by a reply on the passenger’s channel p giving details of
the boarding card bcard(d).

Desk(i) = newcd • next !cd → cd?(p, d)→ p!bcard(d)→ Desk(i)

The system is then given by

CheckIn =
(||| i : Desks • Desk(i)

)
‖ Clerk ‖

(||| d : Today • Passenger(d)
)

Today ’s destinations is a bag, with one destination for each passenger. �

In contrast to the previous example, this system does not involve dynamic bind-
ing as in OO languages, but instead a kind of dynamic binding of resources.

In occam-π, processes exchange the ends of channels [36]; as we see below,
our theory is more powerful than this and involves mobile events. In spite of this,
it is useful to describe a process’s use of a channel in terms of the read-end or the
write-end, and this usage can be checked syntactically. The following example
uses Mobile CSP to model a simple two-place buffer using mobile channel ends.
Of course, the obvious implementation would involve a single process using a
linked-list data structure programmed using pointers. This may not be appro-
priate in a system with distributed memory, where a pointer in one memory
space would have to address memory in another space.

Example 3 (Two-place Buffer). A user wants to read and write to a two-place
buffer, and to do this, the user holds the input end of the write channel and
the output end of the read channel. The buffer is made of two parallel processes
connected by two channels, chw and chr . Between them, the two buffer processes
hold the output end of the write channel and the input end of the read channel,
and they swap ownership between themselves on the chw and chr channels,
respectively. The state-transition for the buffer is pictured in Fig. 1, where the
starting state has the left-hand process holding the buffer’s ends of the write
and read channels. The behaviour is:

D0(w , r) = w?x → chw !w → D1(x , r)
D1(x , r) = r !x → chr !r → D2 2 chw?→ D2(x ,w , r)

D2 = chw?w → D4(w)
D3(x ,w , r) = r !x → chr !r → D4(w)

D4(w) = chr?r → D0(w , r) 2 w?x → D5(x ,w , r)
D5(x) = chr?r → D1(x , r)

The buffer has some invariant properties: where the buffer contains two elements
or none (even parity), both ends reside in the same half of the buffer; where there
is just a single element, the two channel ends reside in different halves, with the
read end in the element’s half. �

167

D1

D0start D5

D4

D3D2

r !x , chr !r

chw?w

w
?x
, c
hw
!w

chr?r

chw?w

chr?r w
?x
, c
h!
w

r !x , chr !r

Fig. 1. STD for one-place buffer with mobile channel ends.

Example 4 (Ring Buffer). We can generalise Ex. 3 to an n-place ring buffer.
Each cell in the buffer behaves as follows:

Cell(i) = ring .i?(c?)→ c?x → ring .(i + 1mod n)!(c?)→
ring .i?(d !)→ d !x → ring .(i + 1mod n)!(d !)→ Cell(i)

The cell starts by receiving the input end of a channel c? over the channel ring .i ;
it then uses channel c to input a value x , which it buffers. The cell passes the
channel end c? on to the next cell in the ring; it does this by using the channel
ring .(i +1modn). The cell waits for the output end of another channel d !, which
it receives again on channel ring .i . It then outputs the value x , which it has been
buffering, on channel d , before passing the channel end d ! to the next cell in the
ring using ring .(i + 1mod n). Every cell is identical, starting with receiving the
input end of a channel from its neighbour; so how does the buffer start being
useful? The answer is to use one of the cells (it might as well be Cell(0)) in
process S (in?, out !). This process waits for the first input on the in channel,
then passes the channel on to Cell(1); it then waits to output its buffered value,
passing the output channel on to Cell(1); it then behaves like Cell(0). In this
way, the channel ends get into the ring.

S (in?, out !) = in?x → ring .1!(in?)→ out !x → ring .1!(out !)→ Cell(0)

The ring is then constructed from the cells, treating Cell(0) to its initialisation:

CellBuffer(n) = S (in?, out?) ‖ ‖ i : 1 . . n − 1 • Cell(i)

Process D in the previous example is simply a special case of this definition. �

Example 5 (Sieve of Eratosthenes). Primes models the Sieve of Eratosthenes
and generates prime numbers on the channel c; it is composed initially of just
two processes, one that generates natural numbers, and one that sifts them to

168

A event alphabet physical and logical capabilities
ok , ok ′ : B stability freedom from divergence

wait ,wait ′ : B quiescence waiting for interaction
tr , tr ′ : A∗ trace history of interaction

ref , ref ′ : PA refusals set events refused during wait
v , v ′ program variables imperative state

Table 2. Alphabet for CSP processes.

remove composite numbers:

Primes(c) = new d • Nats(2, d) ‖ Sift(d , c)

Nats(n, d) = d !n → Nats(n + 1, d)

The process Sift spawns a series of filters, each removing composites:

Sift(in, out) = new d • in?p → out !p → Filter(p, in, d) ‖ Sift(d , out)

Filter(p, in, out) = µX • in?x → (out !x → X C x mod p 6= 0 B X)

The mobile channels are used to build an unbounded process structure: we can
start Primes as a prime number server in some larger system, knowing that it
will run indefinitely (well, until the underlying resources required for channels are
exhausted). The obvious alternative implementation is to declare a sufficiently
large number of channels in advance, and then to use these one by one. The
difference between these approaches is similar to lazy versus eager evaluation in
functional programming, and the advantages are the same. �

4 Semantic Domain

Hoare & He give the semantic domain for CSP in UTP [12, Chap. 8] (see also [40,
4] for tutorial introductions). In their semantics, each process is represented by
an alphabetised predicate arranged in a lattice ordered by refinement, which is
defined as universally closed inverse implication. The alphabet describes the ob-
servations that can be made of processes, and these are summarised in Tab. 2.
Each predicate in the lattice is actually a relation between a before-state (ok ,
wait , tr , ref , and v) and an after-state (ok ′, wait ′, tr ′, ref ′, and v ′); the al-
phabet A is a constant. Membership of the lattice is defined by the fixed-points
of five functions representing healthiness conditions, and these are summarised
in Tab. 3. The predicates in this lattice can also be expressed as R-healthy
precondition-postcondition pairs: “reactive designs” [21] (where R is the compo-
sition of R1 to R3). The precondition describes the conditions under which the
process does not diverge, while the postcondition describes its failures.

Now we can define the semantic domain for mobile CSP. The obvious idea is
to make the alphabet a dynamic variable; however, a moment’s thought shows
this is inadequate because of compositionality: we need the dynamic alphabet’s

169

never undo R1 P = P ∧ (tr ≤ tr ′)
ignore history R2 P(tr , tr ′) = u s • P(s, s a (tr ′ − tr))

wait! R3 P = (IIR C wait B P)
diverge CSP1 (¬ ok ∧ tr ≤ tr ′) ∨ P

ok ′-monotonicity CSP2 P ; J

IIR =̂ (¬ ok ∧ tr ≤ tr ′) ∨ (ok ′ ∧ (tr ′ = tr) ∧ · · · ∧ (v ′ = v))
J =̂ (ok ⇒ ok ′) ∧ (wait ′ = wait) ∧ (tr ′ = tr) ∧ (refr ′ = ref) ∧ (v ′ = v)

Table 3. Healthiness conditions for CSP processes.

history when we come to compose the traces of two parallel processes. For exam-
ple, consider the process that executes an event a and then enters a state with
alphabet {a, b}. What can we say about the alphabet before the a event? It
certainly must include a itself, but what about b? We need to know the answer
in order to know whether the process has right of veto over b in any composition.
A better strategy is to record a process’s alphabet before and after each event.

Definition 1 (Dynamic Alphabetised Traces (DATs)). A DAT is non-
empty and alternates alphabets and events, starting with an alphabet:

DAT ε =̂ { s | #s ∈ Odd ∧ odds(s) ∈ (PΣ)∗ ∧ evens(s) ∈ (Σ ∪ {ε})∗ }

The silent event ε is used below to define the new and dispose commands that
manipulate a process’s alphabet. �

Example 6 (Dynamic Alphabetised Traces). The following are all valid DATs

〈{b}〉 〈{b}, b, {a, b}〉 〈{b}, b, {a, b}, a, {a, b}〉

(Here, Odd is the set of odd integers; odd(s) is the sequence of s’s odd-indexed
elements; and even(s) is the sequence of s’s even-indexed elements. �

We can now express some simple properties over DAT traces:

– start, owning c: 〈{c}〉
– acquire event c: 〈· · · , {a, b}, a, {a, b, c}, · · ·〉
– release event c: 〈· · · , {a, b, c}, a, {a, b}, · · ·〉

Mobile processes satisfy two healthiness conditions on their DAT, tr .

Definition 2 (Ownership). A mobile process can engage in an event only if
it has already acquired it, but not released it.

M1 P = P ∧ (∀ s : PΣ; e : Σ • 〈s, e〉 ∈ ran tr ′ ⇒ e ∈ s)

This is defined using a monotonic idempotent healthiness condition. �

170

Definition 3 (Refusalship). A mobile process can refuse only those events it
has acquired.

M2 P = P ∧ ref ′ ⊆ last tr ′

Again, this is enforced by a monotonic idempotent healthiness condition. �

The two healthiness conditions commute. The reactive healthiness conditions
must hold, but with R2 for (Even C tr) and (Even C tr ′), (the operator C is
domain restriction of a function). R2(P) ensures compositionality by insisting
that P does not depend on particular values for tr . In the sequence P ; Q , the
final alphabet in the trace of P must match the initial alphabet of Q . Finally,
concatenation between dynamic alphabet traces is a partial function:

last t = head u ⇒ t y u = t a (tail u)

The M healthiness conditions commute with the R healthiness conditions.

5 Semantics of Operators

In this section, space allows us to give the semantics for a few key constructs. We
do this in the style of reactive designs [21], as described in Sect. 4. The definition
of a UTP design with precondition P and postcondition Q is [12]:

P ` Q =̂ (ok ∧ P ⇒ ok ′ ∧ Q)

That is, if the design is started in a stable state (ok) and the precondition is true
(P), then it must reach a stable state (ok ′) and when it does so, the postcondition
will be true (Q). This is a statement of total correctness.

5.1 Event Prefixes (Value + Channel)

The semantics of an event-prefixed process, a → SKIP , depends on whether
the event a is the communication of a channel name. If it is not, then the UTP
semantics is similar to that in standard CSP [12]:

Definition 4 (Event Prefix (Value)).

M ◦ R (a ∈ last tr ` tr ′ = tr ∧ a /∈ ref ′ C wait ′ B tr ′ = tr a 〈a, last tr〉)

The precondition requires that a is in the current alphabet, the last entry of the
trace preceding execution of the process (last tr); the precondition in standard
CSP is simply true. Since tr is a DAT, it ends with an alphabet, so last tr is well
defined. The postcondition has a small difference too: if the process terminates,
then 〈a, last tr〉 is appended to the trace (y is not needed here); the current
alphabet is unchanged by this kind of event. If the event a is not in the current
alphabet, then the design aborts and the process diverges: this is a channel fault.

Now consider c?n → SKIP , which inputs channel name n over c.

171

Definition 5 (Event Prefix (Channel Name)).

M ◦ R
(

c.n ∈ last tr
` tr ′ = tr ∧ c.n /∈ ref ′ C wait ′ B tr ′ = tr a 〈c.n, (last tr) ∪ {|n|}〉

)

The difference is the expansion of the alphabet with {|n|}, which is the set of all
events communicable over n. Outputting a name is complementary.

5.2 New and Dispose

In UTP, a block-structured declaration var x • P is semantically equivalent to
the predicate var x ; P ; end x , where the beginning and end of the scope
of x are treated separately [12, Chap. 2]. We adopt a similar approach to the
block-structured allocation of fresh channels new c • P , and deal separately
with the allocation and disposal of a channel: new c ; P ; dispose c.

Definition 6 (New Channel). For fresh c,

new c ; P =̂ M ◦ R(true ` ¬ wait ′ ∧ tr ′ = tr a 〈ε, (last tr) ∪ {|c|}〉)

Definition 7 (Dispose Channel).

dispose c ; P =̂ M ◦ R(true ` ¬ wait ∧ tr ′ = tr a 〈ε, (head tr ′) \ {|c|}〉)

Example 7 (Channel Allocation). Consider the Desk(i) process in Ex. 2:

new cd • next !cd → cd?(p, d)→ p!bcard(d)→ Desk(i)

The process must initially own the next channel’s events: {|next |}; these events
are all channel name communications. Here is an example trace:

〈 {|next |},
ε, {|next |} ∪ {|cd |},

next .cd , {|next |} ∪ {|cd |},
cd .(p, d), {|next |} ∪ {|cd |} ∪ {|p|},

p.bcard(d), {|next |} ∪ {|cd |} ∪ {|p|},
ε, {|next |} ∪ {|p|} 〉

In this trace, cd is a fresh channel name; p is bound to a channel name input as
part of the pair on the cd channel. Notice how we automatically dispose of cd
at the end of the process; however, there is no automatic disposal of the channel
denoted by p. A better definition for the process would tidy this up:

new cd • next !cd → cd?(p, d)→ p!bcard(d)→ dispose p; Desk(i)

Here, the events of whichever channel is denoted by p are removed from the
alphabet when the scope of the channel variable p ends. �

172

5.3 Parallel Composition

In UTP, parallel composition uses the parallel-by-merge semantic pattern taken
from Hoare & He’s UTP semantics for ACP, CCS, and CSP [12]: two processes
have their overlapping alphabets separated by renaming; they are then run in
parallel producing two states, which are then merged to give the meaning of the
composition. We need to specify only the merge for DAT traces.

Definition 8 (Parallel Merge). Define a “catset” operator that concatenates
its left-hand sequence operand with every sequence in its right-hand set operand:

s ∗a T =̂ { u : T • s a u }

We use this operator to define the parallel composition of two DAT traces:

〈s〉a xs ‖ 〈t〉a ys =̂ 〈s ∪ t〉 ∗aN (s, xs, t , ys)

N (s, 〈〉, t , ys) = {ys}
N (s, xs, t , 〈〉) = {xs}
N (s, 〈x 〉a xs, t , 〈y〉a ys) =

if x = y 6= ε then 〈x 〉 ∗a (xs ‖ ys)
else (if x /∈ t then 〈x 〉 ∗a (xs ‖ 〈t , y〉a ys))

∪ (if y /∈ s then 〈y〉 ∗a (〈s, x 〉a xs ‖ ys))

Silent events occur independently: if two parallel processes each allocate a new
channel, then there is no synchronisation of the two new commands. It is easily
shown by induction that the merge operator is closed on DAT traces. �

Example 8 (Parallel Merge). Consider the two Mobile CSP processes: P = a →
SKIP and Q = get .a → a → SKIP .

P ’s behaviour includes the following trace: 〈{a}, a, {a}〉; Q ’s behaviour in-
cludes 〈{get .a}, get .a, {get .a, a}, a, {get .a, a}〉. The parallel composition of the
two traces describes two behaviours: the first has P executing a before Q gets
hold of a (〈{get .a, a}, a, {get .a, a}, get .a, {get .a, a}〉; the second has P executing
a afterwards Q (〈{get .a, a}, get .a, {get .a, a}, a, {get .a, a}〉. In the first trace, P
executes a independently; in the second trace P and Q synchronise on a. �

6 Implementation

The ring buffer described in Ex. 4 can be implemented in pure CSP:

Imp(i) = ring .i?c → chan.c?x → ring .((i + 1)mod n)!c →
ring .i?d → chan.d !x → ring .((i + 1)mod n)!d → Imp(i)

Here, we simulate mobile channels by passing around tokens so that the end of
a channel can be used only by the process that holds the token for that channel
end, whilst those processes without a token do not block. We use a token for the

173

package mobileCode;
public interface ServerInterface {

public void useService(String parameters);
}

Fig. 2. ServerInterface.java

public enum MembershipLevel {Blue, Silver, Gold}
public class Broker {

// directory of servers implemented via a Java Map
public ServerInterface lookUpService(MembershipLevel l) {

ServerInterface server;
// lookup server
return server;

}
public synchronized void register(ServiceProvider serverThread,

MembershipLevel level) {
// save details in map

}
}

Fig. 3. MembershipLevel.java

relevant channel name to index an array of channels chan; interleaving is needed
to share the channel ends (see [11] on shared resources).

Examples 1 and 2 use the broker architectural pattern [2], suitable for dis-
tributed systems where clients invoke remote services, but are unconcerned with
the details of remote communication. In systems engineering, there are many
practical reasons to adopt a distributed architecture. The system may need to
take advantage of multiple processors or a cluster of low-cost computers. Cer-
tain software may be available only on specific computers, or provided by third
parties and available on the cloud. The broker pattern can hide many of these
implementation issues by encapsulating required services into a separate layer.

Example 9 (Broker Pattern). In SCJ, the broker pattern is an application that
requires dynamic dispatching through interfaces, as illustrated in Fig. 2. The
broker itself simply maintains a directory of service providers. In Ex. 1, there are
three service providers for Blue, Silver and Gold membership levels, as shown in
Fig. 3. These register with the broker via a synchronised method. To simplify the
example, assume that the system runs on a multiprocessor server, and the service
providers have their own resources allocated. The application is encapsulated in
an SCJ mission (subsystem) and the service providers are managed threads that
implement the service interface, as shown in Fig. 4. The threads are Java daemon
threads, terminating automatically. Finally, the clients are also managed threads

174

public class ServiceProvider extends ManagedThread implements ServerInterface {
@Override
public void useService(String s) {

// add to queue of requests
// wait until search has been performed
return;

}
@Override
public void run() {

broker.register(this, level);
while (true) {

// perform services while needed
}

}
public ServiceProvider(Broker b, MembershipLevel l) {

super();
this.broker = b;
this.level = l;
this.setDaemon(true);

}
private Broker broker;
private MembershipLevel level;

}

Fig. 4. ServiceProvider.java

that are assigned a particular membership level when created (Fig. 5). To analyse
an program with the broker pattern requires all possible classes implementing
ServiceInterface to provide equivalent functionality. For a large system, where
the same broker is used to provide the interface between many service providers
and clients, this may be difficult to guarantee and to provide evidence that each
service provider is being used in the correct context. �

The broker acts as a messenger: locating an appropriate server; forward-
ing requests to that server, possibly marshalling data; and transmitting results
to the client, possibly demarshalling data. Clients are applications that access
servers, and they call the remote service by forwarding requests to the broker
and receiving responses or exceptions in reply. Widely used broker patterns in-
clude OMG’s CORBA standard, Microsoft’s Active X, and the World-Wide Web,
where browsers act as brokers and servers act as service providers.

7 Related Work

Our traces component is essentially the same as that of Hoare & O’Hearn [13];
they explore the unification of CSL (concurrent separation logic) and CSP by

175

public class Client extends ManagedThread {
private Broker broker;
private MembershipLevel level;
public Client(Broker b, MembershipLevel l) {

broker = b; level = l;
}
@Override
public void run() {

// code for client
ServerInterface myProvider = broker.lookUpService(level);
myProvider.useService(params);

}
private String params;

}

Fig. 5. Client.java

adding temporal separation to CSL and mobile channels to CSP, restricting
to the traces model, excluding nondeterminism, deadlock, and livelock. Their
interest lies in point-to-point communication, using ideas from separation logic
to reason about exclusive use of channel ends, used as in occam-π [36]. Processes
that send a channel end automatically relinquish ownership. This differs from
our work, where channels may have many ends and ownership must be handled
explicitly. Actually, the structure of a trace is slightly different: instead of simple
events, they allow sets of events, giving a semantics for true concurrency and
having no need for ε. Their work, with its deliberate restrictions, leads to a very
simple notion of event composition using point-wise disjoint union.

Roscoe discusses a version of CSP with mobility [24, Sect. 20.3], so that all
processes that do not presently have the right to use a particular action always
accept the event and never change their state when the event occurs. This is
the same as our route to implementation in Sect. 6. He has shown how a full
semantics of the π-calculus can be given in CSP [23]: for each π-calculus agent,
there is a CSP process that models it accurately.

In Mobile CSP‖B [34], controllers can work with different machines during
execution. Controllers can exchange machines between each other by exchanging
machine references and manage concurrent state updates. This work goes further
than the current paper and the references cited in this section by dealing with
the fusion of concurrency, communication, state, and channel mobility.

8 Conclusions and Future Work

This paper has explored a semantics for mobile CSP for specifying and verifying
safety-critical code. It permits the use of dynamic programming features, such
as the use of the broker architectural and programming pattern, in a controlled

176

fashion so that evidence for assurance can be collected and relied upon. The
work started as a contribution to occam-π; more recently, it has contributed
to Safety-Critical Java and on reasoning about systems of systems and cyber-
physical systems. The work is still at an early stage, and there are plenty of
directions for future work. We will give a complete account of the operators of
mobile CSP and extend this to MobileCircus. We need to prove closure of all these
operators with respect to R and M, and perhaps devise additional healthiness
conditions. We have hinted at the possibility of translating mobile CSP into plain
CSP; we need to record a Galois connection between the two and use it as the
basis of a translator. Finally, since our intention is to verify system architectures
and programs, we will devise a Hoare logic for Mobile CSP and prove it sound.

9 Acknowledgements

This work has been supported by the EPSRC hiJaC and the EU H2020 INTO-
CPS projects. Thanks to Philippa Gardiner for an application of the π-calculus
that led to Ex. 2; to Peter Welch for discussions more than a decade ago on
mobile channels in occam-π that led to the semantic model in this paper; and
to three anonymous referees for prompting clarifications in the paper.

References

1. John Bjørndalen et al. PyCSP — CSP for Python. In Alistair McEwan et al.,
editors, CPA, pages 229–248, 2007.

2. Frank Buschmann. Pattern-Oriented Software Architecture. Wiley, 1996.
3. Andrew Butterfield et al. Slotted-Circus. In Jim Davies et al., editors, IFM, volume

4591 of LNCS, pages 75–97. Springer, 2007.
4. Ana Cavalcanti et al. A tutorial introduction to CSP in Unifying Theories of

Programming. In Ana Cavalcanti et al., editors, Refinement Techniques in Software
Engineering, volume 3167 of LNCS, pages 220–268. Springer, 2004.

5. Ana Cavalcanti et al. Unifying classes and processes. SoSyM, 4(3):277–296, 2005.
6. Ana Cavalcanti et al. Safety-critical Java in Circus. In Andy Wellings et al., editors,

JTRES, pages 20–29, 2011.
7. Ana Cavalcanti et al. The Safety-critical Java memory model: A formal account.

In M. J. Butler et al., editors, FM 2011, volume 6664 of LNCS, pages 246–261.
Springer, 2011.

8. Ana Cavalcanti et al. The Safety-critical Java memory model formalised. Formal
Asp. Comput., 25(1):37–57, 2013.

9. Ana Cavalcanti et al. Safety-critical Java programs from Circus models. Real-Time
Systems, 49(5):614–667, 2013.

10. Clemens Fischer. Combining Object-Z and CSP. In Adam Wolisz et al., edi-
tors, Formale Beschreibungstechniken für verteilte Systeme, volume 315 of GMD-
Studien, pages 119–128, 1997.

11. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
12. C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice Hall, 1998.
13. Tony Hoare and Peter W. O’Hearn. Separation logic semantics for communicating

processes. ENTCS, 212:3–25, 2008.

177

14. ISO. ISO/IEC 8652:2012 Information technology — Prog. languages — Ada, 2012.
15. Gabor Karsai. Unification or integration? The challenge of semantics in heteroge-

neous modeling languages. In Benoît Combemale et al., editors, The Globalization
of Modeling Languages, pages 2–6, 2014.

16. Z. Liu et al. rCOS: Refinement of component and object systems. In F. de Boer
et al., editors, FMCO, volume 3657 of LNCS, pages 183–221. Springer, 2004.

17. Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.
18. Robin Milner et al. A calculus of mobile processes. Inf. Comput., 100:41–77, 1992.
19. FDR3 model checker. www.cs.ox.ac.uk/projects/fdr/.
20. Martin Odersky. Programming in Scala, 2008. Mountain View, California.
21. Marcel Oliveira et al. A denotational semantics for Circus. Electr. Notes Theor.

Comput. Sci., 187:107–123, 2007.
22. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.
23. A .W .Roscoe. CSP is expressive enough for π. In C. B. Jones, A. W. Roscoe, and

K. R. Wood, editors, Reflections on the Work of C. A. R. Hoare. Springer, 2010.
24. A. W. Roscoe. Understanding Concurrent Systems. Springer, 2010.
25. RTCA. Object-oriented technology and related techniques supplement to DO-178C

[ED-12C] and DO-178A. Technical Report DO-332/ED-217, [ED-109A], 2011.
26. Steve Schneider and Helen Treharne. Communicating B machines. In Didier Bert

et al., editors, ZB 2002, volume 2272 of LNCS, pages 416–435. Springer, 2002.
27. Adnan Sherif et al. A process algebraic framework for specification and validation

of real-time systems. Formal Asp. Comput., 22(2):153–191, 2010.
28. Neil Smyth. Communicating Sequential Processes in Ptolemy II. Tech. Memo.

UCB/ERL M98/70, Electronics Research Laboratory, Berkeley, December 1998.
29. Jun Sun et al. Model checking CSP revisited: Introducing a process analysis toolkit.

In Tiziana Margaria et al., editors, ISoLA, pages 307–322. Springer, 2008.
30. Xinbei Tang et al. Towards mobile processes in unifying theories. In SEFM, pages

44–53, 2004.
31. Xinbei Tang et al. Travelling processes. In MPC, volume 3125 of LNCS, pages

381–399. Springer, 2004.
32. inmos. occam Programming Manual. Prentice Hall, 1984.
33. H. Treharne and S. Schneider. How to drive a B machine. In Jonathan P. Bowen

et al., editors, ZB 2000, volume 1878 of LNCS, pages 188–208. Springer, 2000.
34. Beeta Vajar et al. Mobile CSP‖B. ECEASST, 23, 2009.
35. P. H. Welch et al. The JCSP (CSP for Java) Home Page, 1999.
36. Peter H. Welch et al. Mobile barriers for occam-π: Semantics, implementation and

application. In Jan F. Broenink et al., editors, CPA, pages 289–316, 2005.
37. Jim Woodcock. Engineering UToPiA—Formal semantics for CML. In FM 2014,

volume 8442 of LNCS, pages 22–41. Springer, 2014.
38. Jim Woodcock et al. A concurrent language for refinement. In Andrew Butterfield

et al., editors, 5th Irish Workshop on Formal Methods, 2001.
39. Jim Woodcock et al. The semantics of Circus. In ZB 2002, volume 2272 of LNCS,

pages 184–203. Springer, 2002.
40. Jim Woodcock et al. A tutorial introduction to designs in Unifying Theories of

Programming. In Eerke A. Boiten et al., editors, Integrated Formal Methods, IFM
2004, volume 2999 of LNCS, pages 40–66. Springer, 2004.

41. Jim Woodcock et al. Features of CML: A formal modelling language for systems
of systems. In ICOSE, pages 445–450, 2012.

42. Frank Zeyda et al. The Safety-critical Java mission model: A formal account. In
Shengchao Qin et al., editors, ICFEM 2011, volume 6991 of LNCS, pages 49–65.
Springer, 2011.

178

Author Index

A
Araujo, Hugo L. S. 68
Araujo, Renata B. S. 68
B
Braga, Christiano 4
Brunel, Julien 20
C
Camarão, Carlos 84
Carvalho, Gustavo 115
Cavalcanti, Ana 52, 163
Chareton, Christophe 20
Chemouil, David 20
G
Gruner, Stefan 147
Gulwani, Sumit 1
I
Iyoda, Juliano 68
L
Lopes, Bruno 4
M
Macario, Francisco 36
Miyazawa, Alvaro 52
Mota, Alexandre 131
N
Nogueira, Sidney C. 68
O
Oliveira, Marcel Vinicius Medeiros 36
R
Ribeiro, Rodrigo 84
S
Sampaio, Augusto 68, 115, 131
Santiago Júnior, Valdivino Alexandre De 99
Silva, Bruno Cesar F. 115
Silva, Tarciana 131
Simao, Adenilso 2
T
Tahar, Sofiène 99
Timm, Nils 147
W
Wellings, Andy 163
Woodcock, Jim 163

