
Oracles of Bad Smells - a Systematic Literature Review
Rafael Prates Ferreira Trindade

Computer Science Department
Federal University of Minas Gerais

Belo Horizonte, M.G., Brazil
rafael.trindade@dcc.ufmg.br

Mariza Andrade da Silva
Bigonha

Computer Science Department
Federal University of Minas Gerais

Belo Horizonte, M.G., Brazil
mariza@dcc.ufmg.br

Kecia Aline Marques Ferreira
Department of Computing

Federal Center for Technological
Education of Minas Gerais
Belo Horizonte, M.G., Brazil

kecia@cefetmg.br

ABSTRACT
A bad smell is an evidence of a design problem that may be harmful
to the software maintenance. Several studies have been carried
out to aid the identification of bad smells, by defining approaches
or tools. Usually, the evaluation of these studies’ results relies on
data of oracles bad smells. An oracle is a set of data of bad smells
found in a given software system. Such data serves as a referential
template or a benchmark to evaluate the proposals on detecting
bad smells. The availability and the quality of bad smell oracles are
crucial to assert the quality of detection strategies of bad smells.
This study aims to compile the bad smell oracles proposed in the
literature. To achieve this, we conducted a Systematic Literature
Review (SLR) to identify bad smell oracles and their characteristics.
The main result of this study is a catalog of bad smell oracles that
may be useful for research on bad smells, especially the studies that
propose tools or detection strategies for bad smells.

KEYWORDS
bad smell, code smell, design anomaly, benchmark, oracle, system-
atic literature review

ACM Reference Format:
Rafael Prates Ferreira Trindade, Mariza Andrade da Silva Bigonha, and Kecia
Aline Marques Ferreira. 2020. Oracles of Bad Smells - a Systematic Literature
Review. In Proceedings of CBSoft (SBES’20). Brazil, 10 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Beck and Fowler coined the term bad smell to identify quality issues
in code that may be refactored to improve software maintainability.
They refer bad smells as “ structures in the code that suggest the
possibility of refactoring” [18]. An excessive amount of bad smells
in a software system makes it hard to maintain and evolve [50].
Identifying the parts of the system that should be refactored is need
to control the software architecture complexity [27]. The most
widespread definitions of bad smells in the literature are postulated
by Fowler et al. [18], being a total of 22 bad smells. Brown et al. [6]
describe 14 bad smells that have been categorized into three distinct

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBES’20, August 2020, Brazil
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

phases of the software life cycle: management, architecture, and
development. Identifying bad smells manually in large software
systems is not viable. So, to overcome such difficulties, many studies
carried out to define strategies and tools for bad smell detection.
One of the first studies in this sense is by [33] that proposes a metric-
based approach for detecting bad smells. The study of Fernandes
et al. [15] found 84 tools, which intended to detect 61 bad smells
in total. Overall, these tools apply six different bad smell detection
techniques. Fernandes et al. [15] compared four tools regarding the
detection of Large Class and Long Method bad smells. They found
that the tools have divergent results when inspecting the same set
of software systems.

The studies usually rely on the oracles of bad smells to evaluate
the efficiency of detection approaches and tools. In this context, an
oracle is a set of data considered as a benchmark, which is compared
to a resulting set with the same category of data to evaluate the
quality of this resulting set. Regarding bad smells, an oracle is a set
of data, which reports actual instances of bad smells in a software
system. For instance, the study of Fernandes et al. [15] used an
oracle of two bad smells of a single software system.

According to Lavoie and Merlo [28], good oracles need to deal
with systems large enough and will depend of a thorough analysis
of the code to have any practical interest. We may generate a bad
smell oracle by (i) manual inspection of a system, (ii) automatic
scanning, or (iii) combining both techniques. In a manual approach,
specialists point out instances of bad smells in the source code.
As the oracles depend on manual inspection in this technique, its
subjectiveness is high [44]. Therefore, it is complex to generate
a trustful oracle. On the other hand, the evaluation of automatic
approaches demands a previous oracle that needs to be proven
precise. Therefore, the existence of reliable bad smell oracles is of
central importance in the development of automatic techniques to
detect bad smells.

This work aims to identify bad smell oracles proposed in the
literature, how they were constructed, their main characteristics
and where they are available. For this purpose, we carried out a
Systematic Literature Review (SLR). The aim of a SLR is “identify-
ing, assessing, and interpreting all available evidence relevant to a
specific issue, thematic area, or phenomenon of interest” [26]. As a
result, we identified 51 studies that directly or indirectly produced
bad smell oracles. At least six programming languages have been
the focus of the oracles: Java, C, CPP, JavaScript, and Scratch. We
also have found that the automatic approach is the most popular,
i.e., usually bad smell oracles rely on tools. JDeodorant has been the
most used tool to create bad smell oracles. Moreover, each oracle
found in the literature focuses on specific bad smells Blob bad smell

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SBES’20, August 2020, Brazil Rafael Prates Ferreira Trindade, Mariza Andrade da Silva Bigonha, and Kecia Aline Marques Ferreira

is the most commonly used. We also identified 12 oracles of bad
smells available online.

The contributions of this work are mainly useful for researchers
who carry out studies on bad smells, since oracles of bad smells may
be used in the creation and evaluation of detection approaches, in
the evaluation of tools, and in the conduction of empirical studies
on bad smells.

We organize the remaining of this paper as follows. Section
2 presents the related work. Section 3 shows the criteria used to
conduct this Systematic Literature Review and presents the research
questions. Section 4 presents the results. Section 6 discusses the
threats to the validity of our study. Section 7 brings a conclusion.

2 RELATEDWORK
According Zhang et al. [61], most of the studies on bad smell was
published between 2000 and 2009. Consider the definitions given
by Fowler et al. [18], being Duplicated Code highlighted in more
than 50% of the studies. Besides, approximately half (49%) of the
studies propose a method or tool to detect bad smells. The works
that propose techniques to detect bad smells usually compare their
approaches with data of an oracle. An oracle is supposed to have
all the real occurrences of a given bad smell in a given software
system. The correctness of the oracle is, therefore, a severe threat
to the studies on bad smell. Moreover, providing proper oracles is
essential to ensure the validity of such studies.

Sobrinho et al. [52] conducted an extensive Systematic Literature
Review to determine the state of the art on bad smells with 351
works produced between 1990 and 2017. Among the results, the
authors identified that there are divergences on the impacts of bad
smells on software maintainability. Some studies consider the use of
code with a bad smell is the best option for development. Sobrinho
et al. [52] also found that the most common motivation of the
analyzed works, more than 30 % of the studies set, is creating a tool
or technique for detecting bad smells. Among the future directions,
the authors indicate the lack of representative benchmarks. In this
sense, their findings justify the conduction of our work, since this
SLR compiles the oracles of bad smells provided by the literature,
as well as indicates its approaches, characteristics, and location.

Palomba et al. [44] point out the main dilemmas to be overcome
in the construction of a manual oracle: the subjectivity, the difficulty
in comparing different techniques, the inviability to generalize
results, and the effort involved in the construction of an oracle.

Another problem is that there is no consensus about the bad
smell, and, for this reason, oracles generated for the same software
system may have disagreements. Olbrich et al. [37] indicate that a
manual detection of bad smells through code inspection leads to
three problems: time-consuming, non-replicable, and non-scalable.

It is important to identify previous works that have proposed
bad smell oracles, considering all the difficulties to generate one.
Palomba et al. [44] claim that they are not aware of a wider reposi-
tory of bad smells than the one generated by them, whose volume
comprises 20 software.

Our work differs from the ones presented in this section in the
following points: we identify 51 oracles of bad smell proposed in
the literature, being 12 available online. Moreover, we characterize
the oracles we have found in three aspects: (i) bad smells considered

in the oracle, (ii) programming language and size of the software
systems used to construct the oracle, and (iii) approach used to
create the oracle - manual, tool, or both.

3 STUDY DESIGN
The studies identified by an SLRmay be classified as primary studies
whereas the SLR itself is a secondary study. In this work, the primary
studies are scientific publications.

The SLR presented in this paper addresses studies on bad smell
oracles. The objective of this SLR is to identify works that produce
oracles and the characteristics of the oracles. We perform the SLR
in three steps: planning, execution, and analysis. In Section 3.1 we
present the planning phase. Section 3.2 describes the execution,
showing the steps and the results of the primary’s studies selection
process. Section 3.3 ehibits themost relevant points of some selected
papers.

3.1 Planning Step
In this step, we defined all the necessary elements for the SLR
elaboration: (i) the research questions, which we will investigate,
(ii) the search string we will use, (iii) the inclusion and exclusion
criteria of the primary studies, and (iv) the databases to be searched.

ResearchQuestions. This study investigates five research ques-
tions (RQ) as follows.

RQ1: Which oracles for bad smells have been proposed in the litera-
ture?

RQ2: In which programming languages the systems composing the
oracles are implemented?

RQ3: What are the size of the systems composing the oracles?

RQ4: Which bad smells are considered by the oracles?

RQ5: Which approaches have been used to create the oracles?

Search String. The search string is used to find primary studies
in the selected databases. To define the search string, we have iden-
tified the most relevant keywords related to the proposed research
questions and the synonyms of these keywords.

“Bad smell" is not the only term used in the literature. Other
terms, such as “code smell" and “anomaly", have the same meaning,
so they were also included in the definition of the search string as
follows.

((“oracle" OR “benchmark") AND ((“anti-pattern" AND
“software") OR (((“bad" OR “design" OR “code" OR “architecture")
AND (“smell")) OR ((“design" OR “code") AND “anomaly"))))

To search in different electronic repositories, we have applied the
search only in metadata, i.e., title, abstract, and keywords. Through-
out the decision process of the search string, we made some adjust-
ments in the considered terms. After the first round of search, we
observed that the term “oracle” is frequently used in the context
of studies on bad smells. We also found the term benchmark as a
synonym for oracle. The term anti-pattern was the last one inserted
in the string since we have realized that there are works that use

Oracles of Bad Smells - a Systematic Literature Review SBES’20, August 2020, Brazil

the term as a synonym for bad smell. However, to limit the universe
in which this term appears, we inserted the term software. The
searches have been carried out with all search string proposals, and
we considered their results to form the basis of primary studies
included in the SLR.

Inclusion and Exclusion Criteria. These criteria allow us to
classify each paper found as a candidate to be included or excluded
from the SLR, allowing it to restricted to the explored topic. Table 1
summarizes the inclusion and the exclusion criteria applied in this
work.

Table 1: Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria
Works published in Computer
Science

Duplicate Articles

Works written in English Documents classified as
tutorials, posters, panels,
lectures or workshops

Works available in electronic
format

Articles that could not be
found

Works published in
conferences or journals

Chapter of books published in
conferences or magazines

Works related to the topic of
this study

Databases. We used the following digital libraries: ACM Digital
Library1, IEEE Xplore2, Science Direct3(SD), Scopus4, Springer5,
Web of Science6, Engineering Village7, and Google Scholar8. We
chosen them because they are electronic databases that have an
extensive collection of full papers published at relevant conferences
and journals to the academic community.

3.2 Execution Step
This step consists of applying the search string on the chosen
databases, and the inclusion and the exclusion criteria of studies.

Search Process. We applied the search string to the search en-
gine of each digital library and incorporated the results into a single
worksheet for subsequent processing. In the results from the Science
Direct and Web of Science, the data was included in the spread-
sheet manually because such digital libraries did not export data to
the spreadsheet format. To retrieve data from Google Scholar as a
search source, we have used the Publish or Perish9 program, which
provides a list of relevant articles that fit the search string. Observe

1http://dl.acm.org/
2http://ieeexplore.ieee.org/
3http://www.sciencedirect.com/
4http://www.scopus.com/
5https://link.springer.com/
6http://webofknowledge.com/
7http://www.engineeringvillage.com/
8https://scholar.google.com.br/
9https://harzing.com/resources/publish-or-perish

that we have used it because Google Scholar does not provide the
functionality to download the results as a whole.

Table 2: Number of works returned by each digital library

Digital Library Number of works
Google Scholar (Google) 901
Scopus (SC) 804
Engineering Village (EV) 240
ACM Digital Library (ACM) 210
IEEE Xplore (IEEE) 348
Web of Science (WoS) 164
Springer (SP) 1009
ScienceDirect (SD) 1272

In the total, 4,948 primary studies have been returned by exe-
cuting the search string in each of the eight digital repositories, as
exhibited in Table 2. Science Direct has returned 1,272, which is
almost eight times more than Web of Science, which returned the
lowest number of studies, 164.

Selection Process. After performing the search process, we
have selected the primary studies to be considered. For this purpose,
we have used the inclusion and exclusion criteria defined at the
Planning Step.

Figure 1 illustrates the phases defined for selecting the works
after executing the search string in the eight digital libraries. The
initial search returned 4,948 studies. We have performed five refine-
ments during the execution phase. The purpose of these refinements
is to select a final set of primary studies that present an oracle for
bad smell. The first refinement removed duplicate documents, re-
sulting in 4382 documents. We discarded duplication of studies, i.e.,
works with the same title and authors.

The second refinement eliminates studies whose type of work
is not in the scope of this SLR. We removed studies representing
chapters of books, patent registrations, documents classified as
tutorials, posters, panels, lectures or workshops, according to the
exclusion criteria shown in the Table 1. After this stage, 4,128 arti-
cles remained. In the third refinement, we analyzed the remaining
studies verifying if they met the purpose of this systematic litera-
ture review. For that, we read the titles, summaries, and conclusions
of the articles. At the end of this phase, 426 articles remained.

Subsequently, we performed the fourth refinement. At this stage,
we read all primary studies completely to ensure that they serve for
our SLR. We performed the text reading to determine the studies
that produced oracles of bad smells. In this process, we read the texts
aiming to identify descriptions of software analysis process that
identified bad smells, as well as, lists, tables or files indicating the
occurrence of a bad smell by class or method. The resulting set has
46 studies. Then, we conducted the procedure known as backward
snowballing [57] with the 46 articles. In this fifth refinement, we
checked the reference list of each study. The goal was to find other
studies not included in the existing set but was related to bad smell
oracles. We included five studies after this stage, resulting in 51
articles at the end. We selected these 51 studies to Analysis Step.

SBES’20, August 2020, Brazil Rafael Prates Ferreira Trindade, Mariza Andrade da Silva Bigonha, and Kecia Aline Marques Ferreira

Figure 1: Phases of the selection of works.

Figure 2 illustrates the distribution of primary studies among
each digital library in every refinement phase. IEEE Xplore is the
library that most contributed to the research, accounting for more
than half of the total. Despite returning the most amount of initial
results, Science Direct provides only one article for the study. The
Scopus and Web of Science databases ended up not having any
article considered for the study as well. It is worth noting that the
first refinement took into account the alphabetical ordering of the
base name, which may have masked the contributions.

Figure 2: Distribution of the works after each refinement
phase

3.3 Analysis Step
In this step, we analyze the results to answer the research questions
with the data extracted from the 51 papers selected in the Execution
Step.

Data Extraction. We conducted a careful reading of the 51 pri-
mary studies. For each one, we wrote a summary compiling the
data needed to answer the research questions. Afterward, we cre-
ated a sheet containing the bad smell name, the approach used to
identify the bad smell, and characteristics of the software systems
considered in the study. In this phase, we found out that it was only
possible to know whether the oracle is available online when the
paper reports this information.

AC
M

En
gi
ne
er
in
g

Vi
lla
ge

Go
og
le

IE
EE

Sc
ien

ce
Di
re
ct

Sp
rin

ge
r

0

10

20

30

40

4 3 2

37

1
4

Figure 3: Final distribution of primary studies among the
databases

Final Result. After the fifth refinement, we found 51 articles dis-
tributed among the databases, according to Figure 3. Two databases
returned no contribution to the research theme of this SLR, namely
Scopus and Web of Science. More than 70% of the studies come
from the IEEE. Nevertheless, it is not possible to affirm that the
studies are exclusive results of IEEE Digital Library since the first
stage of the refinement classified the bases in alphabetical order,
which may have somehow benefited the IEEE.

Studies published outside the traditional academic environment
are known as "gray literature" [5]. This type of primary studies
may be found by tools like Google Scholar. Google Scholar is also
able to find any results that would already be found by other digital
repositories. Nevertheless, since all results would go through the
Selection Process, we are able to determine only studies that become
relevant to answer the research questions in this SLR. The use of
Google Scholar is justified, as it provided two studies used in the
final set of primary studies considered.

Figure 4 shows the distribution of primary studies published over
the years. This analysis considers the whole set of studies, including
the five ones found by the snowballing process. We observed that
research related to the oracles of bad smells is recent. The apex of
publications occurred in 2015 and 2016. The first oracle found was
published in 2004, five years after the definitions of bad smell given
by Fowler et al. [18].

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

0

5

10

1
0 0 0

1
3

0 0

6

3
5

13
11

7

1

Figure 4: Distribution of primary studies by year of publica-
tion

Oracles of Bad Smells - a Systematic Literature Review SBES’20, August 2020, Brazil

4 RESULTS
This section presents the results of the study by answering the
research questions.

RQ1: Which oracles for bad smells have been proposed in the litera-
ture?

All the 51 papers recovered in the search present an oracle for bad
smells. However, not all oracles have data available online. In some
cases, the authors clarify that they may let the oracles available
if they receive a formal request. Table 3 presents the studies that
define the oracles of bad smells.

Table 3: List of articles that have oracles not available online

References Approach
[13], [58], [29], [31], [53], [56], [3], [51], [32], [35], [10],
[9], [4], [22], [8], [1], [48], [2], [39], [60], [16], [38], [21],
[47], [59], [17], [36]

Tool

[54], [37], [14] Mixed
[20], [37], [55], [49], [62], [12], [43], [40], [11] Manual

Despite 51 papers create bad smell oracles, only 12 of them
are online. Among these, four used a manual approach to their
generation, tools created six, and two used a mixed approach to
their generation. Table 4 presents the characteristics of them. From
left to right, the columns present: (i) reference to the paper, which
proposed the oracle, (ii) the software systems in which the oracle is
based; (iii) the bad smells considered in the oracle; (iv) the approach
applied to construct the oracle - manual, tool, or mixed -, (v) the
footnote number, which gives the access link to the oracle.

In some cases, even when a paper mentions a link to an oracle,
it may not be found. This happens in the case of [30] whose page
is online, but no oracle was found even after a thorough search on
it. The link initially provided by [44] is no longer available, but we
found the current link16 after searching.

We noticed that the researcher Fabio Palomba is co-author of
five out of the 12 works that resulted in online oracles ([41], [42],
[44],[45],[46]). The oracles in these works have many software
systems and bad smells in common. Therefore, they may share
similar data.

The available bad smell oracles organize the results by software.
Most of the studies provide the data in spreadsheets with a line per
class and the bad smells found in the class ([25], [46], [24], [42],
[45], [41]). The oracle of Hecht et al. [19] indicates the method
where the bad smell is located. A single oracle (Chen and Jiang [7])
presents the data in a text file, using special characters to separate
classes with a bad smell.

RQ2: In which programming languages the systems composing the
oracles are implemented?

The oracles of bad smells usually are based on software systems
developed in a particular programming language.With this research
question, we aim at identifying the programming languages used to
develop the systems of the oracles proposed in the literature. Figure
5 shows the number of oracles per programming language, where
Java is the most used programming language, including Android

Java, Java Web, or Java Ahead based software systems. Two oracles
use Java and C, resulting in 45 oracles for Java.

Ja
va

C
an
d
Ja
va

Ja
va
Sc
rip

t

Sc
ra
tc
h

C
an
d
CP

P

Va
rio
us

No
in
fo
r-

m
at
io
n

0

20

40
43

2 2 1 1 1 1

Figure 5: Programming language of the oracles’ software sys-
tems.

We observed that the traditional definitions of bad smells are
associated with object-oriented programming languages. Neverthe-
less, some studies use languages from others paradigms ([20], [13],
[14]), but commonly, most of them make adaptations on the bad
smells.

There are only three oracles for C, two for JavaScript, and one
for Scratch. One paper mentions an oracle but does not indicate in
which programming language it is based. In another paper ([29]),
the oracle is constructed with four languages: C++, Java/AspectJ,
C#.

RQ3: What are the size of the systems composing the oracles?

Most of the programs used in the oracles are large. Mannan
et al. [31], for instance, use a software system with more than 16
million lines of code. In contrast, there are tiny systems used in
some oracles, such as the Scratch-based oracle [20].

Some oracles use the same programs. Table 5 shows the most
cited programs in descending order and size, considering the num-
ber of classes. We observed that projects from Apache Software
Foundation are widely used to generate oracles of bad smell. The
third column of Table 5 shows the total number of classes indicated
by the articles. In many cases, the same software appears in differ-
ent versions. Each time the two classes range appears in the Table

10http://www.ptidej.net/downloads/experiments/qsic09/
11http://dx.doi.org/10.6084/m9.figshare.1590962
12http://sofa.uqam.ca/paprika/mobilesoft16.phpCodeSmells
13http://www.ptidej.net/downloads/experiments/prop-WCRE09
14http://www.rcost.unisannio.it/mdipenta/papers/ase2013/
15https://dibt.unimol.it/staff/fpalomba/reports/maltesque/
16http://soft.vub.ac.be/landfill/
17https://dibt.unimol.it/staff/fpalomba/reports/badSmell-analysis/index.html
18http://nemo9cby.github.io/icse2017.html
19http://www.ptidej.net/download/experiments/ase12/
20http://www.ptidej.net/research/decor/
21http://www.iro.umontreal.ca/ sahraouh/papers/ASE2010/

SBES’20, August 2020, Brazil Rafael Prates Ferreira Trindade, Mariza Andrade da Silva Bigonha, and Kecia Aline Marques Ferreira

Table 4: List of articles that propose oracles available online

Reference Programs Bad Smells Approach Link
[25] GanttProject v1.10.2 and Xerces v2.7.0 Blob (God Class) Manual 10

[46] Apache Ant 1.8.0, aTunes 2.0.0, Eclipse Core 3.6.1, Apache
Hive 0.9, Apache Ivy 2.1.0, Apache Lucene 3.6, JVLT 1.3.2,
Apache Pig 0.8, Apache Qpid 0.18, Apache Xerces 2.3.0

Long Method, Feature Envy, Blob, Promiscuous Package
and Misplaced Class

Tool 11

[19] SoundWaves Podcast 0.112, Terminal Emulator for Android
1.0.70

Internal Getter/Setter (IGS), Member Ignoring Method
(MIM) and HashMap Usage (HMU)

Tool 12

[24] Azureus and Eclipse AbstractClassHasChildren, LargeClass, LargeClassOnly,
LongMethod, LongParameterListClass, LowCohesionOnly,
ManyAttributes, MessageChainsClass, MethodNoParam-
eter, MultipleInterface, NoInheritance, NoPolymorphism,
NotAbstract, NotComplex, OneChildClass, ParentClassPro-
videsProtected, RareOverriding, TwoInheritance

Tool 13

[42] Apache Ant, Apache Tomcat, jEdit and Android API
[framework-opt-telephony, frameworks-base, frameworks-
support, sdk, tool-base]

Divergent Change, Shotgun Surgery, Parallel Inheritance,
Blob and Feature Envy

Manual 14

[45] ArgoUML, Ant, aTunes, Cassandra, Derby, Eclipse Core,
Elastic Search, FreeMind, hadoop, HSQLDB, Hbase, Hiber-
nate, Hive, Incubating, Ivy, Lucene, JEdit, JFreeChart, JBoss,
JVlt, jSL, Karaf, Nutch, Pig, Qpid, Sax, Struts, Wicket, Xerces

Class Data Should Be Private (CDSBP), Complex Class, Fea-
ture Envy, God Class, Inappropriate Intimacy, Lazy Class,
Long Method, Long Parameter List, Message Chain, Middle
Man, Refused Bequest, Spahetti code, Speculative General-
ity

Mixed 15

[44] Apache Ant, Apache Tomcat, jEdit, Android API
[framework-opt-telephony, frameworks-base, frameworks-
support, sdk, tool-base], Apache[Commons Lang,
Cassandra, Commons Codec, Derby], Eclipse Core, Apache
James Mime4j, Google Guava, Aardvark, And engine,
Apache Commons IO, Apache Commons Logging, Mongo
DB

Divergent Change, Shotgun Surgery, Parallel Inheritance,
Blob e Feature Envy

Manual 16

[41] ArgoUML, Ant, aTunes, Cassandra, Derby, Eclipse Core,
Elastic Search, FreeMind, Hadoop, HSQLDB, Hbase, Hi-
bernate, Hive, Incubating, Ivy, Lucene, JEdit, JHotDraw,
JFreeChart, JBoss, JVlt, jSL, Karaf, Nutch, Pig, Qpid, Sax,
Struts, Wicket, Xerces

Class Data Should Be Private (CDSBP), Complex Class, Fea-
ture Envy, God Class, Inappropriate Intimacy, Lazy Class,
Long Method, LPL, Message Chain, Middle Man, Refused
Bequest, Spaghetti Code, Speculative Generality

Mixed 17

[7] ActiveMQ, Hadoop and Maven nullable objects, explicit cast, wrong verbosity level, Dupli-
cation with a method’s definition, duplication with a local
variable’s definition, Malformed Output

Tool 18

[30] ArgoUML, Azureus and Xerces Blob, Functional Decomposition, Spaghetti Code and Swiss
Army Knife

Tool 19

[34] Xerces Blob, Functional Decomposition, Spaghetti Code and Swiss
Army Knife

Manual 20

[23] GanttProject v1.10.2, Xerces v2.7.0, and JHotdraw v7.1 Spaghetti Code, Blob, Functional Decomposition Tool 21

5 for a given program, it means that the total class values diverged
between the articles due to the version used.

Table 5: Number of occurrences of most popular programs

Program Citations Number of classes
Apache Xerces 15 736

Eclipse 8 1181-17167
Apache Ant 7 846
GanttProject 7 188-245
JFreeChart 7 86-775
ArgoUML 6 777-1415
JHotDraw 6 159-679

Apache Lucene 6 1762-2246
Apache Nutch 6 183-259

Apache Cassandra 5 305-826
jEdit 5 228-520

RQ4: Which bad smells are considered by the oracles?

Most of the studies propose oracles for the bad smells defined
by Fowler ([25],[46],[42],[45]).

In some cases, there is more than one definition for the same
bad smell; for example, Code Clone or Code Duplicated refers to
Duplicated Code. To overcome this problem, we have considered
the bad smells and their alternative terms, as represented in Table
6.

Table 6: List of bad smells with their alternative terms

Bad Smell Alternative Terms
Duplicated Code Code Clone, Clone Class, Clone Code, Cloned Code,

Code Duplication, Duplicated Prerequisites
Large Class Blob, Big Class, Complex Class, God Class

Long Method Brain Method, God Method

Oracles of Bad Smells - a Systematic Literature Review SBES’20, August 2020, Brazil

A total of 126 entries for bad smells have appeared. Table 7
displays the bad smells most considered by the oracles. Blob appears
in more than 85% of the works, while Long Method appears in 46% of
the oracles. Note that both bad smells appear in Table 6. Therefore,
not necessarily, these terms are used in the papers. Table 4 reports
all the bad smells considered by the oracles that are available online.

Table 7: List of most popular bad smells

Bad Smell Number of papers
Large Class 45

Long Method 26
Feature Envy 22

Data Class 17
Long Parameter List 15

ShotGun Surgery 15
Spaghetti Code 11

Duplicated Code 10
Functional Decomposition 10

RQ5: Which approaches have been used to create the oracles?

We identified three approaches used to create the oracles: manual,
tool, and mixed. Manual: consists of inspecting each class in the
system. Tool: refer to the use of some tools to determine where
the bad smells are in a software system. Mixed: is a combination
of the manual and tool approaches. For instance, some classes
are disregarded in the manual analysis when the previous data
gathered by software metric tools indicate that the classes are well
constructed. Figure 6 shows how oracles are distributed between
these approaches. The far most common approach to generate
oracles is using tool to detect the bad smell. Tools were used to
create 33 oracles.

M
an
ua
l

To
ol

M
ix
ed

10

20

30

13

33

5

Figure 6: Approaches used to create the oracles

Among the approaches that use tools, many applied the same
tool. The most common tool is JDeodorant, used in four of the

oracles. The second most used tools are inFusion and PMD, which
are used in three studies. CodePro Analytix and iPlasma are used
in two works. In the primary studies analyzed in this study, more
than 40 tools are explicitly cited.

5 DISCUSSION
Oracles may be used to evaluate strategies and tools for bad smell
detection. The programming language most considered in the or-
acle available in the literature is Java that appears in 45 papers.
Therefore, the Java-based strategies have more options for oracles
to evaluate their efficiency.

However, most of those oracles have been defined in open-source
Java projects. This fact restricts the use of the oracles in studies that
consider other contexts. However, just a few oracles are available
online. We could find only 12 oracles online. The non-availability
of oracles online is an essential lack in the literature because they
have two primary impacts: rework since researchers produce their
oracles to apply in their works and non-replicability of the studies.
A possible reason for researchers produces their oracles is that they
do not know the oracle previously proposed in the literature. We
believe that the results of this study may serve as a reference in
this context.

The oracles available online cover a large number of bad smells
and use many software systems. However, we noted that the termi-
nology for bad smells in such oracles varies, most oracles base on
tools’ results. This fact is paradoxical since the tools need an oracle
to have their results validated.

Oracles of bad smells in software systems should be considered
a ground truth for those who use them. However, oracles produced
by tools do not meet this prerogative, as the results pass through the
filter of the implemented detection technique. The use of an oracle
produced by a tool to evaluate the results of another tool can only
verify if their results are the same. The mixed approach appears
as a guarantee that the results given by a tool are true, but the
analysis of a specialist only after previous class selection by a tool
puts in doubt the presence of bad smells in the remaining classes
of the software. If we compare the oracles obtained by the manual
approach, it gains more relevance regarding the other two ways to
produce them since each software is analyzed in its completeness
by the expert’s sieve.

We found four manual-based oracles and two oracles generated
through a mixed approach available online. The main threat of ap-
plying these types of oracle is the subjectivity of human evaluation.

The comparison between the results of detection tools and bad
smells oracles may provide insights to determine what are the flaws
and inaccuracies of the detection methods. A dissection step may be
performed by checking the existence of a pattern of failures among
the set of bad smell instances not identified by a tool. The step
results should guide an optimized effort to improve the precision
of bad smell detection tools.

6 THREATS TO VALIDITY
In this section, we discuss the main threats to the validity of this
study and the strategies we took to mitigate them. We took some
of these actions to increase the confidence of the study.

SBES’20, August 2020, Brazil Rafael Prates Ferreira Trindade, Mariza Andrade da Silva Bigonha, and Kecia Aline Marques Ferreira

We based our work on eight digital libraries. Nevertheless, other
bases may exist and contain works proposing bad smell oracles.
Nevertheless, we used well-known and reliable digital libraries.

Our work relies on a third-party tool, Publish and Perish, to get
the results of Google Scholar in spreadsheets. Although the raw
result values are the same in the online format and the one returned
by the tool, no verification has been performed to ensure that all
data have been considered.

One of the problems faced when carrying out this work was
to determine which approaches have been used in the works to
generate the oracles since, in some cases, the papers do not explicitly
bring such information. For this reason, when no tool has been
cited, the work was classified as a manual approach. Otherwise, the
approach was classified as mixed when the papers refer to any tool
and indicate that the data were manually treated. The approach
was classified as a “tool” when no data treatment was explicit in
the text.

There are primary studies that have used proprietary projects
and, therefore, their authors avoid exposing data that are often
sensitive. In these cases, we rely on the authors’ terminology to
determine the size of the software since we do not have access to
the source code.

7 CONCLUSION
This work presented a Systematic Literature Review to identify
oracles for bad smells. The primary motivation for this study is the
fact that bad smells have been widely studied, and many studies
rely on bad smell oracles obtained by tools that have not yet been
properly proven to be precise. None of the works we found in this
SLR performs a literature review on oracle of bad smells. Therefore,
to the best of our knowledge, this is the first Systematic Literature
Review to identify oracles of bad smells.

We considered eight digital libraries to perform the search pro-
cess. The searches in the digital libraries returned 4,948 primary
studies. However, a small number of these studies define oracles
of bad smells, namely 51, being only 12 available in some online
repository. Researchers may benefit from the results of this work to
produce new studies, cross-refer data and evaluate their bad smell
detection proposals. The bad smells defined by Fowler et al. [18]
are the most used in oracles.

The oracles of bad smells available online have the main follow-
ing characteristics: they involve at maximum 29 software systems,
varying from 86 to 17,167 classes; the software systems they con-
sider are mainly developed in Java; most of them rely on results
provided by tools; they usually verify Large Class instances; and
provide their results in a spreadsheet.

The results of this study show that there is still a gap to be filled
in the literature, for instance:

(1) just a few oracles identify the methods where the bad smell
is located, and

(2) most of the oracles are indeed defined employing tools,
which is a relevant threat to their validity.

In future works, it is essential to generate oracles that overcome
these fragilities. Also, an oracle consisting of software systems not
considered previously may be of value.

REFERENCES
[1] R. Abílio, J. Padilha, E. Figueiredo, and H. Costa. 2015. Detecting Code Smells

in Software Product Lines – An Exploratory Study. In 2015 12th International
Conference on Information Technology - New Generations. 433–438. https://doi.
org/10.1109/ITNG.2015.76

[2] L. Amorim, E. Costa, N. Antunes, B. Fonseca, and M. Ribeiro. 2015. Experience
report: Evaluating the effectiveness of decision trees for detecting code smells.
In 2015 IEEE 26th International Symposium on Software Reliability Engineering
(ISSRE). 261–269. https://doi.org/10.1109/ISSRE.2015.7381819

[3] M. Aniche, G. Bavota, C. Treude, A. V. Deursen, and M. A. Gerosa. 2016. A
Validated Set of Smells in Model-View-Controller Architectures. In 2016 IEEE
International Conference on Software Maintenance and Evolution (ICSME). 233–243.
https://doi.org/10.1109/ICSME.2016.12

[4] Francesca Arcelli Fontana, Mika V. Mäntylä, Marco Zanoni, and Alessandro
Marino. 2016. Comparing and Experimenting Machine Learning Techniques
for Code Smell Detection. Empirical Softw. Engg. 21, 3 (June 2016), 1143–1191.
https://doi.org/10.1007/s10664-015-9378-4

[5] Lisa Börjesson. 2016. Research Outside Academia? An Analysis of Resources in
Extra-Academic Report Writing (ASIST ’16). American Society for Information
Science, USA, Article 36, 10 pages.

[6] William J. Brown, Raphael C. Malveau, HaysW. "Skip" McCormick, and Thomas J.
Mowbray. 1998. AntiPatterns: Refactoring Software, Architectures, and Projects
in Crisis: Refactoring Software, Architecture and Projects in Crisis (1. auflage ed.).
John Wiley & Sons.

[7] Boyuan Chen and Zhen Ming (Jack) Jiang. 2017. Characterizing and Detecting
Anti-patterns in the Logging Code. In Proceedings of the 39th International Con-
ference on Software Engineering (Buenos Aires, Argentina) (ICSE ’17). IEEE Press,
Piscataway, NJ, USA, 71–81. https://doi.org/10.1109/ICSE.2017.15

[8] Z. Chen, L. Chen, W. Ma, and B. Xu. 2016. Detecting Code Smells in Python
Programs. In 2016 International Conference on Software Analysis, Testing and
Evolution (SATE). 18–23. https://doi.org/10.1109/SATE.2016.10

[9] J. P. d. Reis, F. Brito e Abreu, and G. d. F. Carneiro. 2016. Code Smells Incidence:
Does It Depend on the Application Domain?. In 2016 10th International Conference
on the Quality of Information and Communications Technology (QUATIC). 172–177.
https://doi.org/10.1109/QUATIC.2016.044

[10] P. Danphitsanuphan and T. Suwantada. 2012. Code Smell Detecting Tool and
Code Smell-Structure Bug Relationship. In 2012 Spring Congress on Engineering
and Technology. 1–5. https://doi.org/10.1109/SCET.2012.6342082

[11] K. Dhambri, H. Sahraoui, and P. Poulin. 2008. Visual Detection of Design Anom-
alies. In 2008 12th European Conference on SoftwareMaintenance and Reengineering.
279–283. https://doi.org/10.1109/CSMR.2008.4493326

[12] Raimar Falke, Pierre Frenzel, and Rainer Koschke. 2008. Empirical Evaluation
of Clone Detection Using Syntax Suffix Trees. Empirical Softw. Engg. 13, 6 (Dec.
2008), 601–643. https://doi.org/10.1007/s10664-008-9073-9

[13] A. M. Fard and A. Mesbah. 2013. JSNOSE: Detecting JavaScript Code Smells. In
2013 IEEE 13th International Working Conference on Source Code Analysis and
Manipulation (SCAM). 116–125. https://doi.org/10.1109/SCAM.2013.6648192

[14] W. Fenske, S. Schulze, D. Meyer, and G. Saake. 2015. When code smells twice
as much: Metric-based detection of variability-aware code smells. In 2015 IEEE
15th International Working Conference on Source Code Analysis and Manipulation
(SCAM). 171–180. https://doi.org/10.1109/SCAM.2015.7335413

[15] Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, Thanis Paiva, and Eduardo
Figueiredo. 2016. A Review-based Comparative Study of Bad Smell Detection
Tools. In Proceedings of the 20th International Conference on Evaluation and As-
sessment in Software Engineering (Limerick, Ireland) (EASE ’16). ACM, New York,
NY, USA, Article 18, 12 pages. https://doi.org/10.1145/2915970.2915984

[16] F. A. Fontana, V. Ferme, and S. Spinelli. 2012. Investigating the impact of code
smells debt on quality code evaluation. In 2012 Third International Workshop
on Managing Technical Debt (MTD). 15–22. https://doi.org/10.1109/MTD.2012.
6225993

[17] F. A. Fontana, V. Ferme, M. Zanoni, and R. Roveda. 2015. Towards a prioritization
of code debt: A code smell Intensity Index. In 2015 IEEE 7th InternationalWorkshop
on Managing Technical Debt (MTD). 16–24. https://doi.org/10.1109/MTD.2015.
7332620

[18] Marting Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. 1999.
Refactoring: Improving the Design of Existing Code. Addison-Wesley.

[19] Geoffrey Hecht, Naouel Moha, and Romain Rouvoy. 2016. An Empirical Study
of the Performance Impacts of Android Code Smells. In Proceedings of the Inter-
national Conference on Mobile Software Engineering and Systems (Austin, Texas)
(MOBILESoft ’16). ACM, New York, NY, USA, 59–69. https://doi.org/10.1145/
2897073.2897100

[20] F. Hermans and E. Aivaloglou. 2016. Do code smells hamper novice programming?
A controlled experiment on Scratch programs. In 2016 IEEE 24th International
Conference on Program Comprehension (ICPC). 1–10. https://doi.org/10.1109/
ICPC.2016.7503706

[21] A. Kaur, K. Kaur, and S. Jain. 2016. Predicting software change-proneness with
code smells and class imbalance learning. In 2016 International Conference on

https://doi.org/10.1109/ITNG.2015.76
https://doi.org/10.1109/ITNG.2015.76
https://doi.org/10.1109/ISSRE.2015.7381819
https://doi.org/10.1109/ICSME.2016.12
https://doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1109/ICSE.2017.15
https://doi.org/10.1109/SATE.2016.10
https://doi.org/10.1109/QUATIC.2016.044
https://doi.org/10.1109/SCET.2012.6342082
https://doi.org/10.1109/CSMR.2008.4493326
https://doi.org/10.1007/s10664-008-9073-9
https://doi.org/10.1109/SCAM.2013.6648192
https://doi.org/10.1109/SCAM.2015.7335413
https://doi.org/10.1145/2915970.2915984
https://doi.org/10.1109/MTD.2012.6225993
https://doi.org/10.1109/MTD.2012.6225993
https://doi.org/10.1109/MTD.2015.7332620
https://doi.org/10.1109/MTD.2015.7332620
https://doi.org/10.1145/2897073.2897100
https://doi.org/10.1145/2897073.2897100
https://doi.org/10.1109/ICPC.2016.7503706
https://doi.org/10.1109/ICPC.2016.7503706

Oracles of Bad Smells - a Systematic Literature Review SBES’20, August 2020, Brazil

Advances in Computing, Communications and Informatics (ICACCI). 746–754.
https://doi.org/10.1109/ICACCI.2016.7732136

[22] M. Kessentini and A. Ouni. 2017. Detecting Android Smells UsingMulti-Objective
Genetic Programming. In 2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft). 122–132. https://doi.org/10.
1109/MOBILESoft.2017.29

[23] Marouane Kessentini, Stéphane Vaucher, and Houari Sahraoui. 2010. Deviance
from Perfection is a Better Criterion Than Closeness to Evil when Identifying
Risky Code. In Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering (Antwerp, Belgium) (ASE ’10). ACM, New York, NY, USA,
113–122. https://doi.org/10.1145/1858996.1859015

[24] Foutse Khomh, Massimiliano Di Penta, and Yann-Gaël Guéhéneuc. 2009. An
Exploratory Study of the Impact of Code Smells on Software Change-proneness.
Proceedings - Working Conference on Reverse Engineering, WCRE, 75–84. https:
//doi.org/10.1109/WCRE.2009.28

[25] Foutse Khomh, Stéphane Vaucher, Yann gaël Guéhéneuc, and Houari Sahraoui.
[n.d.]. A Bayesian Approach for the Detection of Code and Design Smells.

[26] B. Kitchenham and S Charters. 2007. Guidelines for performing Systematic
Literature Reviews in Software Engineering.

[27] Michele Lanza, Radu Marinescu, and Stéphane Ducasse. 2005. Object-Oriented
Metrics in Practice. Springer-Verlag, Berlin, Heidelberg.

[28] Thierry Lavoie and Ettore Merlo. 2011. Automated Type-3 Clone Oracle Using
Levenshtein Metric. In Proceedings of the 5th International Workshop on Software
Clones (Waikiki, Honolulu, HI, USA) (IWSC ’11). ACM, New York, NY, USA, 34–40.
https://doi.org/10.1145/1985404.1985411

[29] I. Macia, R. Arcoverde, A. Garcia, C. Chavez, and A. von Staa. 2012. On the Rele-
vance of Code Anomalies for Identifying Architecture Degradation Symptoms.
In 2012 16th European Conference on Software Maintenance and Reengineering.
277–286. https://doi.org/10.1109/CSMR.2012.35

[30] Abdou Maiga, Nasir Ali, Neelesh Bhattacharya, Aminata Sabane, Yann-Gaël
Guéhéneuc, Giuliano Antoniol, and Esma Aïmeur. 2012. Support vector machines
for anti-pattern detection. 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering (2012), 278–281.

[31] Umme Ayda Mannan, Iftekhar Ahmed, Rana Abdullah M. Almurshed, Danny Dig,
and Carlos Jensen. 2016. Understanding Code Smells in Android Applications. In
Proceedings of the International Conference on Mobile Software Engineering and
Systems (Austin, Texas) (MOBILESoft ’16). ACM, New York, NY, USA, 225–234.
https://doi.org/10.1145/2897073.2897094

[32] M. V. Mantyla, J. Vanhanen, and C. Lassenius. 2004. Bad smells - humans as
code critics. In 20th IEEE International Conference on Software Maintenance, 2004.
Proceedings. 399–408. https://doi.org/10.1109/ICSM.2004.1357825

[33] R. Marinescu. 2001. Detecting design flaws via metrics in object-oriented systems.
In Proceedings 39th International Conference and Exhibition on Technology of
Object-Oriented Languages and Systems. TOOLS 39. 173–182.

[34] Naouel Moha, Yann-Gael Gueheneuc, Laurence Duchien, and Anne-Francoise
Le Meur. 2010. DECOR: A Method for the Specification and Detection of Code
and Design Smells. IEEE Trans. Softw. Eng. 36, 1 (Jan. 2010), 20–36. https:
//doi.org/10.1109/TSE.2009.50

[35] Willian Oizumi, Alessandro Garcia, Leonardo da Silva Sousa, Bruno Cafeo, and
Yixue Zhao. 2016. Code Anomalies Flock Together: Exploring Code Anomaly
Agglomerations for Locating Design Problems. In Proceedings of the 38th Interna-
tional Conference on Software Engineering (Austin, Texas) (ICSE ’16). ACM, New
York, NY, USA, 440–451. https://doi.org/10.1145/2884781.2884868

[36] W. N. Oizumi, A. F. Garcia, T. E. Colanzi, M. Ferreira, and A. v. Staa. 2014.
When Code-Anomaly Agglomerations Represent Architectural Problems? An
Exploratory Study. In 2014 Brazilian Symposium on Software Engineering. 91–100.
https://doi.org/10.1109/SBES.2014.18

[37] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka. 2009. The evolution and
impact of code smells: A case study of two open source systems. In 2009 3rd
International Symposium on Empirical Software Engineering and Measurement.
390–400. https://doi.org/10.1109/ESEM.2009.5314231

[38] Ali Ouni, Marouane Kessentini, Houari Sahraoui, Katsuro Inoue, and Kalyan-
moy Deb. 2016. Multi-Criteria Code Refactoring Using Search-Based Software
Engineering: An Industrial Case Study. ACM Trans. Softw. Eng. Methodol. 25, 3,
Article 23 (June 2016), 53 pages. https://doi.org/10.1145/2932631

[39] Ali Ouni, Marouane Kessentini, Houari Sahraoui, Katsuro Inoue, and Mo-
hamed Salah Hamdi. 2015. Improving multi-objective code-smells correction
using development history. Journal of Systems and Software 105 (2015), 18 – 39.
https://doi.org/10.1016/j.jss.2015.03.040

[40] F. Palomba. 2015. Textual Analysis for Code Smell Detection. In 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, Vol. 2. 769–771. https:
//doi.org/10.1109/ICSE.2015.244

[41] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. 2018. On the diffuseness and the impact on
maintainability of code smells: a large scale empirical investigation. Empirical
Software Engineering 23, 3 (01 Jun 2018), 1188–1221. https://doi.org/10.1007/
s10664-017-9535-z

[42] Fabio Palomba, Gabriele Bavota,MassimilianoDi Penta, RoccoOliveto, Andrea De
Lucia, and Denys Poshyvanyk. 2013. Detecting bad smells in source code using
change history information. 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE) (2013), 268–278.

[43] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, and A. De Lucia.
2015. Mining Version Histories for Detecting Code Smells. IEEE Transactions
on Software Engineering 41, 5 (May 2015), 462–489. https://doi.org/10.1109/TSE.
2014.2372760

[44] Fabio Palomba, Dario Di Nucci, Michele Tufano, Gabriele Bavota, Rocco Oliveto,
Denys Poshyvanyk, and Andrea De Lucia. 2015. Landfill: An Open Dataset of
Code Smells with Public Evaluation. In Proceedings of the 12thWorking Conference
on Mining Software Repositories (Florence, Italy) (MSR ’15). IEEE Press, Piscataway,
NJ, USA, 482–485. http://dl.acm.org/citation.cfm?id=2820518.2820593

[45] Fabio Palomba, Rocco Oliveto, and Andrea De Lucia. 2017. Investigating code
smell co-occurrences using association rule learning: A replicated study. 2017
IEEE Workshop on Machine Learning Techniques for Software Quality Evaluation
(MaLTeSQuE) (2017), 8–13.

[46] Fabio Palomba, Annibale Panichella, Andrea De Lucia, Rocco Oliveto, and Andy
Zaidman. 2016. A Textual-Based Technique for Smell Detection. In 2016 IEEE
24th International Conference on Program Comprehension (ICPC). 1–10. https:
//doi.org/10.1109/icpc.2016.7503704 Exported from https://app.dimensions.ai on
2019/02/25.

[47] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia. 2018. The
Scent of a Smell: An Extensive Comparison Between Textual and Structural
Smells. IEEE Transactions on Software Engineering 44, 10 (Oct 2018), 977–1000.
https://doi.org/10.1109/TSE.2017.2752171

[48] R. Peters and A. Zaidman. 2012. Evaluating the Lifespan of Code Smells us-
ing Software Repository Mining. In 2012 16th European Conference on Software
Maintenance and Reengineering. 411–416. https://doi.org/10.1109/CSMR.2012.79

[49] Dilan Sahin. 2016. A Multi-Level Framework for the Detection, Prioritization
and Testing of Software Design Defects.

[50] Tushar Sharma and Diomidis Spinellis. 2018. A survey on software smells. Journal
of Systems and Software 138 (2018), 158 – 173. https://doi.org/10.1016/j.jss.2017.
12.034

[51] K. Sirikul and C. Soomlek. 2016. Automated detection of code smells caused
by null checking conditions in Java programs. In 2016 13th International Joint
Conference on Computer Science and Software Engineering (JCSSE). 1–7. https:
//doi.org/10.1109/JCSSE.2016.7748884

[52] Elder V. P. Sobrinho, A. Lucia, and M. Maia. 2018. A systematic literature review
on bad smells — 5 W’s: which, when, what, who, where. IEEE Transactions on
Software Engineering (2018), 1–1.

[53] Gábor Szőke, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy. 2014. A Case Study
of Refactoring Large-Scale Industrial Systems to Efficiently Improve Source Code
Quality. In Computational Science and Its Applications – ICCSA 2014, Beniamino
Murgante, Sanjay Misra, Ana Maria A. C. Rocha, Carmelo Torre, Jorge Gustavo
Rocha, Maria Irene Falcão, David Taniar, Bernady O. Apduhan, and Osvaldo
Gervasi (Eds.). Springer International Publishing, Cham, 524–540.

[54] Gustavo Vale, Danyllo Albuquerque, Eduardo Figueiredo, and Alessandro Garcia.
2015. Defining Metric Thresholds for Software Product Lines: A Comparative
Study. In Proceedings of the 19th International Conference on Software Product
Line (Nashville, Tennessee) (SPLC ’15). ACM, New York, NY, USA, 176–185.
https://doi.org/10.1145/2791060.2791078

[55] G. A. D. Vale and E. M. L. Figueiredo. 2015. A Method to Derive Metric Thresh-
olds for Software Product Lines. In 2015 29th Brazilian Symposium on Software
Engineering. 110–119. https://doi.org/10.1109/SBES.2015.9

[56] B. C. Wagey, B. Hendradjaya, and M. S. Mardiyanto. 2015. A proposal of soft-
ware maintainability model using code smell measurement. In 2015 Interna-
tional Conference on Data and Software Engineering (ICoDSE). 25–30. https:
//doi.org/10.1109/ICODSE.2015.7436966

[57] Claes Wohlin. 2014. Guidelines for Snowballing in Systematic Literature Studies
and a Replication in Software Engineering. In Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment in Software Engineering (London,
England, United Kingdom) (EASE ’14). ACM, New York, NY, USA, Article 38,
10 pages. https://doi.org/10.1145/2601248.2601268

[58] Aiko Yamashita. 2014. Assessing the Capability of Code Smells to Explain
Maintenance Problems: An Empirical Study Combining Quantitative and Qual-
itative Data. Empirical Softw. Engg. 19, 4 (Aug. 2014), 1111–1143. https:
//doi.org/10.1007/s10664-013-9250-3

[59] Aiko Yamashita and Leon Moonen. 2013. To what extent can maintenance
problems be predicted by code smell detection? – An empirical study. Information
and Software Technology 55, 12 (2013), 2223 – 2242. https://doi.org/10.1016/j.
infsof.2013.08.002

[60] A. Yamashita, M. Zanoni, F. A. Fontana, and B. Walter. 2015. Inter-smell relations
in industrial and open source systems: A replication and comparative analysis.
In 2015 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 121–130. https://doi.org/10.1109/ICSM.2015.7332458

[61] Min Zhang, Tracy Hall, and Nathan Baddoo. 2011. Code Bad Smells: A Review
of Current Knowledge. J. Softw. Maint. Evol. 23, 3 (April 2011), 179–202. https:

https://doi.org/10.1109/ICACCI.2016.7732136
https://doi.org/10.1109/MOBILESoft.2017.29
https://doi.org/10.1109/MOBILESoft.2017.29
https://doi.org/10.1145/1858996.1859015
https://doi.org/10.1109/WCRE.2009.28
https://doi.org/10.1109/WCRE.2009.28
https://doi.org/10.1145/1985404.1985411
https://doi.org/10.1109/CSMR.2012.35
https://doi.org/10.1145/2897073.2897094
https://doi.org/10.1109/ICSM.2004.1357825
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1145/2884781.2884868
https://doi.org/10.1109/SBES.2014.18
https://doi.org/10.1109/ESEM.2009.5314231
https://doi.org/10.1145/2932631
https://doi.org/10.1016/j.jss.2015.03.040
https://doi.org/10.1109/ICSE.2015.244
https://doi.org/10.1109/ICSE.2015.244
https://doi.org/10.1007/s10664-017-9535-z
https://doi.org/10.1007/s10664-017-9535-z
https://doi.org/10.1109/TSE.2014.2372760
https://doi.org/10.1109/TSE.2014.2372760
http://dl.acm.org/citation.cfm?id=2820518.2820593
https://doi.org/10.1109/icpc.2016.7503704
https://doi.org/10.1109/icpc.2016.7503704
https://doi.org/10.1109/TSE.2017.2752171
https://doi.org/10.1109/CSMR.2012.79
https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.1109/JCSSE.2016.7748884
https://doi.org/10.1109/JCSSE.2016.7748884
https://doi.org/10.1145/2791060.2791078
https://doi.org/10.1109/SBES.2015.9
https://doi.org/10.1109/ICODSE.2015.7436966
https://doi.org/10.1109/ICODSE.2015.7436966
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1007/s10664-013-9250-3
https://doi.org/10.1007/s10664-013-9250-3
https://doi.org/10.1016/j.infsof.2013.08.002
https://doi.org/10.1016/j.infsof.2013.08.002
https://doi.org/10.1109/ICSM.2015.7332458
https://doi.org/10.1002/smr.521
https://doi.org/10.1002/smr.521

SBES’20, August 2020, Brazil Rafael Prates Ferreira Trindade, Mariza Andrade da Silva Bigonha, and Kecia Aline Marques Ferreira

//doi.org/10.1002/smr.521
[62] X. Zhao, X. Xuan, and S. Li. 2015. An Empirical Study of Long Method and God

Method in Industrial Projects. In 2015 30th IEEE/ACM International Conference on

Automated Software Engineering Workshop (ASEW). 109–114. https://doi.org/10.
1109/ASEW.2015.15

https://doi.org/10.1002/smr.521
https://doi.org/10.1109/ASEW.2015.15
https://doi.org/10.1109/ASEW.2015.15

	Abstract
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Planning Step
	3.2 Execution Step
	3.3 Analysis Step

	4 Results
	5 Discussion
	6 Threats to Validity
	7 Conclusion
	References

