
On The Gap Between Software Maintenance
Theory and Practitioners’ Approaches
Mv́ian Ferreira
DCC - UFMG

Belo Horizonte, Brazil
mivian.ferreira@dcc.ufmg.br

Mariza Bigonha
DCC - UFMG

Belo Horizonte, Brazil
mariza@dcc.ufmg.br

Kecia A. M. Ferreira
DECOM - CEFETMG
Belo Horizonte, Brazil

kecia@cefetmg.br

Abstract—The way practitioners perform maintenance tasks in
practice is little known by researchers. In turn, practitioners are
not always up to date with the proposals provided by the research
community. This work investigates the gap between software
maintenance techniques proposed by the research community
and the software maintenance practice. We carried out a survey
with 112 practitioners from 92 companies and 12 countries. We
concentrate on analyzing if and how practitioners understand and
apply the following subjects: bad smells, refactoring, software
metrics, and change impact analysis. This study shows that
there is a large gap between research approaches and industry
practice in those subjects, especially in change impact analysis
and software metrics.

Index Terms—software maintenance, survey, software engi-
neering, software metrics, refactoring, bad smells, change impact
analysis

I. INTRODUCTION

There is a large gap between industry practice and academic
proposals, and this gap tends to grow over time [1]. Some
initiatives have been taken for decades to bridge this gap,
aiming to comprehend how relevant software engineering
research is to practitioners [2] [3] [4]. There are difficulties
for both sides. Research publications might not be accessible
to the industry, and their results might not be of practical use
[5]. On the other hand, software engineering researchers may
face challenges when collaborating with practitioners, such as
differences between culture and time perspective [6].

We focused this work on the gap between research and
practice in software maintenance, one of the most critical and
most expensive software live cycle activities. The spectrum of
software maintenance subjects is vast and comprises activities
such as: log of modification requests, change impact analy-
sis, modification of code and other artifacts, re-engineering,
reverse engineering, program comprehension, measurement,
migration, tests, training, and daily support [7]. This work
investigates if and how practitioners apply: change impact
analysis, software metrics, bad smell, refactoring. We consider
those subjects because our research is mostly concentrated on
them.

We surveyed 112 practitioners from 12 countries and 92
companies. In particular, we investigate if practitioners are fa-
miliar with the subjects considered in this work, if they usually
apply such concepts and techniques, the tools regarding those

topics practitioners use in practice, and the main challenges
developers face when carrying out software maintenance.

II. RELATED WORK

The problem of the distance between what the software en-
gineering research community produces and what practitioners
apply in their practices has gained increasing attention [2] [3].
Murphy-Hill et al. [8] investigated the adoption of refactoring
tools by developers. They found that 90% of refactoring is
performed manually. Their study relies on data of refactoring
Java programs in the Eclipse environment. Although popular,
Eclipse is only one out of dozens of development environments
used nowadays.1 We analyze refactoring practice too; however,
we did not base our study in any specific language or de-
velopment environment. Moreover, we considered other three
subjects besides refactoring, and we did not gather our data
automatically since we performed our analysis by questioning
practitioners about their practices.

Our results contradict the assumption that practitioners
have widely applied software metrics. Kupiainen et al.’s [9]
systematic literature review on industrial studies analyzed the
adoption of software metrics in Agile and Lean software
development. They found 102 metrics in the primary studies.
However, only one metric is for source code, namely violations
of static code, defined as the number of violations found in the
static code regarding rules from tools like Findbugs, PMD, and
Checkstyle. Dozens of source code software metrics have been
proposed, some of them widely known by researchers, such
as the CK Metrics. However, none of such metrics appeared
in the Kupiainen et al.’s study neither were mentioned by the
participants of our research.

Palomba et al. [10] investigated the difference between
developers’ perception and academic concepts of bad smells.
Amjed et al. [11] investigated bad smells’ popularity in Stack
Overflow. Both works reached similar conclusions, namely:
the academic community might be perceiving bad smell as a
problem that is not considered a real problem by developers.
The aim and the approach we used are different from those
studies since our work investigated if developers know and
apply the concept of bad smell. Our results do not contradict

1According to the PYPL index, available at
https://pypl.github.io/PYPL.html.

41

2021 IEEE/ACM 8th International Workshop on Software Engineering Research and Industrial Practice (SER&IP)

978-1-6654-4476-7/21/$31.00 ©2021 IEEE
DOI 10.1109/SER-IP52554.2021.00015

20
21

 IE
EE

/A
C

M
 8

th
 In

te
rn

at
io

na
l W

or
ks

ho
p

on
 S

of
tw

ar
e

En
gi

ne
er

in
g

R
es

ea
rc

h
an

d
In

du
st

ria
l P

ra
ct

ic
e

(S
ER

&
IP

) |
 9

78
-1

-6
65

4-
44

76
-7

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

SE
R

-I
P5

25
54

.2
02

1.
00

01
5

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on October 17,2022 at 20:21:16 UTC from IEEE Xplore. Restrictions apply.

the previous ones and empirically show a fundamental reason
for the differences in academia and industry perceptions: the
bad smell is not a widely known concept among developers.

According to Brodin and Benitti [4], over 70% of software
developers work with maintenance. However, they point out
that it is still a topic little researched. They studied whether
practitioners in the industry use the topics about software
maintenance taught in undergraduate courses through a survey.
They identified that engineering, reverse engineering, software
processes, and software measurement are much considered
by academia and rarely used in the industry. In the results
reported, Brodin and Benitti state that refactoring is the only
topic widely studied by academia that practitioners extensively
use. Our results are more precise regarding refactoring since
we found that practitioners indeed apply a few refactoring
techniques. Moreover, our results indicate that change impact
analysis is applied by using mainly naive techniques, such as
‘search and replace’.

III. STUDY DESIGN

This section describes the study’s design presented in this
paper, detailing the following aspects: the research questions,
the construction and validation of the questionnaire, the par-
ticipants’ selection, and the method we applied to analyze the
data.

A. Research Questions

The research questions aim to elucidate if and how some
of the main concepts and techniques proposed by the research
community for software maintenance are applied. This section
presents the research questions and how we analyzed the data
to answer them.
RQ1. Are developers familiar with the concepts of software
metrics, bad smells, refactoring, and change impact analysis?

To answer this question, we calculated the percentage of
the participants who answered ‘yes’ to the questions related to
familiarity (Rows 2, 7, 12, and 16 of Table I). We used a yes/no
question to split the respondents into two distinct groups [12],
once we want to know if (not how) the respondent is familiar
with the concepts.
RQ2.Do practitioners apply software metrics, refactoring, bad
smells, and change impact analysis in practice?

To answer this research question, we calculated the percent-
age of the participants who answered ‘yes’ to the questions
described in Rows 4, 8, 13, and 17 of Table I. For the same
reasons mentioned in RQ1, we also chose to use a yes/no
question in this case.
RQ3. Which are the tools most used by practitioners in
software maintenance?

In this research question, we aim to identify which tools are
used to support the studied topic’s activities. The participants
answered the questions associated with RQ3 in a text field.
To analyze the data, we read all the answers and tabulated the
tools described by the participants.
RQ4. How do practitioners perform change impact analysis?

With this research question, we investigate if and how
practitioners analyze the impact of changes they need to
perform in software systems. To answer this question, we
summarized and reported the answers to the question described
in Row 18 of Table I.

RQ5. Which metrics, refactoring techniques, and bad smells
practitioners apply in their activities?

To answer this research question, we read all the answers
given to the questions described in Rows 5, 9, and 14 of Table
I and summarized the data.

RQ6. What are the biggest challenges faced by practitioners
when carrying out software maintenance?

To investigate this research question, two authors of this
work tabulated and labelled, separately, the answers to the
question shown in the first row of Table I. In the presence of
different labels for the same answers, these two authors opted
for the final label by a consensus between them.

B. Questionnaire Construction

We based the questionnaire on the guideline of Kitchenham
and Pfleeger [13]. It is composed of seven sections described
as follows. Table I shows the survey questions and answers
options.
Term of consent introduced the study’s purpose to the partici-
pants and requested their endorsement to use the data collected
and participants’ anonymity assurance.
Participants’ characterization. Collect data about the partici-
pants’ professional lives: (i) name and country of the company
where they work; (ii) the position held in the company; (iii)
academic background; (iv) years of professional experience;
(v) programming languages currently used in their jobs; and
(vi) the methodology used in their company’s software devel-
opment process.
Challenges to perform software maintenance. This section
contains only one question in which we requested the par-
ticipants to describe the main challenges and difficulties they
face to perform maintenance activities.
Metrics. In this section, we asked the participants if they are
familiar with metrics; and consider them useful. We also asked
if they use metrics to measure the code quality, the tools they
use to do it, and the most common metrics they apply.
Refactoring. About refactoring, we asked if the participants
are familiar with the term “refactoring” and if they usually
perform code refactoring. We also asked them to name the
types of refactoring techniques they apply and their tools to
perform such activity.
Bad smells. We asked if the participants are familiar with the
term “bad smell”, and if they use it to verify the presence of
bad smells in the software code. If so, we requested them to
list which bad smells they use to search in software systems.
Change impact analysis. We asked the participants: if they
notice the need of changing other pieces of code when they
carry out a specific change in the code; if they are familiar
with the term “change impact analysis”; if they use to search
other pieces of code that need to be modified when they make

42

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on October 17,2022 at 20:21:16 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Questions and response options of the questionnaire.

Subject Question Reply Options

Challenges to Perform Maintenance 1 Describe the main difficulties you face when performing
maintenance on software.

Open Field

2 Are you familiar with software metrics concept? Yes or No
3 What is your opinion about the use of software metrics to

ensure the quality of the source code?
‘Very important’, ‘Important’, ‘Little important’, ‘Unnecessary’ or ‘I don’t have
background to give an opinion.’

Software Metrics 4 Do you use software metrics to evaluate the quality of the
source code at your work?

Yes or No

5 If you use software metrics to evaluate the quality of the
source code at your work, please name them.

Open Field

6 If you use metrics to evaluate the quality of the source code
at your work, which measurement tool(s) do you use?

Open Field

7 Are you familiar with the concept of refactoring ? Yes or No
8 Have you ever applied code refactoring at your work? Yes or No

Refactoring 9 If you have ever used code refactoring at your work, what
kind (s) of refactoring did you use?

Open Field

10 If you have ever used code refactoring at your work, have
you used a tool for this?

Yes or No

11 If you have ever used code refactoring at your work and have
used a tool to do so, which tool (s) did you use?

Open Field

12 Are you familiar with the concept of bad smell? Yes or No
Bad Smell 13 When developing or maintaining a system at work, do you

usually check bad smells in the source code?
Yes or No

14 If you answered ’yes’ to the previous question, what are the
bad smells most commonly detected by you?

Open Field

15 Have you ever noticed whether a change performed in a
software system by you had caused the need to make other
changes not initially foreseen?

‘Never’, ‘Few times’, ‘Oftentimes’ or ‘Always’

16 Are you familiar with the term ”Change Impact Analysis ”? Yes or No
Change Impact 17 When correcting a bug (error or failure), performing a change

or creating a new functionality in the system, do you usually
analyze the impact of the change in the rest of software
system?

Yes or No

18 What kind of technique do you apply to analyze parts of the
software that need to be modified?

‘I explore the code manually and intuitively, not always with prior knowledge
about it.’, ‘I explore the code manually guided by the prior knowledge I have
about it.’, ‘I use a tool for this.’, or ‘I do not analyze all the parts that need to
be modified, I make the modifications as I identify the problems.’

19 If you use a tool to analyze which parts of the software need
to be modified, please name them.

Open Field

a change in the code; what kinds of techniques they use to
perform such analysis; and, finally, if they use any tool to
perform change impact analysis.

1) Validation of the Questionnaire: Before sending the
questionnaire to the participants, we made a pilot survey to
test the questionnaire and identify improvement needs. For
this purpose, we sent the questionnaire to two developers from
different companies. We identified the following primary need
for improvements from the first version. (1) Observing the
answers, we notice that the questions we asked before the sec-
tion “Challenges to Perform Software Maintenance”may had
influenced the participants’ answers about the main challenges
they face in software maintenance. Probably, this happens
because we asked about refactoring, dependency analysis,
bad smells, and metrics before that section, which may have
induced the participants to include problems related to such
subjects in their answers. We then decided to put the Section
‘Challenges to Perform Software Maintenance’ as the first
one in the questionnaire. (2) We reformulated the answer
options that involve ranges: number of employees and years of
professional experience. (3) We divided some long questions
into two or more to be more precise and improve the data
analysis.

We sent the second version of the questionnaire with such
improvements to eight developers in a second round. We
made a previous analysis of the responses to ensure that
the questionnaire was more precise and able to gather the

information we need. Then, we sent the survey to the other
participants.

C. Participants Selection
We invited practitioners to answer the survey in two ways:

directly and indirectly. Some participants were contacted di-
rectly via email, LinkedIn, and Facebook and were chosen by
convenience since the authors had their contact. To motivate
the practitioners to answer the questionnaire, we chose to send
a particular message to each participant explaining the survey’s
aim and inviting him/her to participate in the research. In this
message, we asked them to forward the email to other col-
leagues, aiming to invite more participants. We also published
the questionnaire in our social networks and specialized IT
mailing lists.

We received 112 responses. We directly contacted 204 prac-
titioners; out of this amount, 77 answered the questionnaire,
achieving a response rate of 37.8%. We reached the remaining
35 practitioners that answered the questionnaire indirectly.
As we aimed to have a global assessment of practitioners’
perceptions and practices worldwide, we tried to contact
professionals from different countries and many companies.
The practitioners that answered the questionnaire are from 92
companies and 12 countries.

IV. PARTICIPANTS CHARACTERIZATION

This section describes the characteristics of the participants.

43

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on October 17,2022 at 20:21:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Distribution of participants’ academic background.

Academic Background. The participants with an undergraduate
degree, certificate program, or a master’s degree correspond to
95.5% of the sample, as shown in Figure 1. Only 4.5% of the
participants are high school graduates, technicians, or have a
Ph.D. degree, which indicates that the practitioners have a high
level of formal education, i.e., they had access to Computer
Science’s theoretical aspects.

Fig. 2: Distribution of participants’ professional experience.

Professional Experience. Most participants, 63.4%, have be-
tween two and ten years of professional experience, and
25.9% of the participants are experienced professionals; they
have more than ten years of career. Junior practitioners are
10.7% of the participants. Figure 2 shows the distribution
of these data. Therefore, most participants (89%) have much
practical experience and are likely to know well real software
engineering scenarios.
Programming Languages. The programming languages used
by the participants are Java, C#, C++, Python, JavaScript, PHP,
Scala, Kotlin, TypeScript, ShellScript, Delphi, Swift, Objective
C, Golang (Go), Groovy, Pearl, Dart, Ruby, Visual FoxPro,
VB.NET, and ASP.NET.
Methodologies. Agile methodologies are the most widely used
by developers - being Scrum and XP the most cited of them.
Only one participant informed the company uses a Waterfall
process.
Companies’ Sectors. 71% of the companies are from the IT
area. The other companies are in the following areas: trade,

financial, bank, industry, marketing, health, education, and
government.
Companies’ Characterization. Among the participants, 69.7%
work in medium-sized or large companies, and 30.3% work
in micro and small companies. Figure 3 presents the distri-
bution of the participants’ companies size by the number of
employees.

Fig. 3: Distribution of participants’ companies size by the
number of employees.

V. RESULTS

This section presents the data analysis and the answers to
the research questions.

RQ1. Are developers familiar with the concepts
of software metrics, bad smells, refactoring, and
change impact analysis?

To answer this question, we considered the number of
participants who declared to be familiar with the subjects
investigated in this paper. Figure 4 shows the percentage of
participants who answered ‘yes’ to the questions regarding the
familiarity with software metrics, refactoring, bad smells, and
change impact analysis, respectively (see Rows 2, 7, 12, and
16 of Table I).

Fig. 4: Percentage of participants who declare to be familiar
to the subjects.

Refactoring is the most popular subject among the partici-
pants; 94.6% of them claim to be familiar with refactoring.
Metrics is the second most popular subject; 68.8% of the
participants are familiar with it. Bad Smell is a term known by

44

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on October 17,2022 at 20:21:16 UTC from IEEE Xplore. Restrictions apply.

60.7% of the participants. Change Impact Analysis is the least
familiar term to the practitioners who answered the survey,
43.2%, stated they are familiar with this concept.

RQ2. Do practitioners apply software metrics,
refactoring, bad smells, and change impact analysis
in practice?

To answer RQ2, we calculated the number of participants
that answered ‘yes’ to the questions regarding the practical
application of metrics, refactoring, bad smells, and change
impact analysis (Rows 4, 8, 13, and 17 of Table I). Figure
5 shows the results.

Fig. 5: Percentage of participants who declared to apply
refactoring, software metrics, bad smell, and change impact
analysis.

Change impact analysis is the technique most applied by
practitioners, 91.1% of the participants affirmed that they
perform some extent of change impact analysis when making
software code modifications. It is important to note that only
43,2% informed they are familiar with the concept of “change
impact analysis”. We intentionally used the term “change
impact analysis”, which is commonly used in academia, when
asking if the participant is familiar or not with the concept.
However, we did not use this term in the other questions
about performing change impact analysis. We constructed the
questionnaire in such a way because, in this specific case,
we assumed that even not knowing the terminology used
by researchers, the participants may use any change impact
analysis in practice. This result shows that the industry did
not well adopt the researchers’ jargon on this topic.
Refactoring is the concept that the participants are most fa-
miliar with (94%). Besides, 79.5% of the participants perform
code refactoring. Bad smell is a more balanced concept in
terms of theoretical knowledge and practice: 60.7% declared to
know the concept of bad smell, and 52.7% of the participants
affirmed to verify bad smells in software code.
Software metrics are the second most popular concept (68,8%).
Nevertheless, it is the least applied one. Only 33% of the
participants declared to use software metrics. However, 68.8%
of the participants consider software metrics essential or very
important, contrasting with 9.8% who believe that it is of little
importance; 21.4% informed they do not have the background
to manifest their opinion about such subject. These results

suggest that when knowing the concept of software metrics,
the practitioner is likely to consider their application important
but not always actually apply it.

RQ3. Which are the tools most used by practitioners
in software maintenance?

We asked participants whether they use tools to collect
metrics, perform refactoring, and change impact analysis. In
the sequence, we present the results for each of the subjects
covered.

Fig. 6: Tools most used by practitioners to collect metrics.

Software Metrics. Only 33% of the participants affirmed to
use a software measurement tool. The participants pointed
out 62 tools. Figure 6 shows the citation percentage of the
most used tools. SonarQube is the most used tool; 32.8%
of practitioners used this platform to collect metrics. About
6.6% of the participants cited ESLint and Jira, and 3.3% of
practitioners pointed out CodeFactor, Excel, FindBugs, and
NewRelic. Practitioners mentioned other tools just once.

Fig. 7: Tools most used by practitioners to perform refactoring.

Refactoring. Only 36.6% of the participants declared they
use tools to perform refactoring. They mentioned 68 tools.
It is worthwhile to notice that 79.5% of the participants
perform refactoring. Therefore, we may assume that they
perform refactoring manually. Figure 7 shows the distribution
of the citations of the tools. The most commonly used tools
for refactoring are the IDE Visual Studio (37.2%), Eclipse
(30.2%), and IntelliJ IDEA (11.8%), or an extension of an IDE,
such as ReSharper (4.7%), an extension of the Visual Studio
platform. 9.3% of the participants use SonarQube to perform
code refactoring. Participants mentioned the other tools just
once.

45

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on October 17,2022 at 20:21:16 UTC from IEEE Xplore. Restrictions apply.

Change Impact Analysis. The participants pointed out 13 tools
they use to perform this task. Figure 8 shows the percentage of
the most used tool of change impact analysis. In this case, IDE
is also the most cited tool: Eclipse, IntelliJ IDEA, and Visual
Studio. It is essential to mention that 14.3% of the participants
mentioned preferring text search (“search and replace”) to
perform change impact analysis, and this was the second most
cited approach. However, none of them is a specific tool for
change impact analysis.

Fig. 8: Tools most used by practitioners to perform change
impact analysis.

RQ4. How do practitioners perform change impact
analysis?

In this research question, we investigate whether and how
practitioners perform change impact analysis. Figure 9 shows
the rank of the participants’ answers.

Fig. 9: How practitioners perform change and impact analysis.

Most of the participants, 46.4%, informed that they analyze
parts of the code that need to be modified by exploring the
code manually and intuitively, guided by prior knowledge
about the software source code. Another significant part of
the participants, 32.1%, declared that they explore the code
manually and intuitively, not always based on prior knowledge
about the system. Only 10.7% of the participants pointed
out the use of tools to assist in change impact analysis. A
small part of the participants, 5.4%, declared that they do not
analyze all the elements that need to be modified and make
the modifications as they identify the problems. Other ways

of performing change impact analysis correspond to 3.6% of
the responses.

RQ5. Which metrics, refactoring techniques, and
bad smells practitioners apply in their activities?

We asked the participants to point out the most common
software metrics they use, the commonly refactoring tech-
niques performed by them, and the bad smells they use to
consider.
Refactoring. The most common refactoring techniques applied
by the participants are: Extract Method (21.43%), Rename
Method (13.39%), and Extract Class (12.5%).
Metrics. The analysis of RQ1 - Are developers familiar with
the concepts of software metrics, bad smells, refactoring, and
change impact analysis? - showed that software metrics is
the second well-known subject. However, the participants just
pointed out a few software metrics. The most cited terms
regarding software metrics were: Number of Bugs (9.9%); Test
Coverage (8.91%); and Cyclomatic Complexity (7.92%). In the
last decades the literature proposed many software metrics.
Nevertheless, the results of this survey show that they have not
been widely applied in the industry. In particular, we noticed
that practitioners do not mention the widely known software
metrics in academia, such as those proposed by Chidamber
and Kemerer [14].
Bad Smell. The most cited bad smells were Duplicate Code
(23.21%), Long Method (19.64%), and Long Class (9.82%).
This result indicates that developers’ mainly assess code
structure quality by means of code duplication, method size,
and class size.

RQ6. What are the biggest challenges faced by prac-
titioners when carrying out software maintenance?

We asked the participants to write in an open text field,
which are the main difficulties they face when performing
maintenance on the software systems. The participants indi-
cated several challenges in software maintenance. We reported
them in Figure 10.
Lack of documentation is the most cited problem; 22.3% of
the participants have this perception. In general, they described
that this problem is made more critical due to the high
turnover, which is very common in IT companies.
Lack of standard for software development, is cited by 18.8%
of the participants and is the second biggest challenge. The
participants mentioned that the companies’ development pat-
terns are not always followed by developers, making the code
difficult to understand and change.
Legacy system is cited by 18% of the participants as a chal-
lenge in software maintenance. In this context, the participants
refer to the legacy system as “long-standing codes in which
several people have already worked”.
Bad coding practices are cited by 17% of the participants.
According to the participants, this problem mainly involves
low code readability, poorly structured functions, replicated
methods in various parts of the code, and non-explanatory
comments.

46

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on October 17,2022 at 20:21:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 10: Most important challenges faced by developers in
software maintenance.

Time is also mentioned (12.5%). The participants’ main issues
are the short deadlines for performing maintenance-related
activities and little time to understand the code and implement
the change.
Lack of automated testing (8.9%), difficulty in Replicating
Bugs (3.6%), and Low Code Testability (2.7%) are also chal-
lenges raised by the participants. The participants described
that the absence of unit, regression, and integration tests
negatively affects software code regarding automated testing.
The participants associate the difficulty in code testability with
the maintenance of monolithic and poorly structured systems.
Estimating change impact is pointed out as a challenge by
5.4% of the participants. According to them, not knowing how
a change in the code will impact the software system raises
the system’s “fear” of side effects.
Lack of business knowledge (2.7%) and Communication prob-
lems (1.8%) also appeared as challenges for software mainte-
nance. The participants reported that when the customer does
not have a solid knowledge of the business, they demand
more system changes. Practitioners also pointed out that the
problems of communication with customers and coworkers
negatively impact software maintenance.

VI. DISCUSSION

The results of this study lead to some insights, which we
discuss in this section.

Software metrics are not fully applied in practice.:
The source code software metrics mostly considered in the
literature, are not applied in practice. Some possible causes
for that should be investigated: lack of proper tools, lack of
thresholds for the metrics, lack of knowledge of the source
code metrics by developers, or the metrics proposed in the
literature are not of practical use. The most used metrics are
the number of bugs, test coverage, and cyclomatic complexity.

Refactoring is a popular concept, but only the sim-
ple refactoring techniques.: The refactoring techniques per-
formed in practice are simple and provided by IDE: Extract
Method, Rename Class, and Extract Class. It is essential to

note that 93.7% of participants indicated that their companies
use agile methodologies or a mix of agile methodologies.
Among those methodologies, the participants indicated XP
(eXtreme Programming), refactoring as the primary practice.
Therefore, the popularity of the agile methodologies might
be the cause of the popularity of refactoring. Moreover, agile
methodologies emerged from the industry and not academia,
which may also explain its popularity. It is essential to
investigating the reasons why developers do not commonly
apply other refactoring types.

The bad smell issue.: Although bad smell is known by
60.7% of the respondents, only 52.7% apply the concept in
practice. Previous work have pointed out two main possible
reasons for that: what is considered as a potential design
problem by researchers might not be a real problem in practice;
bad smells detection is not of practical use. We add two
hypotheses point out by the participants: developers do not
apply bad smells because they do not know the concept deeply;
lack of proper tools and strategies for bad smell detection.

Change impact analysis is not adequately performed
in practice.: The results concerning change impact analysis
showed that even not knowing the term used in the literature, it
is the most applied technique by the practitioners. A possible
cause is that change impact analysis is an intrinsic and
indispensable activity in software maintenance. Nevertheless,
practitioners do not use the proper tools to perform it. Most
developers (78.5%) perform change impact analysis manually,
guided or not by the previous knowledge they have about the
code analyzed, as described in the results. The participants
reported they still use inadequate mechanisms such as “search
and replace” to perform change impact analysis. Additionally,
the participants pointed out change impact analysis as a
significant challenge in software maintenance. These results
indicate the need for proper techniques to aid change impact
analysis.

Difficulties source code maintenance.: The main chal-
lenges in performing code maintenance are lack of documen-
tation, lack of standard software development, legacy systems,
and bad coding practices. The research community well knows
such problems. However, this result indicates that the proposed
solutions for such problems were not enough to overcome such
challenges in practice despite the effort made to solve them.

Challenges for academia and industry: The results in-
dicate that the gap between academia and industry in soft-
ware maintenance is large. For instance, refactoring and bad
smell are related concepts first published in 1999 [15]. The
knowledge of refactoring has spread, but the knowledge of
bad smell has not. Moreover, practitioners know only simple
refactoring techniques. Object-oriented software metrics have
been discussed since the early ’90s but were not adopted by the
practitioners, although they consider software measurement
necessary. Change impact analysis is an intrinsic and chal-
lenging task of software maintenance and has been studied by
researchers. However, the industry does not apply any efficient
automatic tool in this task. We may raise some non-exclusive
hypotheses for that: some techniques proposed in academia

47

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on October 17,2022 at 20:21:16 UTC from IEEE Xplore. Restrictions apply.

is not useful in practice; the lack of proper methods, tools,
and recommending systems for detecting bad smells, change
impact analysis, and software measurement may be a reason
why such techniques are not well applied in practice; the
software engineer education may be outdated; the way the
academic proposals are published does not reach practitioners.
The results emphasize that the research community should
strive to define more proper techniques and tools to aid
software maintenance practice. On the other hand, the industry
should invest more in updating the knowledge on the field.

VII. THREATS TO VALIDITY

We based the survey data on the responses collected by
a questionnaire. Therefore, the data are susceptible to the
participants’ interpretation. To mitigate this issue, we ran a
pilot questionnaire with accurate data for our analysis. Based
on the answers collected in this initial round, we constructed
a final survey to remove ambiguities and biases.

Our study relies on the responses given by 112 participants.
We just considered exclusively participants that are profes-
sionals of software development and maintenance. Besides,
the sample used in this paper is composed of participants
from 92 companies and 12 countries, with a wide range of
years of professional experience, with all kinds of academic
backgrounds, and using a large number of programming
languages.

To identify the main challenges the participants face when
performing software maintenance, we asked them to de-
scribe their difficulties in an open text field. The answers
to this question were manually categorized. Therefore, they
are subject to interpretation by those who performed this
categorization. To mitigate this threat to validity, we standard-
ized the labels used in the categorization, i.e., we identified
the keywords mentioned in the participants’ responses, such
as documentation, legacy system, readability, and standard,
among others. Besides, the label assigned to each answer was
made separately by two authors of this paper. After this, we
compared the classifications to obtain the final classification
of each answer. In case of divergence in the categorization,
both authors analyzed it to obtain a consensus.

VIII. CONCLUSION

We surveyed software practitioners to investigate whether
and how software maintenance techniques have been applied
in practice. In particular, we investigated the usage of the
following concepts and techniques: software metrics, refactor-
ing, bad smells, and change analysis impact. For this purpose,
we surveyed 112 software development practitioners from 92
companies and 12 countries. The results showed that change
impact analysis is the most applied technique among the ones
considered in this work. However, there is a lack of proper tool
support to perform change impact analysis. Although refac-
toring is a widespread technique, few refactoring techniques
have been applied in practice. Moreover, refactoring is mostly
provided by IDE. Bad smells and software metrics are the less
known and applied concepts.

This study also revealed that participants considered the
lack of system documentation, lack of development patterns,
and legacy software as the leading software maintenance
challenges. The results indicate that software maintenance
demands even more community effort to develop and provide
proper tools and methods for software maintenance, especially
in change impact analysis and software measurement.

We intend to perform two additional analyses with this sur-
vey’s data: the differences in how practitioners approach soft-
ware maintenance depending on their academic background
and professional experience. We also envision the following
main future work: replicate this study with other software
engineering techniques, investigate how agile methodologies
have been applied in practice, and detail the reasons why
software metrics have been timidly applied in the industry.

REFERENCES

[1] D. Parnas, “Software engineering - missing in action: A personal
perspective,” Computer, vol. 44, no. 10, pp. 54–58, Oct 2011.

[2] D. Lo, N. Nagappan, and T. Zimmermann, “How practitioners perceive
the relevance of software engineering research,” in 10th Joint Meeting
on Foundations of Software Engineering (FSE), 2015, pp. 415–425.

[3] J. C. Carver, O. Dieste, N. A. Kraft, D. Lo, and T. Zimmermann,
“How practitioners perceive the relevance of esem research,” in 10th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), 2016, pp. 56:1–56:10.

[4] A. S. Bordin and F. B. V. Benitti, “Software maintenance: What do we
teach and what does the industry practice?” in 32th Brazilian Symposium
on Software Engineering (SBES), 2018, pp. 270–279.

[5] B. G. Bern, “From theory to practice: Experiences of industry-academia
collaboration from a practitioner,” ser. SER&IP ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 22–23.

[6] P. Runeson, “It takes two to tango – an experience report on industry
– academia collaboration,” in Proceedings of the 2012 IEEE Fifth In-
ternational Conference on Software Testing, Verification and Validation,
2012, p. 872–877.

[7] I. C. Society, P. Bourque, and R. E. Fairley, Guide to the Software
Engineering Body of Knowledge (SWEBOK). IEEE Computer Society
Press, 2004.

[8] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Trans. Softw. Eng., vol. 38, no. 1, p. 5–18, Jan. 2012.

[9] E. Kupiainen, M. V. Mäntylä, and J. Itkonen, “Using metrics in agile and
lean software development – a systematic literature review of industrial
studies,” Information and Software Technology, vol. 62, pp. 143 – 163,
2015.

[10] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia,
“Do they really smell bad? a study on developers’ perception of bad
code smells,” in 2014 IEEE International Conference on Software
Maintenance and Evolution, 2014, pp. 101–110.

[11] A. Tahir, A. Yamashita, S. Licorish, J. Dietrich, and S. Counsell, “Can
you tell me if it smells? a study on how developers discuss code
smells and anti-patterns in stack overflow,” in Proceedings of the 22nd
International Conference on Evaluation and Assessment in Software
Engineering 2018, 2018, p. 68–78.

[12] S. Canada, Survey Methods and Practices. Statistics Canada, 2010,
vol. Catalogue no. 12-587-X.

[13] B. A. Kitchenham and S. L. Pfleeger, Personal Opinion Surveys.
London: Springer London, 2008, ch. 3, pp. 63–92.

[14] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476–493, June 1994.

[15] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing
Code, second edition ed. USA: Addison-Wesley Longman Publishing
Co., Inc., 2018.

48

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on October 17,2022 at 20:21:16 UTC from IEEE Xplore. Restrictions apply.

		2022-08-25T01:23:34-0400
	Preflight Ticket Signature

