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Abstract—Understanding and using the functional paradigm is a
challenge for many programmers. Looking for logical errors in code
may take a lot of a developer’s time when a program grows in size.

In order to facilitate both processes, this paper presents HaskellFL,
a tool that uses fault localization techniques to locate a logical
error in Haskell code. The Haskell subset used in this work is
sufficiently expressive for those studying Functional Programming
to get immediate help debugging their code and to answer questions
about key concepts associated with the functional paradigm.

HaskellFL was tested against Functional Programming assign-
ments submitted by students enrolled at the Functional Programming
class at the Federal University of Minas Gerais and against exercises
from the Exercism Haskell track that are publicly available in GitHub.

This work also evaluated the effectiveness of two fault localization
techniques, Tarantula and Ochiai, in the Haskell context. Furthermore,
the EXAM score was chosen to evaluate the tool’s effectiveness, and
results showed that HaskellFL reduced the effort needed to locate an
error for all tested scenarios. The results also showed that the Ochiai
method was more effective than Tarantula.

Keywords—Debug, Fault Localization, Functional Programming,
Haskell.

I. INTRODUCTION

FUNCTIONAL programming is a method of program con-

struction that emphasizes functions and their application

rather than commands and execution [5].

At first sight, the functional paradigm may confuse pro-

grammers. It may be because they usually start by learning

the imperative paradigm, which has no particular way of

handling the state. In light of that, several difficulties may

appear when programmers try to learn a new way to write code

with different reasoning. If they do not address these issues

early, they might use the functional language as if using an

imperative one for a long time, taking no real advantage of

the functional paradigm.

For instance, Figure 1(b) exhibits an example of functional

programming, a function named fact which calculates the

factorial of a given n. It is written in Haskell, and it is as

straightforward as the mathematical factorial definition. Figure

1(a) shows an implementation of fact in Java, which con-

trasts with the Haskell definition, because it demands greater

knowledge of the language constructs from the developer

writing it.

Fig. 1. Factorial function in Java (a) and in Haskell (b).

and impure languages being the ones allowing them. Examples

of pure functional languages are Haskell and Agda. Some

impure ones are Lisp, Scheme, Clojure, Standard ML, F#

and OCaml. F# is integrated into the platform .NET and

reaches many users [12]. OCaml stands for Objective-ML and

it “is an industrial-strength programming language supporting

functional, imperative and object-oriented styles” [34]. Clo-

jure is used by Nubank [33]. Haskell is an excellent choice

for a functional language because it has a large and active

community. It also has built-in concurrency and parallelism

and supports integration with other languages [46].

Other two broadly used languages that implement functional

concepts are Java and Kotlin. Java 8 introduced lambda expres-

sions and functional interfaces, which profoundly improved

the language’s power. Kotlin offers both functional and object-

oriented concepts alongside a strong integration with Java [13].

The latter allows Kotlin to be classified as very promising

language because it removes a large part of migration and

integration concerns for scalable systems. Additionally, a

considerable number of large companies are already adopting

Kotlin.

With that said, having good knowledge of the functional

paradigm is a valuable skill for developers, regardless if they

work directly with a purely functional language or with any

other language offering functional concepts. Also, Haskell

is an excellent first functional language because it allows

developers to have a clear view of functional concepts.

A. Problem Definition

Bugs are reality on software development, and while experi-

enced programmers may know their way among several bugs,

some beginners may feel discouraged by them. Compilers

are able to help detecting some simpler bugs. For example,

Becker et al. [4] conducted a study about the javac compiler

messages for students’ Java code. The top 10 student errors

they found in their study are:

(i) cannot find symbol

(ii) ‘)’ expected

(iii) ‘;’ expected

(iv) not a statement

(v) illegal start of expression

(vi) reached end of file while parsing

(vii) illegal start of type

(viii) ‘else’ without ‘if’

(ix) bad operand types for binary operator

(x) <identifier> expected.

Some of the messages, such as ‘)’ expected and ‘;’

expected are really effective, other such as illegal

start of expression may be more tricky. Additionally,

Singer and Archibald [42] conducted a study focusing on

Additionally, functional languages are pure or impure. Pure

languages being the ones not allowing side effects anywhere
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Haskell novice programmers and the kind of mistakes they

make. Their results are:

(i) Parenthesis mismatch: unbalanced paren-

thesis characters.

(ii) Bad scoping: issues with let and where con-

structs.

(iii) Misunderstanding do blocks: for instance,

trying to bind names in a do block as the final action.

(iv) Complex constructs: their interpreter did not

support data and type definitions and users at-

tempted to use it anyway. This was noted as a

mistake.

(v) Incorrect syntax for enumFromThenTo

syntactic sugar: there were issues with the

.. notation. The authors consider that may have

been problems with their tutorial material though.

All of the errors mentioned above are automatically iden-

tified by a compiler. Becker et al. [4] also enhanced error

messages in their study to test how much an improved message

is able to help. Their results indicate that it does help.

Nonetheless, better messages do not extinguish the errors,

neither syntactic errors nor logical errors. Logical errors are

the ones a compiler can not automatically catch, and for that

reason, they are even harder to identify.

In light of that, this paper presents HaskellFL, a tool that

locates logical errors in functional programming assignments

written in Haskell. Starting from a source code with unex-

pected behavior and a few test cases, some of which outputting

an unexpected result, and others producing the expected out-

put, HaskellFL calculates and returns a list containing the

most likely expressions to be triggering this unpredictable

behavior, and this list is sorted from most to less probable.

This suspiciousness list is created using fault localization

techniques, thus, this work also evaluates the effectiveness

of two different fault localization techniques in the Haskell

context.

The main reason for choosing functional programming for

this work is because the functional paradigm is less spread than

object-oriented concepts; consequently, the support material

for learning it is also less spread. The reasons for choosing

Haskell in particular pass through its expressiveness, great

dealing of complex data, and the fact that it is a purely func-

tional language that may effectively help developers to grasp

the concepts present in the functional paradigm. Haskell’s

laziness is also an advantage for this work because it provides

better visibility of the code execution.

Other data serving as motivation is the work in Pu-

rushothaman and Perry [39] apud Gopinath et al. [15] where

they analyzed the change history of a large software project

focusing on one line changes. Their results showed that 10%

of the total code changes involved a single line of code,

and 50% were below ten lines. The study in Gopinath et al.

[15] specifically found that for Haskell, localized changes are

62.7% of all changes. So, a fault localization tool may be

beneficial.

Adding remarks to Haskell as the right choice for studying;

there are plenty of companies using it. Enumerating few,

Facebook uses it internally in its advertising and spam filtering

internal products as well as Google, which published a paper

about their experience [38]. Intel has developed a Haskell

compiler as part of their research on multicore parallelism

at scale [31], Microsoft uses it in its compilers research, and

Tesla also uses it in its internal products. A list containing

several companies and the respective fields in which they use

Haskell may be found in Haskell Cosmos website1, including

some of the companies mentioned above are listed there.

B. Goals

This work’s primary goal is to evaluate the effectiveness of

two fault localization techniques in the literature, Tarantula

[21] and Ochiai [1], in the context of Haskell programs,

and additionally, create a tool to aid Functional Programming

beginners while debugging their Haskell problems.

This tool will receive a code written in Haskell containing

a yet unknown logical error and some test cases divided into

two sets, one set containing tests that evoke an error and the

other one containing tests that allow the code to run smoothly.

With these inputs, the tool will be able to run the tests and to

locate what expression is the error root cause.

The main contributions of this paper are:

(i) A tool, named HaskellFL, which is able to locate

logical errors in Haskell code.

(ii) The implementation of two fault localization tech-

niques: Tarantula and Ochiai.

(iii) A test suite covering the chosen Haskell grammar’s

subset.

(iv) The evaluation of HaskellFL against a test suite using

EXAM score.

(v) A Haskell interpreter for a subset of Haskell 2010

grammar.

The organization of the remaining sections of this paper

is as follows. Section II presents the fault localization topic,

enumerating the techniques used in HaskellFL, showing how

to evaluate these techniques, and presenting related tools.

Section III introduces the SKI combinators. Section IV dis-

cusses the related work and the remaining gaps that motivated

the present work. Section V presents the proposed solution

to the identified problem, discussing the requirements and

implementation of the HaskellFL tool for detection of logical

errors in Haskell. Section VI presents the test suite and the

obtained results while testing HaskellFL against it. Section

VIII concludes this paper, presenting its contribution and

suggestions for future works. It is followed by Appendix A,

which exhibits the subset of Haskell 2010 grammar supported

by HaskellFL, and the bibliography.

II. FAULT LOCALIZATION

This section brings an overview of two fault localization

approaches and it also presents methods to evaluate them.

Additionally, it shows fault localization tools in the literature.

1https://haskellcosm.com/
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A. Spectrum-Based Fault Localization

Jones et al. [22] presented a prototype tool that uses coloring

statements in the code to detect fault locations; this is classified

as a spectrum-based fault localization (SBFL) technique. The

authors have a piece of code with a logical error and some

test cases, a few producing the expected result for a given

input, and other few producing an unexpected output for

a different input. While executing the code, they color the

coding statements with colors inside the green, red, and yellow

spectrum.

In this scenario, red means the majority of test cases that run

that line fails to achieve the correct output; green means the

opposite; most test cases running that line succeed in achieving

the correct output. Furthermore, yellow means the test cases

executing that statement are the ones that succeed sometimes

and fail other times, both near to the same percentage. It

is worth remembering that the colors rely upon a spectrum,

which means that one statement that has 80% failing test cases

and 20% successful ones running it is colored in a darker

red contrasted to one with 65% failing test cases and 35%

successful test cases running it. Correspondingly, the same

applies to green in the reverse order. Figure 2 depicts the

example displayed in Jones et al. [22] that demonstrates what

was just explained. The mid function in the figure prints the

central element among three elements and will be used as an

example again in this paper.

Fig. 2. Colored Code for Detecting Error Location, extracted from Jones et
al. [22].

Moreover, in Figure 2, P indicates the given test case

succeeds in achieving the expected output, i.e., it passes. F

indicates that the test case did not achieve the correct output;

thus, it fails. The black bullets in the intersections between

test cases and code statements show that the given test case

has executed that code statement. For example, test cases 2,

1, 3, execute lines 1, 2, 3, 6, 7, 13, and fail.

Lee et al. [29] adopted the same method, after adapting it to

functional programs, to detect possible error locations in the

process of correcting OCaml code. Their result is a set of pairs

consisting of a holed program and a score for each possible

error location. The lower the score, the more suspicious the

expression is. Additionally, as the name suggests, the holed

program contains holes in the expressions where an error may

occur. It is also worth mentioning that the authors consider the

size of the expression to calculate its score. They based their

motivation for this on the Occam’s razor principle [6], meaning

they want to replace an expression as small as possible.

Table I shows two formulas from different methods -

Tarantula [21], and Ochiai [1] - that were used to calculate the

error localization in HaskellFL; both fall in the SBFL category.

Tarantula:
failed(s)

totalfailed

failed(s)
totalfailed

+
passed(s)

totalpassed

Ochiai:
failed(s)

√

totalFailed(failed(s)+passed(s))

TABLE I
FAULT LOCALIZATION TECHNIQUES’ FORMULAS.

Tarantula utilizes all the standard information used by other

testing tools: pass/fail information about each test case, the

entities that were executed by each test case, e.g., - statements,

branches, methods - and the program’s source code under test

[21]. Tarantula method intuition is that entities in a program

primarily executed by failed test cases are more likely to

be faulty than those primarily executed by passed test cases.

Additionally, the method also allows some tolerance for the

bug to be occasionally executed by passed test cases because

they claim it often provides more effective results.

In Abreu et al. [1], they show that for software fault

diagnosis, the Ochiai similarity coefficient, known from the

biology domain, outperforms several other fault localization

methods. They attribute these results to the Ochiai coefficient

being more sensitive to potential fault locations in failed runs

than to activity in passed runs. This fact suits fine for fault

localization because the execution of incorrect code does not

necessarily lead to failures, while failures always involve a

fault.

B. Mutation-Based Fault Localization

Another approach for finding logical errors are mutation-

based fault localization (MBFL) techniques. In Papadakis and

Le Traon [35], the authors explain that this method works by

introducing defects - mutants - in the program under analysis.

The analysis relies on the assumption that most mutants form

realistic faults, even if artificially seeded. Furthermore, it

becomes possible to analyze the new code behavior against

the test cases with the mutants in place. A big disadvantage

of this method is that it is costly.

To better measure this fact, in a technical report made by

Pearson et al. [36], the authors evaluated different techniques

for finding faults’ localization. Their data set was composed

of 310 real faults and 2995 artificial faults in Java code. They

took 100,000 CPU hours to get their results, mainly because

of MBFL expensiveness.

In Le et al. [28], the authors proposed a mutation testing tool

for Haskell programs and also named mutations they consider

suitable for functional programs. These mutations are:

(i) Replacing integer constant N with one of {0, 1,

-1, N + 1, N - 1}.
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(ii) Replacing an arithmetic, relational, logical, bit-

wise logical, increment/decrement, or arithmetic-

assignment operator by another of the same class.

(iii) Negating the conditional in if statements.

(iv) Deleting a statement.

(v) Reordering pattern matching.

(vi) Mutation of lists and list expressions.

(vii) Type-aware function replacement.

More precisely, the first four items were originally applied

for C programs, but Le et al. [28] agree they are still valid for

functional programs, and they added the last three specifically

for functional programming.

C. Faults Originated by Missing Code

Sometimes, bugs may be caused by the lack of an explicit

expression in the program instead of an error in its expressions.

Just et al. [25] cited by Pearson et al. [36] affirm that for 30%

of cases, a bug fix consists of adding new code rather than

changing existing code. Nonetheless, Wong et al. [49] states

that even if a bug originates from a missing part in the code,

such as an untreated corner case, fault localization techniques

may still be helpful to bring attention to suspicious parts of

the code by exposing possible control-flow anomalies.

Pearson et al. [36] evaluated the different fault localization

techniques regarding the missing code scenario considering

that the guideline for this case is to the technique to report

the immediately following statement. Ideally, this should be

exactly where the programmer should insert the code, and thus

fault localization techniques are still able to bring awareness

to the correct part of the code.

Furthermore, Li et al. [30] proposed a new missing code-

oriented fault localization (MCFL) approach, which intuitively

says that to identify a code-omission fault, the missing code

site between two specific adjacent statements should be a can-

didate of fault localization. Such a site indicates the position

of missing code in the faulty program. In other words, they

consider both statements in the code and possible new code

locations to calculate their suspiciousness scores.

In conclusion, bugs caused by missing code are an essential

part of fault localization research. SBFL is still valid for

several scenarios, including the one in this work; however,

newer techniques as MCFL are improvements to the field.

D. Fault Localization Metrics

There are several literature methods for fault diagnosis in

software testing. The question which arises after that is how

to evaluate these different methods. Henderson [20] compiled

several evaluation methods; some of them are reproduced here.

(i) EXAM Score. It calculates the percentage of pro-

gram elements that a developer would have to inspect

until finding the first fault. Formally, let n be the

number of program elements and r(s) the rank of

a given element for a fault localization method, the

EXAM score is:
r(s)

n

(ii) Tarantula Effectiveness Score (Expense). It calcu-

lates the percentage of program elements that do not

need to be inspected to find the fault. Formally, let

n be the number of program elements and r(s) the

rank of a given element s for a fault localization

method, the Expense score is:

n− r(s)

n

(iii) LIL Probability Distribution. It uses a measure of

distribution divergence (Kullback-Leibler) to com-

pute a score of how different the constructed dis-

tribution is from the ”perfect” expected distribution.

The advantage of the LIL framework is, it does not

depend on a list of ranked statements and may be

applied to non-statistical methods. Formally, let τ

be a suspicious metric normalized to the [0,1]

range of reals. Let n be the number of statements

in the program. Let S be the set of statements. For

all 1 ≤ i ≤ n let si ∈ S. The probability distribution

is:

Pτ (si) =
τ(si)

∑n

j=1 τ(sj)

When evaluating a suspiciousness rank list, a fact to be

considered is the tied scores present in it. The approach used

in HaskellFL calculates the best and worst-case scenarios. The

best-case scenario happens when among several lines with

the same score, the developer starts examining them by the

line containing the bug. Conversely, the worst-case scenario

happens when a developer chooses to examine the line with

the bug last.

To exemplify, consider there is a bug in Line 2 of a four

lines’ program with a suspiciousness score list of [0.5,

0.8, 0.8, 0.3], where the position in the array holds

its score. For instance Line 1 has a score of 0.5. In the best

case scenario, a programmer would find the bug at first try,

choosing to check Line 2 first, and the EXAM score for this

is:

EXAM =
1

4
= 25%

Whereas for the worst-case scenario, a developer would

chose to examine Line 3 before Line 2, and the EXAM score

for this scenario is:

EXAM =
2

4
= 50%

In Section VI, this paper results will be presented in terms

of the EXAM score. This choice was made because the EXAM

score is a great indicator of the effort level a developer needs

to apply in order to locate a bug, and this is the key point

HaskellFL aims to contribute.

E. Fault Localization Tools

To begin with, Thompson and Sullivan [43] introduced

ProFL, a command-line fault localization tool for Prolog

models. As happens for HaskellFL, ProFL takes a faulty
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Prolog model, a test suite for that model, and calculates

which statements are most likely to be faulty. It performs both

Spectrum-Based Fault Localization and Mutation-Based Fault

Localization.

Chesley et al. [8] presented Crisp, an Eclipse plug-in tool

that allows a programmer to run regression tests after some

change in her Java code. If a test fails unexpectedly, the

programmer may edit parts of the code to ensure it still

compiles and reruns the test focusing on the modified part.

The programmer may interact with changes until finding the

set originating the fault.

The work in Dallmeier et al. [9] uses a method that takes ad-

vantage of the information regarding method calls’ sequences

during program execution to calculate fault localization. It col-

lects execution data from Java programs considering incoming

method calls, i.e., how an object is used, and outgoing calls,

i.e., how it is implemented.

Moreover, Wong et al. [47] presented a cross-tabulation

statistical method taking advantage of code coverage for test

cases. A hypothesis test is also used to infer if execution results

and each statement’s coverage are dependent or independent

of one another. Each statement’s suspiciousness score depends

on the degree of association between its coverage and the

execution results.

Le et al. [27] presented MuCheck, a mutation testing tool

for Haskell programs. The tool implements mutation operators

that are specifically designed for functional programs (see

Section II-B) and makes use of Haskell’s type system to

achieve a more relevant set of mutants.

Besides that, there are other relevant works about error

localization. Jose and Majumdar [24] present an algorithm for

error cause localization based on a reduction to the MAX-

SAT2 problem; Ball et al. [3] show an algorithm that explores

the existence of correct error traces among all the error traces

pointed out by a compiler in order to localize what is causing

the error, and Groce et al. [16] use distance metrics in order to

better explain the error location. Distance metrics for program

executions means a function d(a,b), where a and b are

executions of the same program, and d(a,b) is equal to the

number of variables to which a and b assign different values.

HaskellFL differs from the works of Thompson and Sullivan

[43], Chesley et al. [8] and Dallmeier et al. [9] in the

supported language. Additionally, Thompson and Sullivan [43]

implement a mutation-based algorithm that HaskellFL does

not. The work in Chesley et al. [8] is different in the sense that

their work is an interactive guide for helping to locate an error

root cause. It serves as a guide for programming apprentices,

similarly to Haskell, but they work as an interactive Haskell

guide instead of looking for the error automatically.

Furthermore, Dallmeier et al. [9] implemented a different

fault localization technique that was not used in HaskellFL.

Wong et al. [47] also presented a new method which they

compared and contrasted against Tarantula, which is a method

present in HaskellFL. Le et al. [27] also used Haskell in

their work, however, they implemented mutation-based fault

2MAX-SAT is the problem of determining the maximum number of clauses
of a Boolean formula in conjunctive normal form, that may be made valid by
an assignment of truth values to its variables.

localization while HaskellFL offers spectrum-based fault lo-

calization.

Finally, Wong et al. [49] compiled several Ph.D. and Mas-

ter’s Theses, techniques and tools about the fault localization

topic, which makes it an excellent reference for related work.

It contains the majority of the works mentioned above.

III. SKI COMBINATORS

A key concept used in HaskellFL is the SKI combinators

[37]. S, K, I are supercombinators - functions with no

free variables - that allows interpreting code. All expressions

can be reduced to a combination of these. Listing 1 depicts

the combinators as Haskell functions. Summarizing, the S

combinator replicates one argument to two different functions.

The K combinator is used when a value is constant regarding

another value. To put it another way, in Listing 1, if x is

constant regards y, y may be disregarded and x kept. And last

but not least, the I combinator is just the identity function.

1 s f g x = f x (g x)

2 k x y = x

3 i x = x

Listing 1. SKI combinators in Haskell Notation.

To better illustrate the SKI compilation algorithm, observe

the following example. Given a function \x -> x * x, ap-

plied to the integer 10, the algorithm will follow the reduction

steps in Listing 2. First, it will apply S, spreading the input to

two instances in the body - a variable x and an application (*
x) - after that, another application of S happens, in order to

further spread the input thought the multiplication operation.

Now, there is two \x -> x in the code, that may be reduced

to supercombinator I. Finally, there is just multiplication,

which is constant regarding x and may be reduced using the K

combinator. After all the reductions, the expression S (S (K

*) I) I is obtained, and it contains only operations that are

straightforward to compute.

1 S (\x -> * x) (\x -> x) 10

2 S (S (\x -> *) (\x -> x)) (\x -> x) 10

3 S (S (\x -> *) I) (\x -> x) 10

4 S (S (\x -> *) I) I 10

5 S (S (K *) I) I 10

Listing 2. Example of SKI compilation.

IV. RELATED WORK

This section describes works related to HaskellFL and the

process used to build it. Subsection IV-A talks about the state-

of-the-art in Haskell compilers. Subsection IV-B cites several

works on type errors and how to provide better feedback to

them. Section IV-C mentions Haskell tutors and Section IV-D

names some selected tools on automatic program repair.

A. Compilers

The most well-known and popular Haskell compiler is the

Glasgow Haskell Compiler (GHC). The default compiler on

the Haskell platform also includes tools to manage project

building and packaging libraries. They also offer an inter-

active development environment, named GHCi, which may
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be used for incremental programming in the command line

and provides handy tools for debugging. The original paper

[23], which introduced the compiler, reinforces the fact the

compiler is most written in Haskell, and its target language

is C. Exemplifying its popularity, GHC is the recommended

compiler on the introductory books to Haskell, ”Haskell:

The Craft of Functional Programming” [44] and ”Thinking

Functionally with Haskell” [5].

GHC is an open-source project3, it is on Version 9.0.1 to this

date, and it is continually updated. It is an excellent tool for

all the motives cited above, but there is still room to improve,

as seen regarding the confusing type error feedback depicted

in Figure 3, further scrutinized in Section IV-B. Another

widely known Haskell compiler is Hugs (Haskell User’s Gofer

System), which was the compiler reference for Haskell prior

to GHC. It is no longer in development; its last release is from

May 2006.

Fig. 3. Type Error pointed by GHCi.

Furthermore, there is a compiler named Helium created

by Heeren et al. [18], which has educational purposes and

provides more detailed feedback. For example, given the

remove function in Listing 3 with an error in Line 4, where

a developer wrote n = x instead of n == x, the feedback

returned by Helium, according to its creators, is the one

displayed in Listing 4. It points to an error in the second equal

sign and says that it may not exist another attribution after a

first one. The expected input is an expression, an operator,

or a constructor operator. It does not detect the most probable

error cause; however, it gives better feedback showing a double

attribution problem.

1 remove :: Int -> [Int] -> [Int]

2 remove n [] = []

3 remove n (x:xs)

4 | n = x = rest

5 | otherwise = x : rest

6 where rest = remove n xs

Listing 3. Remove function with an error in Haskell.

1 (4,16): Syntax error:

2 unexpected ’=’

3 expecting expression, operator, constructor

operator, ’::’,

4 ’|’, keyword ’where’, next in block (based on

layout), ’;’

5 or end of block (based on layout)

Listing 4. Feedback provided by Helium extracted from Heeren et al. [18].

GHCi also points to a parser error on the second equal sign

with no hints on how to fix it. Some other interesting remarks

about Helium are that as the compiler aims to stimulate

functional languages, they look for being as modular and

3https://gitlab.haskell.org/ghc/ghc/

straightforward as possible. Their code and idea are not very

hard to follow, and as usual, type inference is the challenging

and compelling section of their work, and their solution passes

by tight constraint solving and global constraint solving.

B. Type Errors

There are several works on compilation errors and how to

provide appropriate feedback to them. To cite a few, there are

Zhang et al. [50], Charguéraud [7], Heeren [19], Sakkas et al.

[41] and Becker et al. [4].

To exemplify the topic, look at the following function in

Haskell to calculate the factorial of n:

1 fac n = if n == 0

2 then 1

3 else n * fac (n == 1)

Listing 5. Factorial function with error in Haskell.

This function has a type error on Line 2, more precisely,

in the expression fac (n == 1), but as depicted in Figure

3, the error accused by GHCi, the interactive development

environment provided by GHC compiler, is in Line 1 when

n is checked against 0; this happens because, in the else

clause, fac is called with a boolean parameter, binding the

input to the boolean type. The comparison with integer

0 fails on the following iteration, and this may be solved by

declaring the type of the function explicitly instead of allowing

the compiler to infer it. However, this will most likely confuse

novice programmers, who may not be aware of this behavior.

In Zhang et al. [50], the authors propose improving compiler

error messages by looking at all possible errors as a whole

and just reporting the most likely error instead of the first

one encountered; the latter is how compilers handle their

error messages usually. Their work uses Haskell. Figure 4,

illustrated in their paper, is used to explain their approach to

the problem.

Fig. 4. Graph for Diagnosing Type Errors, extracted from Zhang et al. [50].

A brief explanation: first, they model the set of constraints in

the code as a constraint graph. The graph in Figure 4 represents

the erroneous factorial code, depicted in Listing 5. The nodes

α0, α1, αn and α∗ represents the types of 0, 1, n and

the first parameter of multiplication (∗), respectively. The

bidirectional edges mean type equality between nodes, for

instance, αn and α0 are supposed to have the same type.

Each edge is also annotated with the expression that gen-

erates it. The direct edges represent type classes, the edge

between α1 and Num indicates that α1 must be of type Num.

The dashed edges are derived by transitivity. Furthermore, the

edges are then classified as satisfiable or unsatisfiable. The red

X means unsatisfiable. Exemplifying, Bool, and Num may not

be the same.
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The last pass is to use Bayesian principles, from the

probability domain, to detect which edge is the most likely

error source; the correct answer, in this case, is (n ==

1). In conclusion, it is an easy to follow method that may

improve type error localization and help users in a topic that

traditionally causes great confusion.

C. Haskell Tutors

This section mentions researches in building systems that

offer a more driven feedback for tutoring functional program-

ming apprentices such as Heeren et al. [18], Gerdes et al. [14]

and Handley and Hutton [17].

The tutor created by Gerdes et al. [14] is an excellent tool

for Haskell and functional programming beginners. Their tutor

offers incremental feedback, which means that at any point,

a student feels stuck with a problem; he may ask the tutor

for a hint. The tricky part is that an instructor must provide

well-written solutions to the tutor and a configuration file,

customizing the feedback with tips he believes would help his

students to better comprehend the proposed solution and the

process leading to it; this is a must to make the tutor effective.

Otherwise, students may continue confused about the best path

to follow to solve their problems. If more than one solution

is applicable, the instructor must submit all the solutions he

wants his students to know. Another remark about their work

is that their tutor is a web application, making it accessible to

everybody.

They also use a compiler with improved error feedback,

which is described in Section IV-A. Their model tracing

and property-based test strategies have similarities with the

strategies adopted by Lee et al. [29]. Their goal is to provide

correct guidance that will allow the programmer to fill the

holes he may have left in his code by not knowing what

expression to use in a specific part of the program. To achieve

that, they rely on the provided instructor’s solution and in the

language grammar, trying to fill the blanks with constructs

available in the target functional language and with lambda

calculus concepts. The latter may find equivalent expressions

in the code, making it more straightforward for the tutor to

interpret.

Finally, there is the project Try Haskell [10], which is worth

to be mentioned. This project does not provide customized

feedback about the logical errors in the code. However, it is

an excellent way to start with Haskell, having a friendly and

interactive tutorial about its basics.

D. Automatic Program Repair

Automatic program repair is likely the next step for research

after finding code bugs automatically. This section brings up

works on automatic program repair.

Lee et al. [29] created a system named FixML to diagnose

and correct logical errors in OCaml. To do so, they need

four inputs: an incorrect resolution for a program, a solution,

the function name for the problem, and a file containing

passing and failing test cases. As a result, FixML produces a

repaired program consisting of the incorrect program modified

to function correctly. The provided solution not necessarily

follows the same structure of the program the system is trying

to fix. The authors used the solution while rebuilding the code,

but it is not at all a plain copy.

Kneuss et al. [26] wrote other paper on the subject to

repair programs written in a Scala subset. Their process to

locate a code fault starts by doing dynamic analysis using test

inputs generated automatically. They combine enumeration

and SMT-based techniques. Additionally, they collect traces

from erroneous executions and compute common prefixes of

branching decisions. On the program repair angle, they use

the existing program structure as a hint to guide it. They rely

on user-specified tests and automatically generated ones to

localize the fault and speed up synthesis.

Moreover, Tondwalkar [45] presents a tool to find and fix

bugs in Liquid Haskell. Liquid Haskell is a framework for

annotating Haskell programs with refinement types, which are

types decorated with predicates [45]. In their master thesis, the

authors introduced a fault localization algorithm for constraint-

based type systems, which searches for a minimal unsatisfiable

constraint set using the type checker as guidance. To optimize

the search process, they exploited the structure of Liquid

Haskell constraint sets. They also presented a predicate discov-

ery algorithm for constraint-based type systems, which allows

the type checker to verify additional correct implementations.

V. DETECTING LOGICAL ERRORS IN HASKELL

Fig. 5. HaskellFL architecture.

Figure 5 exhibits the architecture of the proposed solution to

locate logical errors in Haskell. The tool is called HaskellFL.

HaskellFL expects three file paths as inputs, (i) one for the

faulty Haskell code, (ii) another for the text file containing the

passing test cases, and (iii) the last one for the text file with

the failing test cases. Cabal, the standard package system for

Haskell, was used in HaskellFL. Figure 6 exhibits an example

of HaskellFL execution using this package. In other words,

cabal run is invoked indicating the target to be executed,

which is in this case HaskellFL, followed by the args expected

by the program itself, i.e., the three files enumerated above.

Optionally, it is possible to specify the technique of choice:

Tarantula or Ochiai. If this information is omitted here, the

program will prompt for it later.

1 cabal run HaskellFL faulty-code.hs tests-pass.txt

tests-fail.txt [method]

Listing 6. HaskellFL execution command using Cabal.

Furthermore, HaskellFL can also interpret the test cases, and

expose their results. To do that, HaskellFL must be called as

in Figure 7, with the code and test case paths, followed by the

keyword run and the name of the function to be interpreted.
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1 cabal run HaskellFL faulty-code.hs tests-pass.txt

tests-fail.txt run function-name

Listing 7. Command for HaskellFL interpreting the test cases.

After having the needed inputs to run HaskellFL, it is

necessary to obtain the code coverage for the buggy Haskell

code regarding every test case separately. The count is divided

between two independent sets representing the passing and the

failing test cases. In possession of these two sets’ data, the next

step is to feed them to the formulas exhibited in Table I to

calculate the suspiciousness rank for each fault localization

method.

A. HaskellFL Tool

This section details HaskellFL requirements. The first one

is the Haskell 2010 grammar subset to be contemplated in

HaskellFL. The notable parts of Haskell 2010 left out of

HaskellFL are list comprehensions and do notation. How-

ever, they may be included as extensions for future work.

Nevertheless, HaskellFL covers abstract data types, pattern

matching, guards, case, if-then-else, let and lambda

expressions, among several other features which are enough

to support and guide Haskell beginners. It is important to say

that the tool handles Haskell’s layout rules. Moreover, the

full grammar accepted by HaskellFL is available in full in

Appendix A.

Secondly, HaskellFL needs to calculate the bug location

using one or more fault localization techniques. To do so, it

was necessary to first calculate and make available the cov-

erage count for each statement, making note if the generated

coverage corresponds to a passing or a failing test case. This

feature’s implementation allows additional fault localization

methods to be easily added to HaskellFL in the future.

Thirdly, a Haskell interpreter needed to be created to

obtain the code coverage map. The primary reason behind

this decision was to allow the extension of HaskellFL in

the future to repair Haskell code, as it is done for other

programming languages as described in Section IV-D. Another

viable extension to HaskellFL is to implement mutation-based

fault localization techniques, also mentioned before in Section

II-B.

B. Implementation

Figure 6 exhibits HaskellFL high level block diagram.

The diagram is divided into four main blocks representing

four processes: Parser, Transformation, Interpreter, and Fault

Localization.

The first block encapsulates the parsing process. The lexer

was built using Alex4 and the parser using Happy5. These are

the Haskell equivalents for Lex and YACC respectively, and

they also are the same tools used by Haskell compiler GHC.

An alternative approach was to use one of the several libraries

of parser combinators available such as Parsec6. The first

option is restricted to LALR parsing, and the latter favors

4https://www.haskell.org/alex/
5https://www.haskell.org/happy/
6https://wiki.haskell.org/Parsec

Fig. 6. HaskellFL high level block diagram.

LL parsing [11]. In the end, the combo Alex and Happy was

chosen because besides being more robust and offering better

support for LR grammars, it also offers better visibility and

control of each step, facilitating HaskellFL extension to repair

logical errors in the future. It is also worth mentioning the

BNF Converter7, which is a powerful tool with uncomplicated

implementation, even though it is not suitable for Haskell

grammar.

The parser maps tokens to a set of Haskell abstract data

types. It was fundamental to HaskellFL to keep the expres-

sions’ lines while parsing the tokens to further calculate code

coverage.

The second block is responsible for transforming the data

types generated during the parsing process into SKI combi-

nators. These data types are as close as the lambda calculus

terms as possible. The parser already returns application,

variable and lambda abstraction types, but it also returns

data types corresponding to let, case and if-then-else

expressions, that are later transformed in terms of the first three

during the desugar phase. All the needed rules to translate

a high-level functional language into lambda calculus are in

Peyton Jones [37]. Additionally, before reaching the desugar

step, pattern matching needs to be addressed. This goal was

achieved by implementing the match function, also provided

in detail in Peyton Jones [37]. Moreover, desugar step was

also responsible for simplifying the fixed-point combinator and

the other built-in functions.

Compile step for its turn, is responsible for transforming

the desugared code into SKI combinators. This function

implements the transformation rules presented in Section III.

With that said, the second block outcome is formed by a set

containing the SKI combinators alongside the final literals and

the new local functions.

In the following block, there is the interpreter step,

where evaluator function orchestrates calls to the previous

blocks’ functions. Evaluator extends the small prelude

7http://bnfc.digitalgrammars.com/
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with the locally declared functions. This step is composed of

constant exchanges between its internal blocks, represented in

Figure 6 for dashed arrows for organization purposes only.

These exchanges reflect the process of getting and adding

functions to the prelude and the constant execution stack

updates.

And last but not least, in the fourth block, the faulty

line in the Haskell code is calculated using the chosen fault

localization techniques. These, for their turn, use the coverage

map exposed by the third block. This step may easily include

other different coverage-based fault localization methods.

Furthermore, an absence in the HaskellFL tool is type

checking. Type checking was not implemented in HaskellFL

because this would be an overkill for the need to obtain code

coverage. However, to extend HaskellFL for repairing Haskell

code, this is an important step. One important heuristic used

to speed up finding a new bugless expression to replace a bug

is to cut all candidates that are not type compliant out of the

search.

C. Walkthrough

To better understand the complete process that HaskellFL

follows, look at the example in Listing 8. A small piece of

LinkedList module was extracted from a problem present

in the test suite. This small part does not contain any bugs, but

it serves to understand the whole process. The module has a

generic data type LinkedList a, written using record syn-

tax, and a function fromList that creates a LinkedList

from a regular Haskell list.

1 module LinkedList (LinkedList, fromList) where

2

3 data LinkedList a =

4 Nul

5 | LinkedList { datum :: a,

6 next :: LinkedList a }

7 deriving (Eq, Show)

8

9 fromList [] = Nul

10 fromList (x:xs) = LinkedList x (fromList xs)

Listing 8. LinkedList module.

Figure 7 shows the generated AST for LinkedList source

code after the parsing process. Some details were omitted,

such as every terminal knowing its own position for better

clarity in the figure, nonetheless, there are one data type dec-

laration under the DataDecl set and two function bindings

under FunDecl set. The LinkedList DataDecl has two

constructors, Nul and LinkedList, with different arities

and fromList FunDecl has two different bindings, one

matching an empty list, i.e. Nil, and the other matching

a non-empty list, i.e. Cons x xs. MatchPat is the label

indicating the pattern matching for each specific function and

MatchBody keeps the body of function binding for that

respective pattern.

In the example, Nul is the MatchBody for the empty

list, and an application of two other applications is the

MatchBody for the non-empty list. The internal nodes rep-

resenting the lambda calculus applications are displayed in

yellow. Adding to the MatchBody for the non-empty list,

the first application is of the constructor LinkedList to the

Fig. 7. LinkedList AST.

head of its MatchPat and the second application is of the

function fromList to the tail of its MatchPat. In light of

that, it is important to restate that MatchBody was already

transformed into a lambda calculus expression.

Once parsing is done, match function can be called.

match transforms the pattern matching function bindings

in a case expression such as the one exposed in Figure

8. Colored in blue in the diagram, there are two concepts

presented in Peyton Jones [37] and introduced to the code

during this step. Firstly, the idea of pattern matching failing,

i.e. a pattern mismatch, represented by Fail. Secondly, the

FatBar operator, also represented for [], which obeys the

following rules:

a[]b = a, if a 6= Fail

Fail[]b = b

Fig. 8. Pattern Matching case Expression.

In other words, if FatBar operator is applied to two

expressions, the result will be the first expression that is

not Fail. It is essential to say that if the first expression

fails to terminate, [] will also fail. Finally, the resultant
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case expression is attached to a lambda abstraction, as the

body of the same, and added to the extended prelude, after

being wrapped to another layer composed of the fixed-point

combinator, responsible for taking care of recursion.

In sum, after the process demonstrated in this sec-

tion, fromList may be called from another function in

the LinkedList module, or with input test cases from

HaskellFL, such as the illustrative example shown in Listing

9 and this way it is possible to obtain LinkedList code

coverage.

1 fromList ["UFMG", "UFV"]

2 fromList [False, True, True, True]

Listing 9. test-cases.txt

Concluding, HaskellFL is publicly available in GitHub8,

together with the test suite.

VI. RESULT DISCUSSION

This section studies two different buggy versions of mid

function displayed in Listing 10. Mid calculates the middle

element among three given elements. In the first faulty version,

mid has a bug in Line 2. The if block is if y < z - 1

instead of if y < z. The second buggy version presents a

bug in Line 6 where we have then y instead of then x.

1 module Main where

2 mid x y z = if y < z

3 then if x < y

4 then y

5 else if x < z

6 then x

7 else z

8 else if x > y

9 then y

10 else if x > z

11 then x

12 else z

Listing 10. Mid function in Haskell

Table II maps the code coverage for each function call for

a given input. For instance, a mid Version 1 call with inputs

3, 3 and 5 run lines 2, 3, 5 and 6. The P/F column

indicates if the output for the given input is the expected one

of a non-faulty version of the code, i.e., it is a passing test

case represented by P, or if it is an unexpected output for the

specified input, i.e., it is a failing test case, represented here

by F.

Finally, under its respective labels, there are the suspi-

ciousness scores for each statement for Tarantula and Ochiai

techniques according to the formulas presented in Table I.

Describing the calculus, there are in total one failing

and five passing test cases, thus totalfailed = 1 and

totalpassed = 5. For instance, for the fifth line from

second mid version, there are two passing test cases covering

it, as well as one failing test case, therefore, failed(5) =

1 and passed(5) = 2, with this, Tarantula score for Line

5 is:

Tarantula(5) =

failed(5)
totalfailed

failed(5)
totalfailed

+ passed(5)
totalpassed

=
1

1 + 2
5

=
5

7
≈ 0.71

8https://github.com/VanessaCristiny/HaskellFL

Test cases/Lines 1 2 3 4 5 6 7 8 9 10 11 12 P/F

V
er

si
o
n

1

3 3 5     P
1 2 3     F
3 2 1    P
5 5 5     P
5 3 4    F
2 1 3     P

Tarantula 0.0 0.50 0.0 0.0 0.0 0.0 0.0 0.67 0.67 0.67 0.0 0.67

Ochiai 0.0 0.58 0.0 0.0 0.0 0.0 0.0 0.71 0.50 0.50 0.0 0.50

V
er

si
o
n

2

3 3 5     P
1 2 3    P
3 2 1    P
5 5 5     P
5 3 4     P
2 1 3     F

Tarantula 0.0 0.50 0.63 0.0 0.71 0.83 0.0 0.0 0.0 0.0 0.0 0.0

Ochiai 0.0 0.41 0.5 0.0 0.58 0.71 0.0 0.0 0.0 0.0 0.0 0.0

TABLE II
CODE COVERAGE AND FAULT RANK FOR MID .

Similarly, the calculus for Ochiai suspiciousness score is:

Ochiai(5) =
failed(5)

√

totalfailed(failed(5) + passed(5))
=

1√
3
≈ 0.58

Furthermore, the scores highlighted in bold are the ones for

the statement containing the error. For Version 2, both methods

assign a higher score for Line 6, finding the correct error

localization. On the other hand, for Version 1, the methods

do not rank the line with the error first. Ochiai assigns the

highest score for Line 8, and Tarantula ranks Lines 8, 9, 10,

and 12 higher than the correct error localization, that is Line

2.

Despite scores for the buggy lines in both versions of mid

not being repeated in the results, several other statements

received matching suspiciousness scores. As explained in

Section II-D, one approach for this situation is to calculate

the best and worst-case scenarios.

In the first case, a programmer would guess right the line

containing the bug the first time while going through the list

of even scores, and in the latter, a programmer would verify

all the other lines with the same score before examining the

buggy line.

In the final analysis, the EXAM score was calculated. This

score indicates the percentage of the program that should be

checked until the error location is reached. The results for

mid function are displayed in Table III. For mid Version 1,

a programmer would have to analyze 42% of the program

if she follows Tarantula scores and 17% of it if she follows

Ochiai scores. For mid Version 2 the results are even better.

A programmer would have to analyze 8% of the program

for both methods. To put it another way, in the worst of the

studied scenarios, a Haskell developer would have to look for

the bug in less than half the original amount of code lines

before finding the bug.

A. Test Suite

The test suite is composed of 24 problems covering

Haskell’s chosen subset shown in Appendix A. These prob-

lems are submissions from students in the Functional Pro-

gramming class at UFMG, together with both versions of mid
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Tarantula Ochiai

Mid Version 1 42% 17%

Mid Version 2 8% 8%

TABLE III
EXAM SCORE FOR MID FUNCTION.

function presented in Section VI and code publicly available

on GitHub that were submissions for Exercism’s Haskell

exercises track9. The 24 problems’ source code is available

in GitHub together with the source code for HaskellFL.

Program #Lines #Tests
Ranking

Tarantula Ochiai

mid (Version 1) 12 6 5 2

mid (Version 2) 12 6 1 1

dropWhileClone 33 10 3 1

dropWhile 10 9 1 1

break (Version 1) 27 5 1 1

break (Version 2) 27 8 1 1

toTuples 28 10 1 1

remdupsReducer 27 7 1 1

joinr 16 12 1 1

separateTuplesByType 23 7 1 1

flip 20 5 1 1

unzip 13 3 1 1

maxSumLength 8 11 1 1

binary-search-tree 55 8 2 2

grade-school 67 7 1 1

luhn 45 6 2 2

raindrops 34 8 1 1

resistor-color-duo 44 7 1 1

robot-simulator 69 9 1 1

roman-numerals 23 8 1 1

simple-linked-list 40 6 1 1

space-age 28 7 1 1

sum-of-multiples 34 7 3 1

triangle 35 8 6 5

TABLE IV
TEST SUITE.

Once the examples used to run the tests were the students’

final submitted versions, they did not have errors that needed

to be fixed in their majority, so the bugs were introduced in

the code base, to be later detected by the fault localization

techniques. The introduced bugs were not repeated.

Table IV names all the programs on the suite. As ex-

plained before, mid calculates the middle element among

three elements. Regarding to the Functional Programming

class submissions, the names chosen by the students were kept

and their content is as follows:

(i) dropWhileClone/dropWhile. It drops ele-

ments while a condition is true and then stops

returning the remaining elements once the condition

is false.

(ii) break. It divides a list into a tuple of lists, breaking

it at the point where a given condition is true.

(iii) toTuples. It transforms two lists into a list of

tuples.

(iv) remdupsReducer. It removes the first element of

a list if it is equal to the second one.

9https://exercism.io/tracks/haskell/exercises

(v) joinr. It adds an element to the head of a list if it

is not equal to the list’s current head.

(vi) separateTuplesByType. It transforms a list of

tuples into a tuple of lists, one list with all the first

components and the other one with the second’s tuple

components.

(vii) unzip. Same as separateTuplesByType.

(viii) flip. It flips a function chain order.

(ix) maxSumLength. It calculates a tuple with three

elements. The first one being the maximum between

two elements, the second being their sum and the

third being a given length increased by one.

In addition, the description for the problems from Exercism

in their website is as follows:

(i) binary-search-tree. It inserts and searches

for numbers in a binary search tree.

(ii) grade-school. It creates a roster for the school

given students’ names and the grade they are in.

(iii) luhn. It determines whether or not a given number

is valid per the Luhn formula.

(iv) raindrops. It converts a number to a string de-

pending on the number’s factors.

(v) resistor-color-duo. It converts color codes,

as used on resistors, to a numeric value.

(vi) robot-simulator. It writes a robot simulator.

(vii) roman-numerals. It converts natural numbers to

Roman Numerals.

(viii) simple-linked-list. It implements a singly

linked list.

(ix) space-age. It calculates how old someone is in

terms of a given planet’s solar years.

(x) sum-of-multiples. It finds the sum of all the

multiples of a particular number up to, but not

including that number itself.

(xi) triangle. Given three sides lengths, it determines

if they can form an equilateral, isosceles or scalene

triangle, or if they can not be a triangle at all.

Moreover, Table IV displays the programs’ length in the

test suite. This information works alongside the EXAM score

results to offer a more precise dimension of the effort level

needed by a programmer while locating a bug using HaskellFL

tool. The test suite’s mean program length is 30.4 lines, and

the median program length is 27.5 lines.

The test cases were manually chosen and written and ranged

between 3 and 12 test cases per problem, as detailed in Table

IV. Even though time execution is not tracked, the test cases

were balanced between passing and failing. This is based in

the work of Rao et al. [40], which states that the expense

of fault localization for most formulas will increase with the

increase of class imbalance. In light of that, this is a factor to

be considered.

Furthermore, Table IV also presents the faulty line rank

for both Tarantula and Ochiai methods, considering the best

case scenario among drawing statements for every program

we tested.

1) Test Setup: To allow the tests to be interpreted by

HaskellFL, some small code pieces in the test suite were
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rewrote. Figure 11 shows in the SumOfMultiples module,

an example of a change made in an original test in the test

suite to allow its interpretation by HaskellFL. This example

was extracted from the problems in the Exercism’s Haskell

track. HaskellFL still does not interpret the operator $, which

is an operator indicating precedence among operations. Thus,

this operator can be safe replaced by parenthesis without any

loss in the program semantics, as shown in Figure 12. The

version using parenthesis is the one present in the test suite

after a bug insertion.

1 module SumOfMultiples (sumOfMultiples) where

2

3 import Data.List(nub)

4

5 sumOfMultiples :: [Integer] -> Integer ->

Integer

6 sumOfMultiples [] limit = 0

7 sumOfMultiples factors limit =

8 sum $ distinctFactors factors limit

9

10 distinctFactors :: (Integral a) => [a] -> a -> [

a]

11 distinctFactors [] limit = []

12 distinctFactors (x:xs) limit =

13 nub $

14 (distinctFactors xs limit) ++

15 (appendFactor x limit 1)

16

17 appendFactor :: (Integral a) => a -> a -> a -> [

a]

18 appendFactor factor limit index

19 | factor * index >= limit = []

20 | factor == 0 = []

21 | otherwise = (factor * index) :

22 appendFactor factor limit (index + 1)

Listing 11. SumOfMultiples module as available on GitHub.

1 module SumOfMultiples (sumOfMultiples) where

2

3 filter :: (a -> Bool) -> [a] -> [a]

4 filter _ [] = []

5 filter f (x:xs)

6 | f x = x : (filter f xs)

7 | otherwise = filter f xs

8

9 nub :: (Eq a) => [a] -> [a]

10 nub [] = []

11 nub (x:xs) = x : nub (filter (\y -> y /= x) xs)

12

13 sum :: [Int] -> Int

14 sum [] = 0

15 sum (x:xs) = x + sum xs

16

17 appendFactor :: (Integral a) => a -> a -> a -> [

a]

18 appendFactor factor limit index

19 | (factor * index) >= limit = []

20 | factor == 0 = []

21 | otherwise = (factor * index) :

22 appendFactor factor limit (index + 1)

23

24 distinctFactors :: (Integral a) => [a] -> a -> [

a]

25 distinctFactors [] limit = []

26 distinctFactors (x:xs) limit =

27 nub ((distinctFactors xs limit) ++ (

appendFactor x limit 1))

28

29 sumOfMultiples :: [Integer] -> Integer ->

Integer

30 sumOfMultiples [] limit = 0

31 sumOfMultiples factors limit = sum (

distinctFactors factors limit)

Listing 12. SumOfMultiples module equivalent to the module in Figure
11.

It is important to say that the Haskell Prelude module is

absent from HaskellFL. Prelude is a standard Haskell mod-

ule that is generally imported by default into all Haskell mod-

ules. It implements and exports several basic functions. This

absence leads to the need to create Prelude functions when

using HaskellFL, as may be seen in Figure 12, with the func-

tions filter and sum. They were imported from Haskell

Prelude in the first SumOfMultiples module in Figure

11. Similarly, nub function was imported from Data.List

module in the original version of SumOfMultiples and it

was implemented in the version used in HaskellFL. Several

Prelude functions can be implemented with the constructs

offered by HaskellFL, so this absence does not prevent the

tool from being used. Additionally, the creation of a similar

standard module for HaskellFL should not take much extra

effort.

Furthermore, the bugs inserted into the programs in the test

suite followed the techniques mentioned in Section II-B. For

instance, for the SumOfMultiples module shown in Figure

12, a bug was inserted into Line 19, in the appendFactor

function. The operator >= was replaced by the operator >.

Finally, the passing and failing test cases were wrote for

every problem present in the test suite. To illustrate the

process, the passing test cases for the sumOfMultiples

module may be seen in Figure 13 and the failing test cases

for the same module in Figure 14. As previously mentioned,

the tests were chosen trying to keep them balanced between

passing and failing test cases, to cover every branch in the

code.

1 sumOfMultiples [4,5] 6

2 sumOfMultiples [] 5

3 sumOfMultiples [2,5] 3

4 sumOfMultiples [0,2,5] 3

Listing 13. Passing sumOfMultiples test cases.

1 sumOfMultiples [2,5] 2

2 sumOfMultiples [0,2,4] 2

3 sumOfMultiples [2,4] 4

Listing 14. Failing sumOfMultiples test cases.

In conclusion, for sumOfMultiples function, the Ochiai

method ranked the buggy line first, tied with several other

lines, and the Tarantula method ranked it in the third position,

also in a tie with other lines.

B. Results

Table V shows the EXAM score distribution for the test

suite, considering best and worst-case scenarios, for Tarantula

and Ochiai methods. It shows which percentage of the suite’s

programs is inside a specific EXAM score segment. The table

is divided into segments of 5%. To demonstrate, considering

the Tarantula formula and the best-case scenario, 50% of the

programs secured an EXAM score between 0% and 4.9%. To

put it more simply, for 50% of the programs in the suite in

the best-case scenario, a student would have to examine less
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EXAM Score Tarantula Best Tarantula Worst Ochiai Best Ochiai Worst

(0-4.9)% 58.33% 33.33% 66.67% 33.33%

(5-9.9)% 25.00% 20.83% 16.67% 20.83%

(10-14.9)% 8.33% 12.50% 12.50% 16.67%

(15-19.9)% 4.17% 8.33% 4.17% 16.67%

(20-24.9)% 0.00% 8.33% 0.00% 4.17%

(25-29.9)% 0.00% 4.17% 0.00% 0.00%

(30-34.9)% 0.00% 0.00% 0.00% 0.00%

(35-39.9)% 0.00% 0.00% 0.00% 4.17%

(40-44.9)% 4.17% 8.33% 0.00% 0.00%

(45-49.9)% 0.00% 0.00% 0.00% 0.00%

(50-54.9)% 0.00% 0.00% 0.00% 4.17%

(55-59.9)% 0.00% 4.17% 0.00% 0.00%

TABLE V
EXAM SCORE FOR HASKELL TEST SUITE.

than 5% of his Haskell code to find the buggy line in his

assignment.

Figure 9 illustrates Tarantula and Ochiai methods’ effective-

ness for best and worst-case scenarios. The graph is built in a

way that for a given x value, its corresponding y value is the

cumulative percentage of the faulty versions whose EXAM

score is less than or equal to x, similarly to what Wong et al.

[47] did. Table V displays the scores used to build the graph.

To better exemplify, in the Ochai method in the best-

case scenario, HaskellFL was able to find all the incorrect

statements in the test suite examining less than 20% of the

source code for each problem.

Fig. 9. Comparison between Ochiai and Tarantula methods for the test suite.

Furthermore, Table VI presents the mean, median, and

standard deviation of the calculated EXAM scores for the test

suite. The highest median value is 8.7% of the source code for

the Tarantula method in the worst-case scenario. The smaller

median value appeared for the Ochiai method in the best-

case scenario with 3.7% of the source code, and its standard

deviation is equal to 4.0%, which indicates that the results are

close to the median value.

VII. THREATS TO VALIDITY

This section discusses the main threats to the validity of this

work and the strategies to mitigate them.

Mean Median Standard Deviation
Tarantula Best 7.2% 4.0% 8.1%

Tarantula Worst 14.4% 8.7% 14.0%

Ochiai Best 5.5% 3.7% 4.0%

Ochiai Worst 12.0% 7.7% 11.7%

TABLE VI
MEAN, MEDIAN AND STANDARD DEVIATION OF THE TEST SUITE.

As previously mentioned, the test suite programs did not

have bugs that need to be found, so the bugs were introduced

into the code. To mitigate this threat, the mutants’ guidelines

shown in Section II-B were followed. The guidelines assume

that most mutants form realistic faults, even if they are artifi-

cially seeded. Therefore, the inserted bugs represent mistakes

that real students make.

Another threat is related to the passing and failing test cases

used as input for the studied fault localization techniques; they

were wrote by the researches conducting this work. To mitigate

this threat, the number of tests between passing and failing

test cases were balanced. Also, the researchers carefully and

manually worked on finding test cases to cover every branch

in the code, whenever this was possible, keeping the odds as

fair and unbiased as possible.

Additionally, one of this work goals is to aid beginning

students with the functional paradigm, so HaskellFL was tested

with smaller and simpler Haskell code. With that said, there

are no guarantees that the results found in this work will be

applicable for larger and more complex programs.

Finally, this project used Tarantula and Ochiai fault local-

ization techniques. There are several different techniques in

the literature, for instance, Barinel [2], Op2 [32] and DStar

[48]. Nevertheless, Jones and Harrold [21] conducted a study

on the Siemens suite which showed that Tarantula is a more

effective fault localization technique when compared to others

such as set union, set intersection, nearest neighbor, and cause

transition. Hence, it is a great and recognized baseline for

testing. Furthermore, the Ochiai similarity coefficient-based

technique is generally considered more effective than Taran-

tula; hence it is a great choice to measure the effectiveness of

fault localization techniques in the Haskell context.

VIII. CONCLUSION

This paper presented HaskellFL, a command-line tool to

locate logical errors in Haskell using spectrum-based fault

localization techniques.

The results, described in Section VI, showed that HaskellFL

located the errors for both studied methods, having to examine

very few lines for the majority of the test suite. Also, Ochiai

presented better results than Tarantula in terms of the EXAM

Score.

A test suite suitable to the Haskell subset used in this

project was also compiled. This Haskell subset is diverse and

contains abstract data types that were not supported on Singer

and Archibald [42]. The test suite is available together with

HaskellFL as an open-source project.

An interpreter that supports the grammar displayed in

Appendix A and Haskell’s layout rules was built. Haskell’s
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layout rules were also mentioned as a point of confusion for

students in Singer and Archibald [42].

Finally, HaskellFL was carefully designed to allow its future

extension. Potential areas for future work are:

(i) Extend the grammar to include do notation and

list comprehensions. Two constructs that novices to

Haskell may find confusing.

(ii) Implement additional spectrum-based fault localiza-

tion techniques.

(iii) Implement missing code-oriented fault localization

techniques.

(iv) Share HaskellFL with Haskell beginners and measure

how much the tool is able to aid in real time.

(v) Implement techniques to repair the code.

APPENDIX A

HASKELL’S GRAMMAR SUBSET

〈program〉 ::= ‘module’ X ‘where’ ‘{’ decls ‘}’

| decls

〈decls〉 ::= decl decls | d decls | decl | d

〈decl〉 ::= var ‘=’ e ‘where’ ‘{’ p1 ‘=’ e1 ... pk ‘=’ ek ‘}’

| var ‘=’ e

| var ‘=’ p ‘where’ ‘{’ p1 ‘=’ e1 ... pk ‘=’ ek ‘}’

| var ‘=’ p

| var ‘|’ ei ‘=’ ej ... ‘|’ e(i + k) ‘=’ e(j + k)
‘where’ ‘{’ p1 ‘=’ e1 ... pk ‘=’ ek ‘}’

| var ‘|’ ei ‘=’ ej ... ‘|’ e(i+ k) ‘=’ e(j + k)

〈d〉 ::= ‘data’ X ‘=’ C1 τ1 ... τk | ... | Cn τ1 ... τk
| ‘newtype’ X ‘=’ C τ

〈e〉 ::= τ | λ p ‘->’ e | e1 ‘+’ e2 | e1 ‘-’ e2 | e1 ‘*’ e2
| e1 ‘\’ e2 | e1 ‘ˆ’ e2

| ‘[’e1‘]’ ‘++’ ‘[’e2‘]’ | e1 ‘:’ ‘[’e1‘]’ | e1 ‘||’

e2 | e1 ‘&&’ e2 | e1 ‘>’ e2
| e1 ‘<’ e2 | e1 ‘<=’ e2 | e1 ‘>=’ e2 | e1 ‘==’ e2

| e1 ‘\=’ e2 | e1 e2
| ‘(’e1‘,’ ... ‘,’ ek‘)’ | ‘[’e1‘,’ ... ‘,’ ek‘]’ |

‘if’ e1 ‘then’ e2 ‘else’ e3
| ‘case’ e ‘of’ ‘{’ p1 ‘->’ e1 ... pk ‘->’ ek ‘}’

| ‘let’ ‘{’ p1 ‘=’ e1 ... pk ‘=’ ek ‘}’ ‘in’ e

〈p〉 ::= const | var | C p1 ... pk |

〈τ〉 ::= Integer | Boolean | String | Char | Float | [τ] |
(τ1, ..., τk)

| C τ1 ... τk
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