
Asynchronous Remote Method Invocation in Java

Wendell Figueiredo Taveira
(Computer Science Department, Federal University of Minas Gerais, Brazil

taveira@dcc.ufmg.br)

Marco Tulio de Oliveira Valente
(Computer Science Department, Catholic University of Minas Gerais, Brazil

mtov@pucminas.br)

Mariza Andrade da Silva Bigonha
(Computer Science Department, Federal University of Minas Gerais, Brazil

mariza@dcc.ufmg.br)

Roberto da Silva Bigonha
(Computer Science Department, Federal University of Minas Gerais, Brazil

bigonha@dcc.ufmg.br)

Abstract: Java RMI is the computational model used to develop distributed systems
in the Java language. Although widely used in the construction of distributed systems,
the use of Java RMI is limited because this middleware does not allow asynchronous
method invocations. This paper presents FlexRMI, a Java based system that supports
asynchronous invocations of remote methods. FlexRMI is completely implemented in
Java, making use of the reflection and dynamic proxy facilities of this language. The
implementation is also compatible with standard Java RMI distributed systems.

Key Words: Distributed programming, asynchronous remote method invocation.

Category: D.1.5, D.1.3, D.3.3

1 Introduction

Distributed system notion has progressively been established as the standard
platform for software development. Differently from centralized systems, dis-
tributed systems are designed as a set of autonomous processes interconnected
in a network. Each process is called node. This kind of environment is well char-
acterized in the Internet, where heterogeneous processors, probably located in
different places, comprises a huge computer network [5].

Distributed object systems, such as CORBA [9] and Java RMI (Remote
Method Invocation) [1, 12], traditionally offer only a single communication mech-
anism between nodes, the synchronous communications. Synchronous invoca-
tions are indeed quite adequate to local network environments, where some of
its characteristics are:

– previsibility;

Journal of Universal Computer Science, vol. 9, no. 8 (2003), 761-775
submitted: 24/2/03, accepted: 30/5/03, appeared: 28/8/03 © J.UCS



– latency with upper bound defined;

– reliable and steady bandwidth.

However, framework based on exclusively synchronous communication is not
adequate to the modern network environments, such as Internet, mobile com-
putation, and wireless network. These new networks are characterized by non
steady bandwidth and by high latency. Consequently, it is hard to set an upper
bound on the delay needed to send and receive messages, which could be used
to recognize communication failures. Note that, in local network, the usual de-
lay upper bound in the order of milliseconds may give rise to systems with low
degree of fault tolerance.On the other hand, an upper bound limit in the order
of seconds may cause an intolerable degradation on the applications turnaround
time. In this case, overlapped computation and asynchronous execution of ser-
vices might be in order [14].

Nowadays it is common practice to incorporate asynchronous communication
mechanism to distributed systems. The latest version of Corba, in recognition of
these problems, embodies synchronous methods invocations. Java RMI, however,
still does not has this functionality. The computational model of Java RMI allows
the invocation of methods on specified remote objects. The syntax of such a
remote invocation is similar to a local invocation, what makes it easy to use.
Java RMI may be used in the development of pure Java system. Besides that,
Java RMI forms the basis of new technology such as Jini [15], a middleware
adequate to reconfigurable networks.

The goal of this work is to investigate the development of a distributed object
system that allows synchronous and asynchronous remote invocation of meth-
ods. We propose a compatible extension of Java RMI to support asynchronous
invocation, called FlexRMI. Our system was designed and implemented taking
Java RMI as its starting point.

FlexRMI is then a hybrid model allowing both asynchronous or synchronous
remote methods invocations. There is no restrictions in the ways a method is
invocated in a program. The same method can be called asynchronously at one
point and synchronously at another point in the same application. It is the
programmers responsability the decision on how the call is to be made.

The remain sections of the paper is organized as follows: Section 2 briefly
presents an overview of the state of art considering the available environments
which support asynchronous calls of remote methods. Section 3 describes the
RMI model of Java. Section 4 provides a few guidelines to implement programs
using the FlexRMI. Section 5 presents important details necessary to understand
the implementation of FlexRMI. Section 6 deals with FlexRMI drawbacks and
advantages. Finally, Section 7 draws conclusions and directions for further works
on this subject.

762 Taveira W.F., de Oliveira Valente M.T., da Silva Bigonha M.A., da Silva Bigonha R. ...



2 State of the Art

The construction of environment for asynchronous invocation of remote methods
has been explored in several work found in the literature.

In Multilisp [4], it is showed how to incorporate parallelism into programs,
by means of the future mechanism, which gives the idea of future contract.

[8] describes the design of a new data type called promises that was influ-
enced by the future mechanism of MultiLisp. Like futures, promises allow
the result of a call to be picked up later in the program. Promises are strongly
typed and thus avoid the need for runtime checking They also allow exceptions
to be propagated in a convenient manner.

[10] presents a system built on top of RMI that allows concurrent execution
of local and remote computations. The system uses the concept of a future,
which means, when the client calls an asynchronous remote method, that the
method returns an instance of the class Future, created by a special stub object.
Besides other functions, the future is used by the server to send exceptions to
the clients.

In [7], an A-RMI (Active Remote Method Invocation) can reference and syn-
chronously or asynchronously remote invoke its public methods using the same
syntax as if it were a local object. Three key abstractions provided by the model
are: i) the active remote objects with user level scheduling; ii) asynchronous
method invocation with data-driven, non-blocking synchronization using call-
handlers; and, iii) transparent remote object creation.

[3] presents an extension of standard Java RMI implementation by specializ-
ing the stub generation process to include additional communications protocols.
To indicate which methods may use asynchronous communication and future
objects they have defined a pseudo Java interface with the keywords asynch and
future. The proposed extended stub mechanism causes a clear performance
increase by removing unnecessary delays caused by the blocking mechanism of
synchronous RMI invocations.

Every work mentioned above proposes an asynchronous remote method in-
vocation mechanism and present solutions to improve performance, mostly in
synchronization situations.

Besides Java RMI, other works propose solutions to the problem of asyn-
chronous communication in different technologies.In [11], it is presented a frame-
work whose model is used in CORBA. The approach shows how to implement
C++ programs using the models of polling and callback to asynchronously invoke
remote methods.

All the works presented in this section requires some alterations into Java
language or on its compiler which computes the stubs and skeletons. Our ap-
proach, whose results are presented in Sections 4, 5 and 6, provides a solution

763Taveira W.F., de Oliveira Valente M.T., da Silva Bigonha M.A., da Silva Bigonha R. ...



to overcome these problems.

3 Java RMI

Java RMI [12, 16, 2, 13] is a model of distributed object system for Java en-
vironment. Specifically, Java RMI allows developers to treat remote objects in
the same way local objects are addressed, encapsulating all their implementa-
tion details. Generally, to work with Java RMI, all needed is to import one
package, look up the remote object in the registry file and to assure that the
RemoteExceptions are caught when the method is invoked on the remote objet.

In the environment of Java distributed object model, a remote object is the
one whose methods can be invoked from another Java Virtual Machine (JVM),
and, even, from different host. Remote objects are defined through one or more
remote interfaces. The interfaces are responsible to assure type consistency be-
tween the client and the server models.

The interfaces and classes responsible for specifying the remote behavior
of the RMI system are defined in java.rmi and java.rmi.server packages.
Figure 1 shows the relationship between these interfaces and classes.

The Java RMI introduces a new object model that extends the object model
used up to JDK 1.1, the Distributed Object Model of Java. What follows is a brief
comparison of the distributed object model and the Java object model [13, 16].
The similarities between these models are:

– a reference to a remote object can be passed as an argument to method or
returned as a result of the method invocation, regardless of whether it is
local or remote;

– a remote object can be cast to any set of remote interfaces supported by the
implementation using the built-in Java syntax for casting;

– the built-in Java instanceof operator can be used to test the remote inter-
faces supported by a remote object.

The basic differences between the two models are:

– clients of remote objects interact with remote interfaces, never with the
implementation classes of those interfaces;

– clients must handle an additional exception for each remote method invoca-
tion. This is important because the failure modes of invoking remote objects
are more complicated than the modes of invoking local objects;

764 Taveira W.F., de Oliveira Valente M.T., da Silva Bigonha M.A., da Silva Bigonha R. ...



Figure 1: Relationship between Java RMI Interfaces and Classes

– semantics of parameter passing are slightly different in calls to remote ob-
jects. Particularly, Java RMI uses the object serialization service, which con-
verts Java objects into a serial stream so that the object state is preserved
and can be recovered after been transmitted in the network;

– semantics of Object methods are defined according to remote object models;

– extra security mechanisms are introduced to control the activities that a
remote object can perform on a system. A Security Manager object needs
to be installed to check all operations of the remote object on the server.

3.1 Architecture of Java RMI System

In the model of distributed objects of Java [16, 6], a client object never refer-
ences directly a remote object. It must reference a remote interface which is
implemented by the remote object. The use of remote interface allows server
objects to differentiate between their local and remote interfaces. For instance,

765Taveira W.F., de Oliveira Valente M.T., da Silva Bigonha M.A., da Silva Bigonha R. ...



an object could provide methods to objects that run in the same JVM, in addi-
tion to methods that would be provided by remote interface. The use of remote
interfaces also allows server objects to present different modes of remote access.
For example, a server object may provide different interfaces to different group
of users. Lastly, the use of remote interfaces allows that the position of the server
objects into their class hierarchy be abstracted, such that, client objects may be
compiled using only the remote interface, independently of the server classes.

4 FlexRMI Description

This section presents a small user guide for the FlexRMI system, which is a
mechanism to invoke methods of objects that are in another address space,
potentially on a different machine. The most important advantage of FlexRMI
over Java RMI is the possibility to invoke methods that will run asynchronously.

4.1 FlexRMI Use

Basically there are three elements that must be considered to carry out a remote
method invocation:

1. The client which is the process that invokes a method of a remote object.

2. The server which is the process that owns the remote object. Remote object
is a object whose class extends the class UnicastRemoteObject and executes
in the address space of the server process.

3. The Object Register which is a process that relates objects with names.
Objects are registered within the Object Register. Once objects are regis-
tered, one can obtain access to remote objects using the name of the objects.

There are two kinds of classes that can be used in FlexRMI:

1. A remote class which is one whose methods can be used remotely. A remote
class extends the class UnicastRemoteObject and implements an interface
that extends the Remote interface. An object instance of such a class can be
referenced in two different ways:

1.1. In the address space where the object was constructed, and in which it
can be used like any other object.

1.2. In other address spaces in which the object can be referenced using
the object handler. Asynchronous calls always return an object handler,
which is a value of type Promises, which permits the invocation state
inspection. Details of class Promises will be presented in Section 4.1.1.

766 Taveira W.F., de Oliveira Valente M.T., da Silva Bigonha M.A., da Silva Bigonha R. ...



Although there are limitations on how one can use an object handler
compared to an object, for the most part one can use object handlers
in the same way as an ordinary object. If a remote object is passed as a
parameter to a method or returned as its value, then the object handler
is copied from a space address to another one.

2. A serializable class is one whose instances can be copied from one address
space to another. An instance of a serializable class will be called a serializ-
able object. If a serializable object is passed as a parameter or returned as a
value of a remote method invocation, then the serialized value of the object
will be copied from one address space to the other.

4.1.1 The FlexRMI Package

This section presents the description of the classes Promises and FlexRMI that
compose the FlexRMI package. The Promises class allows users to access the ob-
ject handler used in asynchronous invocation and the FlexRMI class controls the
initialization process necessary to make FlexRMI work. The remaining classes of
the package are not directly used by the users in the development of applications
that uses FlexRMI.

The class FlexRMI has the following method:

– public static Object lookup (String name): this method is used by
the application clients to find the remote object name. It corresponds to
method Naming.lookup(String name) of Java RMI.

The methods of the class Promises are:

– public boolean isAvailable(): returns true if the value of the object
handler is available. Otherwise, returns false.

– public Object getResult(): returns the value of the handler object. If
the value is not available, the execution is blocked until the value becomes
available.

– public void setResult (Object result): assigns the parameter value to
the object handler.

4.2 Remote Classes and Interfaces

This section shows how to define a remote class. A remote class has two parts:
the interface and the class itself. The remote interface must have the following
properties:

767Taveira W.F., de Oliveira Valente M.T., da Silva Bigonha M.A., da Silva Bigonha R. ...



1. The interface must be public.

2. The interface must extend the java.rmi.Remote.

3. Every method in the interface must declare that it may throws java.rmi.Re-
moteException. This exception is thrown in case some communication fault
happens with the server while processing a call. Other exceptions may also
be thrown.

The remote class must have the following properties:

1. It must implement a remote interface.

2. It must extend the java.rmi.server.UnicastRemoteObject. Objects of
such a class are in the address space of the server and its methods can be
invoked remotely.

3. It may have methods that are not in its remote interface. In this case, these
methods can only be invoked locally.

Unlike the case of serializable class discussed in Section 4.2.1, it is not neces-
sary that the client and server have access to the definition of the remote class.
The server requires the definition of both the remote class and the remote in-
terface, but the client only uses the remote interface. In other words, remote
interface represents the type of an object handler, while the remote class repre-
sents the type of an object. If a remote object is being used remotely, its type
must be declared to be the type of the remote interface, not the type of remote
class.

4.2.1 Serializable Classes

A class is serializable if it implements the interface java.io.Serializable.
Subclasses of a serializable class is also called serializable. Details of these kind
of classes can be found in [1].

To use a serializable object in a remote method invocation is simple. One
simply passes the object as a method parameter or receives it as the method
return value. The client and server programs must have access to the definition
of the serializable classes that have been used. If the client and server programs
are on different machines, then the definition of serializable classes have to be
download from one machine into the other.

4.2.2 Programming the Server

In the program showed below, there are a remote class and its corresponding
remote interface, that are called, respectively, Alo and AloInterface. The file
AloInterface.java contains:

768 Taveira W.F., de Oliveira Valente M.T., da Silva Bigonha M.A., da Silva Bigonha R. ...



01 import java.rmi.*;
02 public interface AloInterface extends Remote {
03 public Promises say() throws RemoteException;
04 }

The file Alo.java contains:

01 import java.rmi.*;
02 import java.rmi.server.*;
03 public class Alo extends UnicastRemoteObject

implements AloInterface {
04 private String mensagem;
05 public Alo (String msg) throws RemoteException {
06 mensagem = msg;
07 }
08 public Promises say() throws RemoteException {
09 Promises h = new Promises();
10 h.setResult(message);
11 return h;
12 }
13 }

It is important to observe that the method say()will be called asynchronous-
ly, because its return value was declared as type Promises. This is showed in
line 08 of code class Alo.

At this point, the compiler flexrmic plays a very important rôle. Suppose
that in the server there exist methods whose types of return values are distinct
from Promises. Up to now, it were not possible to invoke these methods asyn-
chronous. Nevertheless, it is through the flexrmic compiler that this limitation
is taken care of, making that the choice between a synchronous or asynchronous
invocation become a client decision, i.e., who demands the service, and not from
the one that provides it. To accomplish this, the compiler flexrmic prefixes the
method name that will be invoked asynchronous with the keyword async .

On the server side, there must be a class to instantiate the remote objects.
This class does not need to be remote or serializable, although the server uses
these class. At least one remote object must be registered in the Object Register.
The way to do it is: Naming.rebind (objectName, object), where object is
the remote object to be registered and objectName is a string that names the
remote object. An example of this class is:

01 import java.rmi.*;
02 import java.rmi.server.*;
03 public class AloServidor {
04 public static void main (String[] argv) {
05 try {
06 Naming.rebind ("Alo", new Alo ("Hello, world"));
07 System.out.println ("Server Alo ready!");
08 }
09 catch (Exception e) {

769Taveira W.F., de Oliveira Valente M.T., da Silva Bigonha M.A., da Silva Bigonha R. ...



10 System.out.println ("Failure on Server Alo: " + e);
11 }
12 }
13 }

The Object Register, called rmiregistry, only accepts requests to bind and
unbind objects running on the same machine, so it is never necessary to specify
the name of the machine when one is registering an object.

The code for the server process can be placed in any convenient class. In the
example of Server, it was placed into the class AloServidor that contains only
the program above.

All the classes and the interfaces must be compiled using the javac. The
file with the remote interface should be compiled with the flexrmic compiler,
available in the FlexRMI package. Once compiled, the files stubs and skeletons
must be generated using the stub compiler called rmic. The stub and the skeleton
of the remote interface from the example are compiled by means of the statement:
rmic Alo.

4.2.3 Programming the Client

The client itself is also a Java program. The invocation of a remote method can
return a remote object as its return value. The name of a remote object includes
the following informations:

1. The name or address of the machine which runs the Object Register with
which the remote object is being registered. If the Object Register is running
on the same machine as the one that is making the request, then the name
of the machine may be omitted.

2. The communication port to which the Object Register is waiting for requests.
The standard port is 1099. In case the standard port is in use, then this does
not have to be included in the name.

3. The local name of the remote object within the Object Register.

The client program is:

01 public class AloCliente {
02 public static void main (String[] argv) {
03 try {
04 AloInterface alo = (AloInterface) FlexRMI.lookup ("Alo");
05 Promises h = alo.say();
06 /*
07 Execute other tasks. The status of the object Promisses
08 may be inspect at any time via operator isAvailable().
09 */
10

770 Taveira W.F., de Oliveira Valente M.T., da Silva Bigonha M.A., da Silva Bigonha R. ...



11 h.getResult();
12 }
13 catch (Exception e) {
14 System.out.println ("Exception raised in AloCliente: " + e);
15 }
16 }
17 }

The FlexRMI.lookup method obtains an object handler from the Object
Register running on its own machine, since no information about the machine
address has been given. It uses the default communication port. The result
FlexRMI.lookup must be cast to the type of the remote interface.

The remote method invocation in the example client occurs with alo.say(),
and it immediately returns an object of type Promises, which is serializable
and the execution of the client continues as usual. When the execution of the
called method is finished, its result is deposited in the Promises object. So, it is
necessary that the client test, via method isAvailable, if the value is already
available in the Promises variable before try to access it. This is made by the
getResult() method and this point of program works as a synchronization
point.

The client code can be in any class. In this example, it is in the AloCliente

class, which contains only the program above.

4.2.4 Starting the Server

Before starting the server, it is necessary to start the Object Register and leave
it running in the background. This is made by using the command:
rmiregistry &.

The server should then be started using the command: java AloServidor.

4.2.5 Running a Client

The client runs like any other Java program, java AloCliente, but it de-
mands that the classes AloCliente, AloInterface, AloInterface FlexRMI (gen-
erated by the flexrmic compiler), and Alo Stub (generated by the rmic com-
piler) be available in the client machine. In particular the AloCliente.class,
AloInterface.class, AloInterface FLexRMI.class and Alo Stub.class files
must be in one of the directories specified in the environment variable CLASS-
PATH.

5 Implementation of FlexRMI

The implementation of FlexRMI is built on the available structure of the stan-
dard Java RMI. The communication protocols used by the stubs and skeletons

771Taveira W.F., de Oliveira Valente M.T., da Silva Bigonha M.A., da Silva Bigonha R. ...



remain unchangeable. Tasks like maintaining a socket connection with the re-
mote server, marshaling or serializing parameters for the invoked method, and
performing and blocking the remote invocation are carried out in the same way
as in a standard Java RMI [3].

The core concepts in the implementation of FlexRMI are computational re-
flection on threads. An asynchronous remote method invocation is done dis-
patching, in a thread that executes in parallel with the principal thread, the
computation that should be done. Identifying if the communication must be
synchronous or asynchronous it just a question to distinguish the return type
of the invocation made. In FlexRMI, asynchronous calls are identified by its re-
turn type, known as Promises1. So, when a call to a method is performed, it is
possible to identify the type of its returned value by means of reflection of Java.
Following will be discussed some FlexRMI implementation details.

5.1 The Promises Class

The class Promises represents a data type used as a place holder for a re-
turn value of remote asynchronous invocations. To do that, an object of type
Promises is passed as parameter during the thread creation, which will run in
parallel with the program that performed remote method invocation.

An object of the class Promises will hold the possible results of the call.
This object may be inspected at any time, after the invocation is done, to see
whether the return value is available or not. Promises objects may also store
the names and types of the possible exceptions raised during execution of the
remote method. In Promises, there is a flag to indicate the presence or absence
of exceptions. If an exception was raised during the remote method execution,
the Promises object will store the exception information instead of the return
value of the call.

5.2 The Mediator Class

The Mediator class is responsible for the implementation of an object of a dy-
namic proxy class which is used to intercept calls and to distinguish them as
synchronous or asynchronous. A dynamic proxy class is a class that implements
a list of interfaces specified at execution time, such that the method invocation in
an object can be captured and dispatched to another object through a standard
interface.

As stated before, the calls are distinguished by the return type. When a
return type Promises is identified, the mediator should construct a new thread
and dispatch it to execution.
1 Here are included the original methods defined to return Promises and the interfaces

dynamically generated by flexrmic, i.e., with the methods prefixed by async .

772 Taveira W.F., de Oliveira Valente M.T., da Silva Bigonha M.A., da Silva Bigonha R. ...



It is important to assure the creation of the mediator object in order to
capture the processed calls. In our implementation, when a client asks for the
remote object reference, automatically is created a mediator associated to that
remote objet. To accomplish that, the lookup method of the Naming class is
encapsulated in a new lookup method defined in the FlexRMI class.

5.3 Execution Scheduler

The creation of threads in an uncontrollable way could be critical in our system,
affecting significantly the performance of FlexRMI. In order to avoid that, it was
implemented a multi-threaded scheduler responsible to manage the process of
creation, management and destruction of threads.

The scheduler executes using a list of threads. Each client has a list contain-
ing all enqueued calls. Such lists have the necessary information to execute the
threads and they are periodically checked in order to guarantee the maximum
number of simultaneous threads execution 2.

5.4 The flexrmic Compiler

The flexrmic compiler allows the client to invoke asynchronously remote meth-
ods that was designed to run synchronously, i.e., methods that do not return
value of the type Promises.

In order to provide this facilities the compiler accesses the compiled code
of remote objects and from informations thus gathered creates a new interface
containing the asynchronous version of all existing methods.

To implement the flexrmic compiler, we use the reflection mechanism of
Java. Reflection allows a Java program to be internally inspected and manipu-
lated by itself or by another program. In this way, it was possible to find out
the return type of methods, and also to exam their names and to identify those
with the prefix async .

The mediator function is to identify the invocation of methods present in the
newly created interface. Since there is no implementation of such methods, it is
necessary to dispatch their synchronous versions in others threads, simulating in
this way the asynchronous communication.

6 Evaluation

FlexRMI allows asynchronous communication in Java without any modifications
to the language or any its tools. FlexRMI is compatible with earlier Java version,
allowing, inclusively, asynchronous invocations to object methods designed to be
running synchronous. Additionally, our proposed interface is quite simple.
2 This value is a system parameter. In this implementation, the standard value is 8.

773Taveira W.F., de Oliveira Valente M.T., da Silva Bigonha M.A., da Silva Bigonha R. ...



On the other hand, the use of proxy implies an indirection levels in object
references, which can cause degradation in the system performance. Nevertheless,
this cost is compensated by the conformance of FlexRMI to the Java language
and its development environment.

Since FlexRMI is dependent on Java computational reflection resources, it
can not be used in environments without this property. So, its use is restricted
to J2SE and J2EE version. Particularly, it can not be used by J2ME.

7 Conclusion and Further Work

Java RMI is a model of distributed computation that can be used by applications
fully developed in Java. Despite it be a consolidated model, it is not adequate in
many applications due to the fact that it does not allow asynchronous invocation
of methods. We propose an extension mechanism, the FlexRMI, to overcome the
Java RMI shortcomings.

Our implementation is fully compatible with Java RMI. Beside that, we pro-
vide conditions to allow existing synchronous services to be used in asynchronous
way.

The FlexRMI package is totally operational, although some extensions should
yet be implemented, to make it more efficient and functional. The two most im-
portant extensions are: the callback mechanism and an specific exception handler
device.

Acknowledgements

This paper was developed as part of a research project sponsored by FAPEMIG

(process CEX 488/2002).

References

1. K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley,
2nd edition, 1997.

2. K. Baclawski. Java RMI Tutorial. http://www.ccs.neu.edu, 1998.
3. K. E. K. Falkner, P. D. Coddington, and M. J. Oudshoorn. Implementing Asyn-

chronous Remote Method Invocation in Java. In In Proceedings of Parallel and
Real Time Systems (PART’99), Melbourne, AUS, July 1999.

4. R. Halstead. Multilisp: A language for concurrent symbolic computation. ACM
Transaction on Programming Languages and Systems, 4(7):1–1, October 1985.

5. S. Haridi, P. V. Roy, P. Brand, and C. Schulte. Programming Languages for Dis-
tributed Applications. New Generation Computing, 16(3):223–261, 1998.

6. J. Jaworski. Java 2 Plataform - Unleashed. Sams, 1st edition, 1999.
7. M. Karaorman and J. Bruno. A-RMI: Active Remote Method Invocation System

for Distributed Computing Using Active Java Objects. In In Proceedings for the
Technology of Object Oriented Languages and Systems (TOOLS-26), Santa Bar-
bara, California, Nevada USA, August 1998.

774 Taveira W.F., de Oliveira Valente M.T., da Silva Bigonha M.A., da Silva Bigonha R. ...



8. B. Liskov. Promises: Linguistic Support for Efficient Asynchronous Procedure
Calls in Distributed Systems. In Proceedings of the SIGPLAN ’88, Atlanta, Geor-
gia USA, June 1988.

9. OMG. The Common Object Request Broker: Architecture and Specification. Ob-
ject Management Group, December 2001.

10. R. R. Raje, J. I. William, and M. Boyles. An Asynchronous Remote Method In-
vocation (ARMI) Mechanism for Java. In On-line Proceedings of the ACM 1997
Workshop on Java for Science and Engineering Computation, Las Vegas, Nevada
USA, 1997.

11. D. C. Schmidt and S. Vinoski. Programming Asynchronous Method Invocations
with CORBA Messaging. SIGS C++ Report Magazine, February 1999.

12. Sun Microsystems. Sun Microsystems Java Remote Method Invocation Specifica-
tion, December 2001.

13. M. Thuan-Duc. Test Bed for Distributed Object Technologies using Java 490.45DT
Project Report. citeseer.nj.ncc.com/511765.html, November 1998.

14. S. Vinoski. CORBA: Integrating Diverse Applications within Distributed Hetero-
geneous Environments. IEEE Communications Magazine, 14(2), 1997.

15. J. Waldo. The Jini Specifications. Addison-Wesley, 2nd edition, 2001.
16. A. Wollrath, R. Riggs, and J. Waldo. A Distributed Object Model for the Java

System. Computing Systems, 9(4):265–290, 1996.

775Taveira W.F., de Oliveira Valente M.T., da Silva Bigonha M.A., da Silva Bigonha R. ...


