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1. Introduction

In general, polymorphic recursion occurs in functions defined oested(also called
non-uniformor non-regula) data types, i.e. data types whose definitions include a re-
cursive component that is not identical to the type being defined. Several examples
of such data types and interesting functions that operate on them have been presented
[Connelly and Morris, 1995, Okasaki, 1997, Okasaki, 1998, Bird and Meertens, 1998].

Languages with support for parametric polymorphism [Milner, 1978,
Damas and Milner, 1982], such as Haskell [Jonesetal., 1998, Thompson, 1999]
and SML [Milner et al., 1989], use one of the following two approaches for the treatment
of recursive definitions.

The first approach imposes a restriction on recursive definitions, either consider-
ing recursive definitions to be monomorphic (as in e.g. SML), or allowing polymorphic
recursion only when the programmer explicitly annotates the polymorphic types (as in
e.g. Haskell). In this approach, the language processor front-end separates the definitions
occurring in a program into non-mutually recursive binding groups, by examining the pro-
gram’s call graph, and performs a topological sort of these binding groups for determining
an order in which to type the definitions.

The second approach allows polymorphic recursive definitions without a priori im-
posing restrictions, but the type inference algorithm uses in this case a user-configurable



iteration limit for stopping the type inference process and rejecting input programs when
this limit is exceeded (as in e.g. Mercury [Henderson et al., 2003]).

The obligation on programmers to annotate types of polymorphic recursive defini-
tions goes against the intent of type inference, which is to give programmers the freedom
to choose to make or not type annotations, depending on whether they think it is appropri-
ate or not. Furthermore, it has the opposite effect of usual type annotations (in languages
with support for type inference and parametric polymorphism), which is to specify a type
that is an instance of the inferred most general type.

In [Henglein, 1993, Kfoury et al., 1993] the equivalence of typability in the
Milner-Mycroft calculus — that extends the Damas-Milner calculus with polymorphic
recursion — with semi-unifiability was proved. In this paper we do not intend to discuss
the question of decidability of the semi-unification problem, which is now being ques-
tioned in another paper [Figueiredo and Caama2002]. Our aim here is to present a
type inference algorithm — calledMo— that has been used with success by us and is
expected to behave quite well and be useful in practice. In all examples we have seen
in the literature (including all examples given in this paper), one iteration (unification)
has been enough to infer the types of expressions involving polymorphic recursion (with
the exception of contrived examples presented in this paper specifically provided as worst
case examples of time complexity for the type inference algorithm). As occurs in the case
of type inference for core ML (see e.g. [Kanellakis and Mitchell, 1989, Mairson, 1990,
Kanellakis, Mairson and Mitchell, 1991, Mitchell, 1996]), there exist cases where the
time complexity ofMMois exponential on the size of the input program, but these ex-
amples do not occur in practice. Both in the case of core ML and in the case of polymor-
phic recursion, exponentiality requires the existence of so-chltgtypes a big type of
an expression is a type that has a number of type variables that is exponentially larger
than the size ot. Big types do not represent useful abstractions. For small types, the
time complexity of the algorithm is polynomial (cf. [Henglein, 1993, Theorem 8, page
285]. This explains why the type inference algorithm for ML behaves well in practice,
and is exactly the reason for our expectation on the behavigid An example where
a big type occurs because of polymorphic recursion (and not because of let-bindings) is
presented at the end of this paper (Section 7.).

For simplicity, in this paper we present an algorithm that imposes a restriction on
the set of typable programs with polymorphic recursion: polymorphic recursive defini-
tions may occur only at the outermost level (in other words, an inner let-binding may not
introduce polymorphic recursive definitions). The elimination of this restriction is not
straightforward, but also not very significant in principle, requiring some extra (“book-
keeping”) work that would deviate from our main interests.

Our work explores the idea, suggested by Jim [Jim, 1996],ghatipal typing
is the key for efficiently solving the problem of type inference for mutually recursive
definitions. The basic ingredient used MMois the computation of principal typings
for any given typing problem, instead of simply the principal type. This is achieved

LAn undesirable consequence, in Haskell, of the possibility of making a type more general by means
of a type annotation is that the insertion of a type annotation in a program may change its semantics.
An interesting example illustrating this situation has been posted in the Haskell mailing list by Lennart
Augustsson [Lennart Augustsson, 2001].



essentially by allowing inferred typing contexts (in a formulation of the algorithm in terms
of a type system, this would mean typing contexts that occur in the right-hand side of
typing formulas) to have more than one assumption for the same variable.

We present a stepwise description dMoin Haskell. This is based on Mark
Jones’s type inference algorithm for Haskell [Jones, 1999] — although all the main ideas
constitute an adaptation of those in [Figueiredo and Cam&002] towards obtaining
a practical type inference algorithm — intended to provide a palatable description for
readers, as well as for language designers and developers, familiar with Haskell.

We assume in the sequel a basic knowledge of Haskell and of the pro-
cess of type inference [Mitchell, 1996]. Our prototype implementation includes
also a (monadic) parser (based on Parsec [Leijen, 2003]) that supports a large sub-
set of Haskell (e.g. the Haskell layout rule is not yet implemented). It is
available, together with examples (including all examples given in this paper) at
http://www.dcc.ufmg.br/"camarao/MMo/MMo.tar.gz

2. Motivation

Recently, several applications of the use of nested data types have been presented. One
example is a data type that represents perfectly balanced binary trees, proposed by Chris
Okasaki [Okasaki, 1998], which can be declared as follows:

data Seqa= Nil | Consa(Seq(a, a))

In this example the recursive compon&eda,a) is different from the typ&eq a
being defined, characterizing this as a nested data type. Often, nested data types support
algorithms more efficient than corresponding uniform versions. For example, function
len below calculates the number of elements in a data structure ofSggeof lengthn
intime O(log n).

- len : Seqa-> Int

len Nil =0

len (Consx$ =1+2*( leny
pair f (x,y) =(fx fy

-- mapseq:: ( a-> b) -> Seqa-> Seqb
mapseq f Nil = Nil
mapseq f (Cons xx$= Cons (fx) ( mapseq( pairf) x9

Figure 1. An example of a nested data type

Functionlen uses polymorphic recursion, since it receives as parameter a value
of type Seq aand returns an integer, but calls itself with values of t®#{a, a). The
mapsedunction is also polymorphic recursive. Functidesandmapseaan be declared
in Haskell 98 as long as their of types are explicitly annotated.

Another example that illustrates the potential significance of the use of nested data
types has been presented in [Bird and Meertens, 1998], where a nested data type is used
to represent expressions of thecalculus in the notation dbe Bruijn levels



In De Bruijn’s notation, bound variables are represented by natural numbers.
Numbern represents the variable of theabstraction that is nestettimes inside other
A-abstractions; for example, A. 0(11) represents the lambda tevm. \y. z(y y).

To manipulate terms containing free variables, a (so-callad)ed contexs nec-
essary, assigning De Bruijn numbers to free variables [Pierce, 2002]. For example: in
contextl' = {w — 0,z — 1,y — 2}, z(wy) is represented by(0 2) andAz. \y. x(w y)
is represented by. . 0(2 1), where free variablev is represented by its index added to
the number of nested lambda abstractions inside which it occurs.

data Binda = Zero | Succa
data Terma= Vara | App (Terma Termg | Abs (Term (Bind @)

- ift 2 ( Terma a) -> Term (Binda

lift (Vary, X if x ==y then ( VarZerg else ( Var (Succy)
lift (App (u, v), X) App (lift (u, x), lift (v, X))

lift (Abs t X) Abs (lift (t, Succy)

abstract (t, x) Abs (lift (t, X))

reduce (Abss t) subst (s, t)

--  subst w ( Term (Binda, Terma -> Terma
subst ( Var Zerg t) t

subst (Var (Succy, t) Var x

subst (App (u, V), 1)
subst (Abs st)

App (subst (u, t), subst(v, t))
Abs (subst (s, term Succ))

-- term o (a-> b)) ->( Termag TermB
term f ( Var X Var (fx)

termf (App (u, V) App (termfy termfy)

termf (Abs?) Abs (term (bindf) t)

bindf Zero
bind f ( Succ X

Zero
Succ (fX)

Figure 2: A nested data representation of De Bruijn levels

Elements ofTerm acan be free variables, applications or abstractions. The vari-
able of the outermost-abstraction is represented bgr Zerq of the next\-abstraction
Var(Suce Zero), and so on. Free variables are representetf oy Succ™ a), wheren
is equal to the number of nesta@eabstractions. With this representation, there is no need
for using a named context to represent free variables.

Term ais a nested data type because the recursive comp@ient(Bind a) that
appears in its definition is different from the type being defined. Using funetistract
defined on Figure 2, we can obtain the representatiooly. x(w y). That is,

abstract ( abstract ( App (Var 'x’, App (Var'w’, Var'y’)), Y), 'X)

is equal to



Abs (Abs (App (Var Zera App (Var (Succ (Succ'w)), Var ( Succ Zer))))

Functionreduceimplements f-calculus)3-reduction. The other functions in Fig-
ure 2 are used in the implementationatfstractandreduce termmapsf over aterm,
bind mapsf over elements oBind, substis used inreduceto update (decrease) levels of
variables when leaving a lambda abstraction, l#hdipdates levels of variables of a term
t for use in the representation:. ¢.

Functionslift, substandterm are also polymorphic recursive. They can be de-
clared in Haskell 98, as long as their types are explicitly annotated. It'd be necessary that
a andBind abe declared as equality types.

3. Types

We start the description of the implementation by defining how types are represented. For
simple types, we have (whela is a synonym foiString):

data Type = TVar Tyvar| TCon Tycon| TGen Int
| TAp Type Typederiving Eq

data Tyvar = Tyvarld [ Int] deriving Eq

data Tycon = Tycon Id deriving Eq

The use of a list of integers in type variables is explained in Section 6. The fol-
lowing definitions illustrate the representation of predefined types:

tint = TCon ( Tycon "Int"); tChar = TCon ( Tycon "Char");
tList = TCon ( Tycon "[]"); tString = TAp tListtChar
tTuple2 = TCon ( Tycon "(,)"); tArrow = TCon ( Tycon "(->)");

TGen Intis used for representing quantified type variables. This representation is
appropriate, because quantified type variables are then easily not modified by substitutions
(see next section) and because type equality need not consider equivalence up to renaming
of quantified type variables (since they are integer numbers generated in a given order).

Types can also be quantified types (also cajge schemgs
data Scheme= Forall Type deriving Eq

guantify o[ Tyvaj -> Type -> Scheme
quantify vs t = Forall (apply s )
where vs' =] v | v<- tvit v'elem'yvs]
S = zipvs' (map TGen|O0..])
toScheme . Type -> Scheme
toSchemet = Forall t

4. Substitutions

Substitutions ardinite mappings from type variables into simple types. Their finite do-
main makes a list of pairs a suitable representation, since the operation of computing the
domain of a substitution can then be easily implemented (in contrast to the situation of
representing substitutions by a functional type).



type Subst [( Tyvar, Typé]

domain = map fst

nullSubst =]

(+>) i Tyvar -> Type -> Subst

a +> t =[(a b

(@@) ;0 Subst-> Subst-> Subst

sl @@s2 =[(u applysly | ( ut) << s2] ++ sl

Straightforward definitions are given for the identity (null) substitution, a “maps-
to” operator {-> ), and composition of substitution@@ The latter uses list concate-
nation, taking into account that an application of a substitution, represented by a list,
considers only the first occurrence of a type variable in this list.

Functionsapply andtv, for applying a substitution and for computing the set of
free type variables, respectively, are overloaded to operate on quantified types, simple
types or typing contexts. We include only the (more interesting) definiticappfy for
simple types, which uses the fact thakupreturns the type associated to the first occur-
rence of a type variable in the list representing a substitution:

instance  Subs Typewhere
applys (TVaru = case lookupusof { Justt-> t; Nothing -> TVaru }
applys (TAplr) = TAp (applys) ( applys)
apply st =t

Typest andt’ unify if there exists a substitutiofi such thatS(¢) = S(¢). Its con-
structive (algorithmic) definition is straightforward and well-known, and is omitted. For
simplicity, we useunify.:( t, t)-> Substas returning a substitution or error, instead of
Maybe Subsfthe latter would enable issuing more meaningful error messages). Function
unifyis also overloaded to unify lists of types.

5. Typing Contexts and Principal Typings

A principal typingsolution( t, g) of a typing problen{ e, g0) is such that typing context

g requires less and typeprovides more than any other typing solution. contegg) {n a

typing problem allows the specification of fixed assumptions, that is, assumptions for vari-
ables that are visible in the represented scope. A typing context is a list of assumptions,
I.e. a list of pairy X, sQ , wherex is a variable andcis a quantified type:

data Assump = Id > ( Kind.of def, Typg deriving Eq
data Kind_of.def= LET | LAM deriving Eq
type TypCtx = [ Assump

An assumption for a variable also includes information about the kind of its defining
occurrence. We distinguish between let-boundT) and A-bound LAM) variables. The
distinction is used to identify type variables that may not be quantified (which are those
occurring in types oh-bound variables).

An important characteristic dfiMas the way typing contexts are used, through-
out, for the purpose of computing principal typings. The results of type inference func-
tions are “contextualized”: for example, functitixpr (Section 6.) returns a contextu-
alized simple type — i.e. an inferred type together with a corresponding minimal context



required for its inference — ant@BindGroup(Section 6.) returns a contextualized typing
context (i.e. a list of contextualized assumptions, of tyf€tx):

type Typing= (Type TypCty; type IdTyping = (Id, Typing;
type InfCtx = [ IdTypind

Functiontc gives the principal typing solution of typing problentg, g) (see
Figure 3), wherd'l is the type inference monadic type constructor and varigideused
to denote typing contexts.

tc " Id -> TypCtx -> TI Typing
tcig = if nullfoundsc then do t <- newTVar
return (¢, [ ¢« :>:( LET, toScheme)})
else do t <- freshinst$ head foundsc
return (¢, [ i > ( LET, toScheme))

where foundsc = findig
find Id -> TypCtx -> [ Schemp
findig= [sc |( 7/ > ( kdg sQ) <- g, i'==i ]

Figure 3: Principal typings for variables

Another important characteristic &Mois the possibility of an inferred typing
context to have more than one assumption for the same variable (input typing contexts,
on the other hand, can be simple typing contexts, with just one type assumption for each
variable). Consider, for example, the problem of inferring principal typings for expression
X X, In a given typing contex§0, where the definition ot might occur after the use of
this expression. It is well-known that there is no princiyglingfor expressiorx xin the
Damas-Milner system [Damas, 1984, Jim, 1996, Figueiredo and Gan2001F If g0
does not include any assumption fgrtc assigns a fresh type variable as the type of each
occurrence of in z x, saya andb. (Obtaining fresh type variables is the jobra@wTVar
above, which uses a simple monad for updating the integer value corresponding to the last
fresh type variable used.) As usual in type inference algorithms (cf. Section 6.), this will
result in unifyinga with b — «’, whered’ is another new fresh type variable. The typing
returned forz = will be then(a',[] z:b— d',z:b]) .

Typed’ can then be closed, by using functidilose(Figure 5), which works so as
not to close any type variable in the type oAdound assumption, in the given typing
context. This yields principal typing/6. a,[z : b — d’, x : b]) for typing problem { z,0).

Operators(]+) for overriding a typing context with another in let-bindings,
(I-)  for removing assumptions from a typing context after let-bindings, (fd ,
which also removes assumptions from a typing context, but afexpressions, are de-
fined in Figure 4. The latter requires checking that no variable occurring in a pattern at
the left-hand side of a function definition occurs twice in the resulting typing context. For

2The reason is that the greatest type derivable for this expressiom, can only be derived in a typing
context with the assumptian: Va. a. Other typing solutions exist — for example, assumptiarva. a —
a can be used to derivex : Va.a — a, but, while using a typing context that requires less, yields a type
that also provides less.



example, two assumptions forare inserted in the resulting typing context far (as ex-
plained above). We can think of this as meaning thabuld need to have a polymorphic
type, in order forr z to be typable (and therefokg:. x z is detected as not type correct).

g0 |+ g = g ++ filter compl g0
where compl (x> ) = not(x ‘elemi ( dom Q)

(DI TypCtx -> [ Id] -> TypCtx
g |- xs = if lengthelemss <= length xsthen nonelemsxs
else error ("parameter used polymorphically”)

where ( elemsxs nonelemsxs = partition( ( x> ) -> x ‘elem x9 g

(-p TypCtx -> [ Id] -> TypCtx
g || is = filter ( (i:> ) -> i ‘notElem is) g

Figure 4: Overriding and removing entries from typing contexts

6. Inferring Principal Pairs

tiProgram andtiBindGroup receive a typing context and a binding group and return a
contextualized typing context, i.e. a list of contextualized types, one for each definition in

the binding group. The data structures used are defined below:

type BindGroup
type InferTypebind
type AnnotTypebind

([ AnnotTypebind], [ InferTypebind])
(Id, [ Alt])
(1d, Type [ Alt])

type Alt ([ Patl, Expr
tiProgram " TypCtx -> BindGroup -> TypCtx
tiProgram g0 bg = (mapclosg $ runTl $ tiBindGroup g0 bg
lambdaassump(i :>: ( LAM, )) = True
lambdaassump _ = False

lambdaassumps=filter lambdaassump

close . IdTyping -> Assump
close (4,( ti, gi)) = ¢>:( LET, quantify (tvti \\ tv (lambdaassumps g)

i)

Figure 5: Closing simple types

tiProgram calls the monadic deconstructor functiomr{Tl), with the result of
tiBindGroup The definitions of monadic operations, used to generate fresh type variables
(by newTVaj and, based on this, fresh instances of polymorphic typesréishinsj, as
well as the treatment of patterns (of tyPat), follow Mark Jones’s work [Jones, 1999,
Section 10], and are omitted for brevity. However, as we will see later in this section, we
will need another function for generating special fresh instances of types, rsuplkt



FunctiontiBindGroupreturns a contextualized typing context, which is a list of
the contextualized types of all definitions in a binding group. The contextualized types
are pairy( ts, g9 ; tsis a list of so-callednferred typesandgs, a list of inferred typing
contexts contains assumptions whose types are cabedired types Functioncloseis
used to quantify the inferred types. The definitionsiBindGroupandcloseare given in
Figures 7 and 5, respectively. Inferred and required types are unified, by folding function
getTs(Figure 9) over the initial contextualized simple types, giverilmferTyping This
Is explained in more detail below. Required types of e&tiound variable are then uni-
fied, and the resulting substitutienis applied to each inferred type and typing context.
Before returning the obtained contextualized typing context, it is checked whether anno-
tated types areorrect meaning that they arqual(simply compared by using=) to the
corresponding types inferred by considering— with symbols with annotated types as
assumptions (see Figure 7) — as the input typing context.

Contextualized types are inferred for definitions with and without type annota-
tions, contained respectively in the liggplbg andimpl_bg. tiBindGroupusestilnfer-
Typingto infer a list of (initial) contextualized simple types, one for each definition. The
definition oftilnferTypingessentially call$siExpr (see below) for computing contextual-
ized simple types for each name defined in the binding group.

List is_infTypings returned bytilnferTyping consists of the names defined in a
binding group 9 and corresponding contextualized simple types gs) . Let's sayxs

is formed byz, ... ,z,, and similarly forts andgs The crucial job of functiorgetTs
(Figure 9) is to return all pairét, t') such that i)' occurs in an assumptiary : ¢’ in
somey; (j € {1,...,n});ii) tis obtained fromt; by renaming, to a fresh type variable,

each type variable that does not occur free in the type of sbipeund variable — in
other words, by renaming (to a fresh type variable) each type variablgin\ \ nqtvs;,
wherengtvs; = tv( lambdaassumpsg;) .

This renaming is done by functi@uplnst{used bygetTsand defined in Figure 6).
The renaming corresponds to the creation of new (fresh) variables occurring in formulas
in the left-hand side of inequalities in the underlying semi-unification problem (SUP).
This SUP is such that each inequality €’ ') corresponds to a polymorphic use (with
typet’) of some defined variable (with inferred typé.

suplnst:: [ Tyvaf -> Int -> Type -> TI Type
supinstvs n(TAplr) = do tl<-suplnstvsn;l t2<-suplnstvsny return $  TAptlt2
suplnst vs n (t@(TVar tv@(Tyvar v )))

| tv‘'elem vs = return ¢
| otherwise = return $ TVar $ Tyvar v (n:l)
suplnst _  _ t = return ¢

Figure 6: Generating indexes that register type variable dependencies

After these pairg ¢, t') are obtained, a substitution is computed by unification
of types in each of these pairs. Then it is tested whether this substitution has (so-called)
“circular dependencies” between type variables (see below), reporting an error if this
happens; if not, the substitution can either modify inferred or required types, in which
case the whole process is repeated, or not — in the latter case the process terminates,



tiBindGroup :: TypCtx -> BindGroup -> TI InfCtx
tiBindGroup g0 ( explbg, impl_bg) =
dolet g=g9g0 |+ [ wv>( CW,s0 | ( v, scalts) <- explbg ]
is_infTypings:- tilnferTyping g (impl_bgt+( mag \( v, , alts)->( v, alts)) explbg))
ins.infTypings’ <- unify.inf_req isinfTypings
checkAnnot expbg $ is_infTypings’

unify_inf_req: InfCtx -> TI InfCtx
unify_inf_req islinfTypings =
do let { (is, infTypingg = unzipisinfTypings ( t.i, g.i) = unzip infTypings
all_g.i = concatgi; Ibtvs = tv $ lambdaassumps alg.i }
tsReqtsInf <- foldM( getTs Ibtvs(zipisti)) [] ( zip [0..] all_g.i)
(tsReqtsInfl, infCtx) <- unif.app Ibtvs ( tsReqtsInf, is, infTyping9
return  infCtx

unifapp:[ Tyvad->([(  Type Typgl[ IdL[ Typind)->([(  Type Typgl[ Typind)
unif.app Ibtvs ( tsReqtsInf, is, infTypingg =
do let { s = unify $ unzip tsRedsInf; infTypings’ = apply s infTypings}
tsReqtsInf’ <- foldM (getTs Ibtvs(zipis ( map fstinfTypingg)) []
(zip [0.] $ concat $ map snd infTyping$’
if stop s (map fstinfTypings++ (
map (\(->:( -, Forallt))-> ¢) $ concat$ map snd infTyping$
then return ( tsReqtsInf’, zip is infTypings)
else if circular_dep s then error(
" Cannot (semi-)unify inferred with required types \n")
else unifapp Ibtvs (tsRegqtsInf’, is, infTypings)
stopsts= null (domains' intersect tvtg

Figure 7: Principal pairs of recursive definitions

giving (successfully) contextualized inferred types.

This process is performed by functionif app (defined in Figure 7) over the list
tsReqtsInf, returned bygetTs The updating of an inferred type, by the application of a
substitution, occurs because the use of a variable in the corresponding defetjiines
lessthan it could; in other words, this use of the variable requires a type that is more
general than that given by its definition. The key idea that allows this process (in fact,
the underlying semi-unification) to terminate is the detection of circular dependencies be-
tween type variables. What exactly is a circular dependency and how this dectection is
carried out? Briefly, and informally, each new fresh variablis created in this process
with a representation that “remembers” all fresh variall&®m which it has been origi-
nated (informally, we say “on which it depends”); a test of circular dependency is merely
then a test of whether a substitution requires replaaibg a type in which some of these
type variabless occur.

This representation is simply a sequence of integer indices — where distinct in-
dexes correspond to distinct polymorphic uses (i.e. distigct creating a new fresh
variable from a type variable that occurs irn; simply amounts to placing a new head
(namely,i) in the sequence of indices af Functioncircular_dep responsible for testing



circular_dep
circular_dep s

Subst-> Bool
any (==True) $ mapcircs

circ (v, TApIr) = circ (v, 1) || circ (v, )
circ (Tyvarvl TVar (Tyvarv'l)) = v==v" && [ ‘' subStt [
circ (- ) = False

subStr ] _ = True

subStr [ (1) = [l =171 1 ‘subStt [
subStr _ _ = False

Figure 8: Testing circular dependencies between type variables

circular dependencies between type variables, is defined in Figure 8.

Functionstop(Figure 7) determines when to stop the process of unifying inferred
and required types. This occurs when no inferred or required type is updated.

FunctiontiExpr, called bytilnferTyping computes principal typings for expres-
sions. For reasons of space and focus, Figure 10 includes only the cases of variables,
applications and let-bindings at the outermost level.

getTsvs its pts(n, i>:( -, sa@(Forallt))) =
getTs updates the list of pairs of types pts with pairs ( ¢, t'), where
t’ = suplnstvs nt”for all 1" €its, t'#t (modulo renaming of tvars)
vs indicate type variables that shall not be quantified
n denotes inequality index in the underlying SUP
corresponding to distinct uses of a defined variable

do let getT (i, s¢) = case lookup i i_ts of
Justt/ -> let s¢ = quantify (tv ¢/ \\ v§ ¢ in
if sc==sc then return Nothing

else do t” <- suplnstvs n t/; return ( Just t”)

Nothing -> return

Nothing

maybet <- getT (1, sc)
case maybet of Just ¢ -> return ((
Nothing-> return

t, t): pt9
pts

Figure 9: Unification of inferred and required types

7. Examples

As a simple example of type inference with polymorphic recursion, consider the defini-
tions of functionlen and the constructors of data tygeq ain Figure 1. The value of
Is_infTypings that defines a typing for each name in the binding group, is given by:

[( Nil, ( Seqa [I)),
(Cons (b — Seq(b,b) — Seqghb []),
(len( Seqc— Int, [( +): Int — Int — Int, len: Seqc, 0

— Int]))]



tiExpr :: TypCtx -> Expr -> TI Typing
tiExpr g ( Vari) = tcig

tiExprg0 (Apele? =
do (tl1,gl) <- tiExprg0el
(t2, g2) <- tiExprg0e2
a <- newTVar
let { sO = unify (t1, fnt28; gl = applysOgl g2’ = apply sOg2
pts = typescommonlambdavars g1’ g2}
sl = unify (unzippts) s = s1@@ sO}
return ( applysa apply slgl’ ‘union‘apply sl g2’

tiExprg0 (Letbgg =
do infCtx <- tiBindGroup g0 bg
let { is = mapfstinfCtx g = infCtx2TypCtx infCtx
gi = bigUnion $ map (snd snd infCtx, g0= applysg0
s = unify $ unzip $ typescommonlambdavars g0 gi }
(t,g) <- tiExpr (g0’ [+ applysg e
let s = unify $ unzip $ typescommonlambdavars g0’ g’
s = sSS@@s
return ( apply s” t, apply s” (d'|-| is) ‘union’
apply s” (lambdaassumps g)

Figure 10: Principal typings for expressions

As a result of foldinggetTsover is_infTyping the following pairs of types are
produced:[( Sedc, 0 — Int, Seqc® — Int)] , wherec is a fresh type variable,
created bysuplnst from c). The application of the substitution obtained as a result of
unifying the pairs of types given by getTs — namely, the identity substitution on all type
variables but?, which is mapped t¢ c, ¢) — does not modify inferred or required types.

As a simple (but now contrived) example for which types are indeed modified by
the unification of inferred with required types, consider:

hx = (gx + 1
gx =h (gx
In this caseis_infTypingis given by:

[(hy (¢ — Int, [(+): Int — Int— Int, g:c — Int])),
(g, (a— b [ga—4d h d— b))

getTsreturns the following pairs of type§¢ d — b, ¢ — Int), ( a — d,
at — b)), ( ¢ — Int, a®> — b?)] . The unification of these pairs of types, performed
by unif_app, causes type variableto be replaced bint. Since (inferred/required) types
are modified by the application of this substitution, another calhib appfollows. Pairs
of inferred and required types are obtained from the contextualized simple types in:

[((h (¢ — Int [(+): Int — Int — Int, g:c — Int])),
(g (a—Int, [ gga — Int, h: Int — Int]))]



getTsnow returns:[( a — Int, a' — Int), ( ¢ — Int, o' — Int)] . Applying
the substitution obtained by unifying these pairs of types modifies neither inferred nor
required types (modulo renaming of type variables), amiélappis thus completed.

The simplest case in which there is a circular dependency between type variables
appears in the types of inferred and required types is that of a “direct dependency”, which
occurs for example in the case of the definitforx = f. Inferred and required types for
this definition are, respectively, — b andb. A call to getTsreturns, then, the lig( b,
a’® — Bb°)] . The unification of pairs of types in this list gives a substitution that maps
btoa® — 0°. A call to circular_dep with this substitution as parameter, retuiirsie,
originating then a type error message.

Examples of indirect circular dependencies may be constructed — based on the
expression used in [Henglein, 1993] to show that typability in the Milner-Mycroft calcu-
lus is reducible to semi-unification — by varying the value:ah the following pseudo-
Haskell example (where we uge,, ... , v, ).i to denotey;, fori = 1, ... ,n, correspond-
ing to Haskell function$st, sndetc.):

kxy=x

faxp o ooz =k (\& > =21 21, ..., \@-> T 2 Tp)
Nyt v2 -y > (f vy o0 wn) 1 == T3, ...,
Nyt vz oy > (f v oy2 o yn) (m—1) == 1y,
Ny v2 o Y > (f v1 y2 -0 Yn) M == 1)

The time taken byircular_depto detect the circular dependency (issuing then a
type error) grows exponentially with an increase:ofA similar well-typed example can
be obtained by changing the definition so tfidtasn + 1 parameters instead tg change
calls accordingly and use, ; instead ofz; in the last line above. Theli becomes
typable, and has a big type; far= 2 (i.e. f has 3 parameters) this type can be written as:

Ya,b,c,d,e, f,g,h.a — ((b—>b—c) —c)—
(d—=d—e)—=e)=((d—d—e)—e)—=f)—f)—
(@a—=a—=g) =g ((bob—c)—c)=((b—=b—c)—c)—h)—h)

8. Conclusion

We have presented an algorithm (calleiM¢ for typing polymorphic recursive defi-
nitions, with the aim of providing a readable description for programmers, language
designers and developers familiar with HaskeélMois an adaptation into Haskell of

an algorithm that can be straightforwardly obtained from the rewriting system RSUP
[Figueiredo and Camabo, 2002]. Its correctness and termination follow from that of
RSUP, which have been proved in that paper. The algorithm allows type inference to
be simplified, by eliminating the need to examine the call graph of a program in order to
determine an order in which to infer types. The worst case time complexityibis
exponential, as occurs in the case of type inference for core ML. However, these worst
case examples simply do not occur in practice: both in the case of core ML and with
polymorphic recursion, exponentiality requires the existence of big types (for which the
number of type variables is exponentially larger than the size of the input expression),
and these do not represent useful abstractions. For small types, the time complexity of the
algorithm is polynomial. The algorithm is expected thus to behave well in practice.
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