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polymorphic and possibly mutually recursive definitions, using Haskell to pro-
vide a high-level implementation of the algorithm.
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1. Introduction

In general, polymorphic recursion occurs in functions defined overnested(also called
non-uniformor non-regular) data types, i.e. data types whose definitions include a re-
cursive component that is not identical to the type being defined. Several examples
of such data types and interesting functions that operate on them have been presented
[Connelly and Morris, 1995, Okasaki, 1997, Okasaki, 1998, Bird and Meertens, 1998].

Languages with support for parametric polymorphism [Milner, 1978,
Damas and Milner, 1982], such as Haskell [Jones et al., 1998, Thompson, 1999]
and SML [Milner et al., 1989], use one of the following two approaches for the treatment
of recursive definitions.

The first approach imposes a restriction on recursive definitions, either consider-
ing recursive definitions to be monomorphic (as in e.g. SML), or allowing polymorphic
recursion only when the programmer explicitly annotates the polymorphic types (as in
e.g. Haskell). In this approach, the language processor front-end separates the definitions
occurring in a program into non-mutually recursive binding groups, by examining the pro-
gram’s call graph, and performs a topological sort of these binding groups for determining
an order in which to type the definitions.

The second approach allows polymorphic recursive definitions without a priori im-
posing restrictions, but the type inference algorithm uses in this case a user-configurable



iteration limit for stopping the type inference process and rejecting input programs when
this limit is exceeded (as in e.g. Mercury [Henderson et al., 2003]).

The obligation on programmers to annotate types of polymorphic recursive defini-
tions goes against the intent of type inference, which is to give programmers the freedom
to choose to make or not type annotations, depending on whether they think it is appropri-
ate or not. Furthermore, it has the opposite effect of usual type annotations (in languages
with support for type inference and parametric polymorphism), which is to specify a type
that is an instance of the inferred most general type.1

In [Henglein, 1993, Kfoury et al., 1993] the equivalence of typability in the
Milner-Mycroft calculus — that extends the Damas-Milner calculus with polymorphic
recursion — with semi-unifiability was proved. In this paper we do not intend to discuss
the question of decidability of the semi-unification problem, which is now being ques-
tioned in another paper [Figueiredo and Camarão, 2002]. Our aim here is to present a
type inference algorithm — calledMMo— that has been used with success by us and is
expected to behave quite well and be useful in practice. In all examples we have seen
in the literature (including all examples given in this paper), one iteration (unification)
has been enough to infer the types of expressions involving polymorphic recursion (with
the exception of contrived examples presented in this paper specifically provided as worst
case examples of time complexity for the type inference algorithm). As occurs in the case
of type inference for core ML (see e.g. [Kanellakis and Mitchell, 1989, Mairson, 1990,
Kanellakis, Mairson and Mitchell, 1991, Mitchell, 1996]), there exist cases where the
time complexity ofMMois exponential on the size of the input program, but these ex-
amples do not occur in practice. Both in the case of core ML and in the case of polymor-
phic recursion, exponentiality requires the existence of so-calledbig types: a big type of
an expressione is a type that has a number of type variables that is exponentially larger
than the size ofe. Big types do not represent useful abstractions. For small types, the
time complexity of the algorithm is polynomial (cf. [Henglein, 1993, Theorem 8, page
285]. This explains why the type inference algorithm for ML behaves well in practice,
and is exactly the reason for our expectation on the behavior ofMMo. An example where
a big type occurs because of polymorphic recursion (and not because of let-bindings) is
presented at the end of this paper (Section 7.).

For simplicity, in this paper we present an algorithm that imposes a restriction on
the set of typable programs with polymorphic recursion: polymorphic recursive defini-
tions may occur only at the outermost level (in other words, an inner let-binding may not
introduce polymorphic recursive definitions). The elimination of this restriction is not
straightforward, but also not very significant in principle, requiring some extra (“book-
keeping”) work that would deviate from our main interests.

Our work explores the idea, suggested by Jim [Jim, 1996], thatprincipal typing
is the key for efficiently solving the problem of type inference for mutually recursive
definitions. The basic ingredient used inMMois the computation of principal typings
for any given typing problem, instead of simply the principal type. This is achieved

1An undesirable consequence, in Haskell, of the possibility of making a type more general by means
of a type annotation is that the insertion of a type annotation in a program may change its semantics.
An interesting example illustrating this situation has been posted in the Haskell mailing list by Lennart
Augustsson [Lennart Augustsson, 2001].



essentially by allowing inferred typing contexts (in a formulation of the algorithm in terms
of a type system, this would mean typing contexts that occur in the right-hand side of
typing formulas) to have more than one assumption for the same variable.

We present a stepwise description ofMMoin Haskell. This is based on Mark
Jones’s type inference algorithm for Haskell [Jones, 1999] — although all the main ideas
constitute an adaptation of those in [Figueiredo and Camarão, 2002] towards obtaining
a practical type inference algorithm — intended to provide a palatable description for
readers, as well as for language designers and developers, familiar with Haskell.

We assume in the sequel a basic knowledge of Haskell and of the pro-
cess of type inference [Mitchell, 1996]. Our prototype implementation includes
also a (monadic) parser (based on Parsec [Leijen, 2003]) that supports a large sub-
set of Haskell (e.g. the Haskell layout rule is not yet implemented). It is
available, together with examples (including all examples given in this paper) at
http://www.dcc.ufmg.br/˜camarao/MMo/MMo.tar.gz .

2. Motivation
Recently, several applications of the use of nested data types have been presented. One
example is a data type that represents perfectly balanced binary trees, proposed by Chris
Okasaki [Okasaki, 1998], which can be declared as follows:

data Seq a = Nil | Cons a ( Seq ( a, a))

In this example the recursive componentSeq(a,a) is different from the typeSeq a
being defined, characterizing this as a nested data type. Often, nested data types support
algorithms more efficient than corresponding uniform versions. For example, function
len below calculates the number of elements in a data structure of typeSeq aof lengthn
in timeO(log n).

-- len :: Seq a -> Int
len Nil = 0
len ( Cons x s) = 1 + 2 * ( len s)

pair f ( x, y) = ( f x, f y)

-- mapseq :: ( a -> b) -> Seq a -> Seq b
mapseq f Nil = Nil
mapseq f ( Cons x xs) = Cons ( f x) ( mapseq( pair f ) xs)

Figure 1: An example of a nested data type

Functionlen uses polymorphic recursion, since it receives as parameter a value
of type Seq aand returns an integer, but calls itself with values of typeSeq(a, a). The
mapseqfunction is also polymorphic recursive. Functionslenandmapseqcan be declared
in Haskell 98 as long as their of types are explicitly annotated.

Another example that illustrates the potential significance of the use of nested data
types has been presented in [Bird and Meertens, 1998], where a nested data type is used
to represent expressions of theλ-calculus in the notation ofDe Bruijn levels.



In De Bruijn’s notation, bound variables are represented by natural numbers.
Numbern represents the variable of theλ-abstraction that is nestedn times inside other
λ-abstractions; for example,λ. λ. 0(11) represents the lambda termλx. λy. x(y y).

To manipulate terms containing free variables, a (so-called)named contextis nec-
essary, assigning De Bruijn numbers to free variables [Pierce, 2002]. For example: in
contextΓ = {w 7→ 0, x 7→ 1, y 7→ 2}, x(w y) is represented by1(0 2) andλx. λy. x(w y)
is represented byλ. λ. 0(2 1), where free variablew is represented by its index added to
the number of nested lambda abstractions inside which it occurs.

data Bind a = Zero | Succ a
data Term a = Var a | App ( Term a, Term a) | Abs ( Term ( Bind a))

-- lift :: ( Term a, a) -> Term ( Bind a)
lift ( Var y, x) = if x == y then ( Var Zero) else ( Var ( Succ y))
lift ( App ( u, v), x) = App ( lift ( u, x), lift ( v, x))
lift ( Abs t, x) = Abs ( lift ( t, Succ x))

abstract ( t, x) = Abs ( lift ( t, x))
reduce ( Abs s, t) = subst ( s, t)

-- subst :: ( Term ( Bind a), Term a) -> Term a
subst ( Var Zero, t) = t
subst ( Var ( Succ x), t) = Var x
subst ( App ( u, v), t) = App ( subst ( u, t), subst ( v, t))
subst ( Abs s, t) = Abs ( subst ( s, term Succ t))

-- term :: ( a -> b) -> ( Term a, Term b)
term f ( Var x) = Var ( f x)
term f ( App ( u, v)) = App ( term f u, term f v)
term f ( Abs t) = Abs ( term ( bind f) t)

bind f Zero = Zero
bind f ( Succ x) = Succ ( f x)

Figure 2: A nested data representation of De Bruijn levels

Elements ofTerm acan be free variables, applications or abstractions. The vari-
able of the outermostλ-abstraction is represented byVar Zero, of the nextλ-abstraction
V ar(Succ Zero), and so on. Free variables are represented byV ar(Succn a), wheren
is equal to the number of nestedλ-abstractions. With this representation, there is no need
for using a named context to represent free variables.

Term ais a nested data type because the recursive componentTerm(Bind a) that
appears in its definition is different from the type being defined. Using functionabstract
defined on Figure 2, we can obtain the representation ofλx. λy. x(w y). That is,

abstract ( abstract ( App ( Var ’x’, App ( Var ’w’ , Var ’y’ )), ’y’ ), ’x’ )

is equal to



Abs ( Abs ( App ( Var Zero, App ( Var ( Succ ( Succ ’w’)), Var ( Succ Zero)))))

Functionreduceimplements (λ-calculus)β-reduction. The other functions in Fig-
ure 2 are used in the implementation ofabstractandreduce: term mapsf over aterm,
bind mapsf over elements ofBind, substis used inreduceto update (decrease) levels of
variables when leaving a lambda abstraction, andlift updates levels of variables of a term
t for use in the representationλx. t.

Functionslift , substand term are also polymorphic recursive. They can be de-
clared in Haskell 98, as long as their types are explicitly annotated. It’d be necessary that
a andBind abe declared as equality types.

3. Types

We start the description of the implementation by defining how types are represented. For
simple types, we have (whereId is a synonym forString):

data Type = TVar Tyvar | TCon Tycon | TGen Int
| TAp Type Typederiving Eq

data Tyvar = Tyvar Id [ Int] deriving Eq
data Tycon = Tycon Id deriving Eq

The use of a list of integers in type variables is explained in Section 6. The fol-
lowing definitions illustrate the representation of predefined types:

tInt = TCon ( Tycon "Int"); tChar = TCon ( Tycon "Char");
tList = TCon ( Tycon "[]"); tString = TAp tList tChar;
tTuple2 = TCon ( Tycon "(,)"); tArrow = TCon ( Tycon "(->)");

TGen Intis used for representing quantified type variables. This representation is
appropriate, because quantified type variables are then easily not modified by substitutions
(see next section) and because type equality need not consider equivalence up to renaming
of quantified type variables (since they are integer numbers generated in a given order).

Types can also be quantified types (also calledtype schemes):

data Scheme= Forall Type deriving Eq

quantify ::[ Tyvar] -> Type -> Scheme
quantify vs t = Forall ( apply s t)

where vs’ = [ v | v <- tv t, v ‘elem‘ vs ]
s = zip vs’ ( map TGen [0..])

toScheme :: Type -> Scheme
toScheme t = Forall t

4. Substitutions

Substitutions arefinite mappings from type variables into simple types. Their finite do-
main makes a list of pairs a suitable representation, since the operation of computing the
domain of a substitution can then be easily implemented (in contrast to the situation of
representing substitutions by a functional type).



type Subst = [( Tyvar, Type)]
domain = map fst
nullSubst = []
(+->) :: Tyvar -> Type -> Subst
a +-> t = [( a, t)]
(@@) :: Subst -> Subst -> Subst
s1 @@s2 = [ ( u, apply s1 t) | ( u, t) <- s2 ] ++ s1

Straightforward definitions are given for the identity (null) substitution, a “maps-
to” operator (+-> ), and composition of substitutions (@@). The latter uses list concate-
nation, taking into account that an application of a substitution, represented by a list,
considers only the first occurrence of a type variable in this list.

Functionsapply and tv, for applying a substitution and for computing the set of
free type variables, respectively, are overloaded to operate on quantified types, simple
types or typing contexts. We include only the (more interesting) definition ofapply for
simple types, which uses the fact thatlookupreturns the type associated to the first occur-
rence of a type variable in the list representing a substitution:

instance Subs Typewhere
apply s ( TVar u) = case lookup u s of { Just t -> t; Nothing -> TVar u }
apply s ( TAp l r) = TAp ( apply s l) ( apply s r)
apply s t = t

Typest andt′ unify if there exists a substitutionS such thatS(t) = S(t′). Its con-
structive (algorithmic) definition is straightforward and well-known, and is omitted. For
simplicity, we useunify::( t, t)-> Substas returning a substitution or error, instead of
Maybe Subst(the latter would enable issuing more meaningful error messages). Function
unify is also overloaded to unify lists of types.

5. Typing Contexts and Principal Typings

A principal typingsolution( t, g) of a typing problem( e, g0) is such that typing context
g requires less and typet provides more than any other typing solution. context (g0) in a
typing problem allows the specification of fixed assumptions, that is, assumptions for vari-
ables that are visible in the represented scope. A typing context is a list of assumptions,
i.e. a list of pairs( x, sc) , wherex is a variable andsc is a quantified type:

data Assump = Id :>: ( Kind of def, Type) deriving Eq
data Kind of def= LET | LAM deriving Eq
type TypCtx = [ Assump]

An assumption for a variable also includes information about the kind of its defining
occurrence. We distinguish between let-bound (LET) andλ-bound (LAM) variables. The
distinction is used to identify type variables that may not be quantified (which are those
occurring in types ofλ-bound variables).

An important characteristic ofMMois the way typing contexts are used, through-
out, for the purpose of computing principal typings. The results of type inference func-
tions are “contextualized”: for example, functiontiExpr (Section 6.) returns a contextu-
alized simple type — i.e. an inferred type together with a corresponding minimal context



required for its inference — andtiBindGroup(Section 6.) returns a contextualized typing
context (i.e. a list of contextualized assumptions, of typeInfCtx):

type Typing= ( Type, TypCtx); type IdTyping = ( Id , Typing);
type InfCtx = [ IdTyping]

Function tc gives the principal typing solution of typing problems( x, g) (see
Figure 3), whereTI is the type inference monadic type constructor and variableg is used
to denote typing contexts.

tc :: Id -> TypCtx -> TI Typing
tc i g = if null foundsc then do t <- newTVar

return ( t, [ i :>:( LET, toScheme t)])
else do t <- freshInst $ head foundsc

return ( t, [ i :>: ( LET, toScheme t)])
where foundsc = find i g

find :: Id -> TypCtx -> [ Scheme]
find i g= [ sc |( i′ :>: ( kdo, sc)) <- g, i′==i ]

Figure 3: Principal typings for variables

Another important characteristic ofMMois the possibility of an inferred typing
context to have more than one assumption for the same variable (input typing contexts,
on the other hand, can be simple typing contexts, with just one type assumption for each
variable). Consider, for example, the problem of inferring principal typings for expression
x x, in a given typing contextg0, where the definition ofx might occur after the use of
this expression. It is well-known that there is no principaltypingfor expressionx x in the
Damas-Milner system [Damas, 1984, Jim, 1996, Figueiredo and Camarão, 2001].2 If g0
does not include any assumption forx, tc assigns a fresh type variable as the type of each
occurrence ofx in x x, saya andb. (Obtaining fresh type variables is the job ofnewTVar
above, which uses a simple monad for updating the integer value corresponding to the last
fresh type variable used.) As usual in type inference algorithms (cf. Section 6.), this will
result in unifyinga with b → a′, wherea′ is another new fresh type variable. The typing
returned forx x will be then( a′,[ x : b→ a′, x : b]) .

Typea′ can then be closed, by using functionclose(Figure 5), which works so as
not to close any type variable in the type of aλ-bound assumption, in the given typing
context. This yields principal typing (∀a. a,[x : b→ a′, x : b]) for typing problem (xx,∅).

Operators(|+) for overriding a typing context with another in let-bindings,
(|-|) for removing assumptions from a typing context after let-bindings, and(|-) ,
which also removes assumptions from a typing context, but afterλ-expressions, are de-
fined in Figure 4. The latter requires checking that no variable occurring in a pattern at
the left-hand side of a function definition occurs twice in the resulting typing context. For

2The reason is that the greatest type derivable for this expression,∀a. a, can only be derived in a typing
context with the assumptionx : ∀a. a. Other typing solutions exist — for example, assumptionx : ∀a. a→
a can be used to derivexx : ∀a. a → a, but, while using a typing context that requires less, yields a type
that also provides less.



example, two assumptions forx are inserted in the resulting typing context forx x (as ex-
plained above). We can think of this as meaning thatx would need to have a polymorphic
type, in order forx x to be typable (and therefore\x. x x is detected as not type correct).

g0 |+ g = g ++ filter compl g0
where compl ( x:>: ) = not( x ‘ elem‘ ( dom g))

(|-) :: TypCtx -> [ Id] -> TypCtx
g |- xs = if length elemsxs <= length xs then non elemsxs

else error ("parameter used polymorphically")
where ( elemsxs, non elemsxs) = partition( ( x:>: ) -> x ‘ elem‘ xs) g

(|-|) :: TypCtx -> [ Id] -> TypCtx
g |-| is = filter ( ( i:>: ) -> i ‘ notElem‘ is) g

Figure 4: Overriding and removing entries from typing contexts

6. Inferring Principal Pairs

tiProgram and tiBindGroup receive a typing context and a binding group and return a
contextualized typing context, i.e. a list of contextualized types, one for each definition in
the binding group. The data structures used are defined below:

type BindGroup = ([ AnnotTypebind], [ InferTypebind])
type InferTypebind = ( Id, [ Alt])
type AnnotTypebind = ( Id, Type, [ Alt])
type Alt = ([ Pat], Expr)

tiProgram :: TypCtx -> BindGroup -> TypCtx
tiProgram g0 bg = ( map close) $ runTI $ tiBindGroup g0 bg

lambdaassump( i :>: ( LAM, )) = True
lambdaassump = False

lambdaassumps= filter lambdaassump

close :: IdTyping -> Assump
close ( i,( ti, gi)) = i:>:( LET, quantify ( tv ti \\ tv ( lambdaassumps gi)) ti)

Figure 5: Closing simple types

tiProgram calls the monadic deconstructor function (runTI), with the result of
tiBindGroup. The definitions of monadic operations, used to generate fresh type variables
(by newTVar) and, based on this, fresh instances of polymorphic types (byfreshInst), as
well as the treatment of patterns (of typePat), follow Mark Jones’s work [Jones, 1999,
Section 10], and are omitted for brevity. However, as we will see later in this section, we
will need another function for generating special fresh instances of types, namedsupInst.



FunctiontiBindGroup returns a contextualized typing context, which is a list of
the contextualized types of all definitions in a binding group. The contextualized types
are pairs( ts, gs) ; ts is a list of so-calledinferred typesandgs, a list of inferred typing
contexts, contains assumptions whose types are calledrequired types. Functioncloseis
used to quantify the inferred types. The definitions oftiBindGroupandcloseare given in
Figures 7 and 5, respectively. Inferred and required types are unified, by folding function
getTs(Figure 9) over the initial contextualized simple types, given bytiInferTyping. This
is explained in more detail below. Required types of eachλ-bound variable are then uni-
fied, and the resulting substitutions is applied to each inferred type and typing context.
Before returning the obtained contextualized typing context, it is checked whether anno-
tated types arecorrect, meaning that they areequal(simply compared by using==) to the
corresponding types inferred by consideringg — with symbols with annotated types as
assumptions (see Figure 7) — as the input typing context.

Contextualized types are inferred for definitions with and without type annota-
tions, contained respectively in the listsexpl bg and impl bg. tiBindGroupusestiInfer-
Typingto infer a list of (initial) contextualized simple types, one for each definition. The
definition of tiInferTypingessentially callstiExpr (see below) for computing contextual-
ized simple types for each name defined in the binding group.

List is infTypings, returned bytiInferTyping, consists of the names defined in a
binding group (xs) and corresponding contextualized simple types( ts, gs) . Let’s sayxs
is formed byx1, . . . , xn, and similarly forts andgs. The crucial job of functiongetTs
(Figure 9) is to return all pairs( t, t’ ) such that i)t’ occurs in an assumptionxi : t′ in
somegj (j ∈ {1, . . . , n}); ii) t is obtained fromti by renaming, to a fresh type variable,
each type variable that does not occur free in the type of someλ-bound variable — in
other words, by renaming (to a fresh type variable) each type variable intv(ti)\\nqtvsi ,
wherenqtvsi = tv( lambdaassumpsgi) .

This renaming is done by functionsupInst(used bygetTsand defined in Figure 6).
The renaming corresponds to the creation of new (fresh) variables occurring in formulas
in the left-hand side of inequalities in the underlying semi-unification problem (SUP).
This SUP is such that each inequality (ti ≤i t′) corresponds to a polymorphic use (with
typet′) of some defined variable (with inferred typeti).

supInst :: [ Tyvar] -> Int -> Type -> TI Type
supInst vs n( TAp l r) = do t1<- supInst vs n l; t2<- supInst vs n r; return $ TAp t1 t2
supInst vs n ( t@(TVar tv@(Tyvar v l)))

| tv ‘ elem‘ vs = return t
| otherwise = return $ TVar $ Tyvar v ( n: l)

supInst t = return t

Figure 6: Generating indexes that register type variable dependencies

After these pairs( t, t′) are obtained, a substitution is computed by unification
of types in each of these pairs. Then it is tested whether this substitution has (so-called)
“circular dependencies” between type variables (see below), reporting an error if this
happens; if not, the substitution can either modify inferred or required types, in which
case the whole process is repeated, or not — in the latter case the process terminates,



tiBindGroup :: TypCtx -> BindGroup -> TI InfCtx
tiBindGroup g0 ( expl bg, impl bg) =

do let g = g0 |+ [ v:>:( CW, sc) | ( v, sc, alts) <- expl bg ]
is infTypings<- tiInferTyping g ( impl bg++( map( \( v, , alts)->( v, alts)) expl bg))
ins infTypings’ <- unify inf req is infTypings
checkAnnot explbg $ is infTypings’

unify inf req:: InfCtx -> TI InfCtx
unify inf req isIinfTypings =

do let { ( is, infTypings) = unzip isinfTypings; ( t i, g i) = unzip infTypings;
all g i = concat gi; lbtvs = tv $ lambdaassumps allg i }

tsReqtsInf <- foldM( getTs lbtvs( zip is t i)) [] ( zip [0..] all g i)
( tsReqtsInf1, infCtx) <- unif app lbtvs ( tsReqtsInf, is, infTypings)
return infCtx

unif app::[ Tyvar]->([( Type, Type)],[ Id],[ Typing])->([( Type, Type)],[ Typing])
unif app lbtvs ( tsReqtsInf, is, infTypings) =

do let { s = unify $ unzip tsReqtsInf; infTypings’ = apply s infTypings}
tsReqtsInf ’ <- foldM ( getTs lbtvs( zip is ( map fst infTypings’))) []

( zip [0..] $ concat $ map snd infTypings’)
if stop s ( map fst infTypings++ (

map ( \( :>:( , Forall t))-> t) $ concat $ map snd infTypings))
then return ( tsReqtsInf ’, zip is infTypings’)
else if circular dep s then error(

" Cannot (semi-)unify inferred with required types \n")
else unif app lbtvs ( tsReqtsInf ’, is, infTypings’)

stop s ts = null ( domain s ‘ intersect‘ tv ts)

Figure 7: Principal pairs of recursive definitions

giving (successfully) contextualized inferred types.

This process is performed by functionunif app (defined in Figure 7) over the list
tsReqtsInf, returned bygetTs. The updating of an inferred type, by the application of a
substitution, occurs because the use of a variable in the corresponding definitionrequires
lessthan it could; in other words, this use of the variable requires a type that is more
general than that given by its definition. The key idea that allows this process (in fact,
the underlying semi-unification) to terminate is the detection of circular dependencies be-
tween type variables. What exactly is a circular dependency and how this dectection is
carried out? Briefly, and informally, each new fresh variableα is created in this process
with a representation that “remembers” all fresh variablesβ from which it has been origi-
nated (informally, we say “on which it depends”); a test of circular dependency is merely
then a test of whether a substitution requires replacingα by a type in which some of these
type variablesβ occur.

This representation is simply a sequence of integer indices — where distinct in-
dexes correspond to distinct polymorphic uses (i.e. distinctis): creating a new fresh
variable from a type variableα that occurs inti simply amounts to placing a new head
(namely,i) in the sequence of indices ofα. Functioncircular dep, responsible for testing



circular dep :: Subst -> Bool
circular dep s = any (== True) $ map circ s

circ ( v, TAp l r) = circ ( v, l) || circ ( v, r)
circ ( Tyvar v l, TVar ( Tyvar v’ l’)) = v==v′ && l ‘ subStr‘ l′

circ ( , ) = False

subStr [] = True
subStr l ( : l′) = l == l′ || l ‘ subStr‘ l′

subStr = False

Figure 8: Testing circular dependencies between type variables

circular dependencies between type variables, is defined in Figure 8.

Functionstop(Figure 7) determines when to stop the process of unifying inferred
and required types. This occurs when no inferred or required type is updated.

FunctiontiExpr, called bytiInferTyping, computes principal typings for expres-
sions. For reasons of space and focus, Figure 10 includes only the cases of variables,
applications and let-bindings at the outermost level.

getTs vs i ts pts ( n, i:>:( , sc@(Forall t))) =
-- getTs updates the list of pairs of types pts with pairs ( t, t′), where

-- t′ = supInst vs n t” for all i: t” ∈ i ts, t′′ 6= t (modulo renaming of tvars)

-- vs indicate type variables that shall not be quantified

-- n denotes inequality index in the underlying SUP

-- corresponding to distinct uses of a defined variable

do let getT ( i, sc) = case lookup i i ts of
Just t′ -> let sc′ = quantify ( tv t′ \\ vs) t′ in

if sc==sc′ then return Nothing
else do t′′ <- supInst vs n t′; return ( Just t′′)

Nothing -> return Nothing
maybet <- getT ( i, sc)
case maybet of Just t′ -> return (( t, t′): pts)

Nothing-> return pts

Figure 9: Unification of inferred and required types

7. Examples

As a simple example of type inference with polymorphic recursion, consider the defini-
tions of functionlen and the constructors of data typeSeq ain Figure 1. The value of
is infTypings, that defines a typing for each name in the binding group, is given by:

[( Nil, ( Seq a, [])),
( Cons, ( b → Seq( b, b) → Seq b, [])),
( len,( Seq c→ Int, [( +): Int → Int → Int, len: Seq( c, c) → Int]))]



tiExpr :: TypCtx -> Expr -> TI Typing

tiExpr g ( Var i) = tc i g

tiExpr g0 ( Ap e1 e2) =
do ( t1, g1) <- tiExpr g0 e1

( t2, g2) <- tiExpr g0 e2
a <- newTVar
let { s0 = unify ( t1, fn t2 a); g1’ = apply s0 g1; g2’ = apply s0 g2;

pts = typescommonlambdavars g1’ g2’;
s1 = unify ( unzip pts); s = s1 @@ s0}

return ( apply s a, apply s1 g1’ ‘union‘ apply s1 g2’)

tiExpr g0 ( Let bg e) =
do infCtx <- tiBindGroup g0 bg

let { is = map fst infCtx; g = infCtx2TypCtx infCtx;
gi = bigUnion $ map ( snd. snd) infCtx; g0’= apply s g0;
s = unify $ unzip $ typescommonlambdavars g0 gi }

( t, g’) <- tiExpr ( g0’ |+ apply s g) e
let s′ = unify $ unzip $ typescommonlambdavars g0’ g’

s′′ = s’@@s
return ( apply s′′ t, apply s′′ ( g’|-| is) ‘union‘

apply s′′ ( lambdaassumps gi))

Figure 10: Principal typings for expressions

As a result of foldinggetTsover is infTyping, the following pairs of types are
produced: [( Seq( c, c) → Int, Seqc0 → Int)] , wherec0 is a fresh type variable,
created bysupInst, from c). The application of the substitution obtained as a result of
unifying the pairs of types given by getTs — namely, the identity substitution on all type
variables butc0, which is mapped to( c, c) — does not modify inferred or required types.

As a simple (but now contrived) example for which types are indeed modified by
the unification of inferred with required types, consider:

h x = ( g x) + 1
g x = h ( g x)

In this case,is infTypingis given by:

[( h, ( c → Int, [(+): Int → Int→ Int, g: c → Int])),
( g, ( a → b, [ g: a → d, h: d → b]))]

getTsreturns the following pairs of types:[( d → b, c0 → Int), ( a → d,
a1 → b1), ( c → Int, a2 → b2)] . The unification of these pairs of types, performed
by unif app, causes type variableb to be replaced byInt. Since (inferred/required) types
are modified by the application of this substitution, another call tounif appfollows. Pairs
of inferred and required types are obtained from the contextualized simple types in:

[( h, ( c → Int, [(+): Int → Int → Int, g: c → Int])),
( g, ( a → Int, [ g: a → Int, h: Int → Int]))]



getTsnow returns:[( a → Int, a1 → Int), ( c → Int, a1 → Int)] . Applying
the substitution obtained by unifying these pairs of types modifies neither inferred nor
required types (modulo renaming of type variables), andunif app is thus completed.

The simplest case in which there is a circular dependency between type variables
appears in the types of inferred and required types is that of a “direct dependency”, which
occurs for example in the case of the definitionf x = f . Inferred and required types for
this definition are, respectively,a → b andb. A call to getTsreturns, then, the list[( b,
a0 → b0)] . The unification of pairs of types in this list gives a substitution that maps
b to a0 → b0. A call to circular dep, with this substitution as parameter, returnsTrue,
originating then a type error message.

Examples of indirect circular dependencies may be constructed — based on the
expression used in [Henglein, 1993] to show that typability in the Milner-Mycroft calcu-
lus is reducible to semi-unification — by varying the value ofn in the following pseudo-
Haskell example (where we use(v1, . . . , vn).i to denotevi, for i = 1, . . . , n, correspond-
ing to Haskell functionsfst, sndetc.):

k x y = x
f x1 x2 . . . xn = k ( \x -> x x1 x1, . . . , \x -> x xn xn)

( \ y1 y2 · · · yn -> ( f y1 y2 . . . yn). 1 == x2, . . . ,
\ y1 y2 · · · yn -> ( f y1 y2 . . . yn). (n− 1) == xn,
\ y1 y2 · · · yn -> ( f y1 y2 . . . yn). n == x1)

The time taken bycircular depto detect the circular dependency (issuing then a
type error) grows exponentially with an increase ofn. A similar well-typed example can
be obtained by changing the definition so thatf hasn+1 parameters instead ton, change
calls accordingly and usexn+1 instead ofx1 in the last line above. Thenf becomes
typable, and has a big type; forn = 2 (i.e.f has 3 parameters) this type can be written as:

∀a, b, c, d, e, f, g, h. a→ ((b→ b→ c)→ c)→
((((d→ d→ e)→ e)→ ((d→ d→ e)→ e)→ f)→ f)→

((a→ a→ g)→ g, (((b→ b→ c)→ c)→ ((b→ b→ c)→ c)→ h)→ h)

8. Conclusion

We have presented an algorithm (calledMMo) for typing polymorphic recursive defi-
nitions, with the aim of providing a readable description for programmers, language
designers and developers familiar with Haskell.MMois an adaptation into Haskell of
an algorithm that can be straightforwardly obtained from the rewriting system RSUP
[Figueiredo and Camarão, 2002]. Its correctness and termination follow from that of
RSUP, which have been proved in that paper. The algorithm allows type inference to
be simplified, by eliminating the need to examine the call graph of a program in order to
determine an order in which to infer types. The worst case time complexity ofMMois
exponential, as occurs in the case of type inference for core ML. However, these worst
case examples simply do not occur in practice: both in the case of core ML and with
polymorphic recursion, exponentiality requires the existence of big types (for which the
number of type variables is exponentially larger than the size of the input expression),
and these do not represent useful abstractions. For small types, the time complexity of the
algorithm is polynomial. The algorithm is expected thus to behave well in practice.
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