
UM SISTEMA DE RECOMENDAÇÃO PARA

REPARAÇÃO DE EROSÃO ARQUITETURAL

DE SOFTWARE

RICARDO TERRA NUNES BUENO VILLELA

UM SISTEMA DE RECOMENDAÇÃO PARA

REPARAÇÃO DE EROSÃO ARQUITETURAL

DE SOFTWARE

Tese apresentada ao Programa de Pós-
-Graduação em Ciência da Computação do
Instituto de Ciências Exatas da Universi-
dade Federal de Minas Gerais como requi-
sito parcial para a obtenção do grau de
Doutor em Ciência da Computação.

Orientador: Roberto da Silva Bigonha
Coorientador: Marco Túlio de Oliveira Valente

Belo Horizonte
Setembro de 2013

RICARDO TERRA NUNES BUENO VILLELA

A RECOMMENDATION SYSTEM FOR

REPAIRING SOFTWARE ARCHITECTURE

EROSION

Thesis presented to the Graduate Program
in Computer Science of the Universidade
Federal de Minas Gerais. Departamento de
Ciência da Computação. in partial fulfill-
ment of the requirements for the degree of
Doctor in Computer Science.

Advisor: Roberto da Silva Bigonha
Co-Advisor: Marco Túlio de Oliveira Valente

Belo Horizonte
September 2013

c© 2013, Ricardo Terra Nunes Bueno Villela.
Todos os direitos reservados.

Villela, Ricardo Terra Nunes Bueno

V735r A recommendation system for repairing software
architecture erosion / Ricardo Terra Nunes Bueno Villela.
— Belo Horizonte, 2013

xxv, 104 f. : il. ; 29cm

Tese (doutorado) — Universidade Federal de
Minas Gerais. Departamento de Ciência da Computação.

Orientador: Roberto da Silva Bigonha
Coorientador: Marco Túlio de Oliveira Valente

1. Computação – Teses. 2. Engenharia de software –
Teses. 3. Software – Arquitetura – Teses. 4. Sistemas de
recomendação – Teses. I. Orientador. II. Coorientador.
III. Título.

CDU 519.6*32 (043)

This thesis is dedicated to Ryta, who has always been supporting me. � 5

ix

Acknowledgments

This work would not have been possible without the support of many people.

I thank God to provide me with intellect and persistence to reach a Ph.D. degree.

I thank my whole family—especially Maurício, Vânia, Lorena, Jéssica e Patrícia—for
having always supported me.

I thank my girlfriend Carol for always being by my side.

I thank my advisors R. S. Bigonha and M. T. Valente for being abundantly helpful
and offered invaluable assistance, support, and guidance.

I thank my co-advisor K. Czarnecki for giving me the opportunity to work under his
supervision for a year.

I thank the welcomer L. Passos for receiving me as a brother in his home in Waterloo.
As well as T. Bartolomei and C. Vargas for taking care of me like a brother.

I thank the encouragers L. Ishitani and M. A. J. Song for writing the recommenda-
tion letters that contributed to my acceptance into this Ph.D. program.

I thank the program officers R. Vieira, S. Borges, and S. L. Santos for the attention
and patience over these years.

I thank the software architects G. Dafé (BrTCom) and R. Garcia (Geplanes) for the
valuable collaboration in the case studies.

I thank the members of the research groups (e.g., LabSoft, GSD, and ASERG)—
especially C. Couto and J. Brunet—for pursuing collaborative research.

I’d like to express my gratitude to the members of my thesis defense—D. Serey
(UFCG), E. Figueiredo (UFMG), K. Czarnecki (UWaterloo), and P. Borba (UFPE).

It has been slightly over four years, two different countries, and a bunch of conferences.
Therefore, like the approach proposed in this thesis, I cannot claim that this list of
acknowledgments is complete, which is far ahead of my objective.

xi

“The formulation of a problem is often more essential than its solution, which may be
merely a matter of mathematical or experimental skill.”

(Einstein, Albert)

xiii

Resumo

Erosão arquitetural é um problema recorrente enfrentado por arquitetos de software.
Embora um grande número de técnicas de conformidade arquitetural tenham sido pro-
postas para detectar violações arquiteturais (por exemplo, modelos de reflexão, ma-
trizes de dependência estrutural, linguagens de consulta em código fonte, linguagens
de restrição, linguagens de descrição arquitetural e testes de desenho), a tarefa de
reparação de violações arquiteturais ainda não tem o suporte adequado. Como con-
sequência direta, desenvolvedores costumam corrigir violações arquiteturais de forma
ad hoc e ainda sem o auxílio de ferramentas no nível arquitetural. Isso pode fazer
com que desenvolvedores gastem um tempo considerável para descobrir como reparar
as violações arquiteturais ou mesmo introduzam novas violações ao reparar violações
existentes.

Diante disso, esta tese propõe um sistema de recomendação de reparação arquite-
tural que provê diretrizes de correção para desenvolvedores e arquitetos encarregados de
reverter processos de erosão arquitetural. Formalizou-se um catálogo de recomendações
de reparação para corrigir violações detectadas por abordagens estáticas de conformi-
dade arquitetural; elaborou-se uma heurística para determinar o módulo correto para
entidades de código-fonte; desenvolveu-se uma ferramenta – chamada ArchFix – que
automatiza as recomendações propostas; e avaliou-se a aplicabilidade da abordagem
em um sistema de médio porte e em um sistema de grande porte. Para o primeiro sis-
tema – um sistema de gestão estratégica de 21 KLOC – a abordagem proposta indicou
reparações corretas para 31 das 41 violações detectadas pelo processo de conformi-
dade arquitetural. Para o segundo sistema – um sistema de atendimento a clientes de
728 KLOC utilizado por uma empresa de telecomunicações nacional – a abordagem
proposta sugeriu recomendações corretas de acordo com o arquiteto do sistema para
632 das 787 violações. Além disso, os arquitetos apontaram 80% dessas recomendações
como tendo complexidade moderada ou alta.

Palavras-chave: Erosão arquitetural, reparação arquitetural, sistema de recomen-
dação.

xv

Abstract

Architectural erosion is a recurrent problem faced by software architects. Although
several architecture conformance techniques have been proposed to detect architec-
tural violations (e.g., reflexion models, dependency structure matrices, source code
query languages, constraint languages, architecture description languages, and design
tests), less research effort has been dedicated to the task of repairing such violations.
As a consequence, developers usually perform the repairing task in ad hoc ways, with-
out tool support at the architectural level. This fact may lead developers to spend a
long time to discover how to repair the architectural violations and even to introduce
new violations when repairing one.

In view of such circumstances, this thesis proposes an architectural repair recom-
mendation system that provides fixing guidelines for developers and maintainers when
tackling architectural erosion. We have formalized a catalog of repairing recommenda-
tions to repair violations raised by static architecture conformance checking approaches;
we have elaborated a suitable module heuristic to determine the correct module for
source code entities; we have designed a tool—called ArchFix—that triggers the pro-
posed recommendations; and we have evaluated the application of our approach in two
industrial-strength systems. For the first system—a 21 KLOC open-source strategic
management system—our approach indicated correct repairing recommendations for
31 out of 41 violations detected as the result of an architecture conformance process.
For the second system—a 728 KLOC customer care system used by a major telecom-
munication company—our approach triggered correct recommendations for 632 out of
787 violations, as asserted by the system’s architect. Moreover, the architects scored
80% of these recommendations as having moderate or major complexity.

Keywords: Architectural erosion, architectural repair, recommendation system.

xvii

List of Figures

1.1 Proposed architectural repair recommendation system 3

2.1 RM approach . 8
2.2 DSM approach . 10

3.1 Proposed approach . 24
3.2 ArchFix architecture . 36
3.3 ArchFix interface . 38

4.1 Distribution of the metric values in systems from the Qualitas.class Corpus 43
4.2 Top 3 ranking of similarity coefficients using all strategies 51
4.3 General ranking using strategy [set, tt] 54
4.4 # systems in which a particular coefficient presented the best result 54

5.1 Methodology followed in the evaluation . 59
5.2 Geplanes’ reflexion model . 62

A.1 inline([ctx.getFoo()], foo, S) . 89
A.2 promote_param(setup(Foo), d, [foo.getDate()]) 90
A.3 unwrap_return(retrieve(), Foo, [obj]) 90

B.1 delegate(Bar::save(Connection)) = Persistence::persist(Bar) 93
B.2 factory(Bar, {[5]}) = DAOFactory::getBar(int) 94
B.3 gen_factory(Bar, {[‘a’], [5]}) . 94

xix

List of Tables

3.1 Code templates . 27
3.2 Repairing functions . 28
3.3 Auxiliary functions . 30
3.4 Repairing Recommendations . 32

4.1 Qualitas.class Corpus . 42
4.2 General Purpose Similarity Coefficients . 46

5.1 Target systems used in the evaluation . 58
5.2 Recommendations and correctness evaluation (Geplanes) 62
5.3 Recommendations and correctness evaluation (BrTCom) 65
5.4 Classification of the detected violations (focusing on correctness) 66
5.5 Classification of the detected violations (focusing on complexity) 69

D.1 The Qualitas.class Corpus . 103

xxi

Contents

Acknowledgments xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Problem . 1
1.2 An Overview of the Proposed Approach 3
1.3 Outline of the Thesis . 4
1.4 Publications . 5

2 Background 7
2.1 Architectural Models . 7
2.2 Architecture Conformance . 8
2.3 Refactoring . 12
2.4 Remodularization . 16
2.5 Recommendation System . 18
2.6 Final Remarks . 20

3 The Proposed Recommendation System 23
3.1 Overview . 23
3.2 Basic Concepts . 24
3.3 Architectural Repairing Recommendations 29

3.3.1 Training System . 29
3.3.2 Syntax and Auxiliary Functions 29

xxiii

3.3.3 Recommendations . 30
3.3.4 Algorithm . 33
3.3.5 Module Suitability . 34

3.4 The ArchFix Tool . 35
3.5 Discussion . 37
3.6 Final Remarks . 39

4 Evaluation of the Suitable Module Heuristic 41
4.1 The Qualitas.class Corpus . 41

4.1.1 Compilation Process . 42
4.1.2 Measurements . 43

4.2 Empirical Study on the Module Suitability 44
4.2.1 Similarity Coefficients . 45
4.2.2 Strategies . 47
4.2.3 Evaluation . 49

4.3 Final Remarks . 55

5 Evaluation of the Recommendation System 57
5.1 Research Questions . 57
5.2 Target Systems . 58
5.3 Methodology . 58

5.3.1 Triggering Recommendations 58
5.3.2 Correctness Evaluation . 59
5.3.3 Complexity Evaluation . 60

5.4 Geplanes Results . 61
5.5 BrTCom Results . 64
5.6 Analysis of Results . 66
5.7 Lessons Learned . 69
5.8 Threats to Validity . 70
5.9 Final Remarks . 71

6 Conclusion 73
6.1 Contributions . 74
6.2 Limitations . 74
6.3 Future Work . 75

Bibliography 77

xxiv

Appendix A Repairing Functions 89

Appendix B Auxiliary Functions 93

Appendix C Description of Repairing Recommendations 95

Appendix D Metrics Data from the Qualitas.class Corpus 101

xxv

Chapter 1

Introduction

In this chapter, we state the problem and present our motivation (Section 1.1). We then
provide an overview of our proposed approach (Section 1.2). Finally, we present the
outline of the thesis (Section 1.3) and our publications (Section 1.4).

1.1 Problem

Software architecture erosion is one of the most evident manifestations of software ag-
ing [76, 78, 25]. The phenomenon designates the progressive gap normally observed
between two architectures: the intended architecture defined during the architectural
design phase and the concrete architecture defined by the current implementation of
the software system [111, 48, 55]. Causes of architectural erosion include deadline
pressures, conflicting requirements, miscommunication, developers’ unawareness, and
the lack of an explicit correspondence between architectural and programming lan-
guage abstractions. Regardless the causes, when the erosion is neglected over long
periods, it may reduce the concrete architecture to a small set of strongly-coupled and
weakly-cohesive components, whose maintenance and evolution become increasingly
more difficult and costly [88, 25].

To tackle the erosion process, the first task is to check whether the concrete ar-
chitecture conforms to the intended one [50, 77, 26, 25]. More specifically, the goal
of an architecture conformance process is to reveal the implementation decisions that
denote architectural violations, i.e., the concrete statements, expressions, or declara-
tions in the source code that do not match the constraints imposed by the intended
architecture. For this purpose, several architecture conformance techniques have been
proposed, including reflexion models [68], dependency structures matrices [96], source

1

2 Chapter 1. Introduction

code query languages [23], constraint languages [102, 44, 27], architecture description
languages [2], and design tests [16].

After the conformance phase, the next task is to replace the detected violations
with implementation decisions consistent with the intended architecture. However, this
reengineering effort is usually a non-trivial and time-consuming task because software
erosion is mostly a silent process that accumulates over years. For example, Knodel
et al. described their experience of applying an architecture conformance process to a
product line in the domain of portable measurement devices [47]. As a result, they
identified almost 5,000 architectural divergences in three products of this product line.
In a previous work [102], we described our own experience in applying conformance
techniques to a human-resource management system. In this process, we were able to
detect more than 2,200 architectural violations. As a last example, Sarkar et al. re-
ported their experience in remodularizing a large banking application [88]. Recon-
structing the original architecture of this system demanded 2,100 person-days just for
coding and testing.

However, despite of its relevance and in contrast to the variety of techniques
available for architecture conformance, the task of fixing architectural violations is
usually performed in an ad hoc way. The only employed tools are often the automatic
refactorings provided by today’s IDEs or simple program analysis tools, such as those
that extract function-call information [88]. However, their application is too generic
in most scenarios. As a first example, assume that a developer has created an object
of type Product in a module where the creation of this object is not allowed. To fix
this violation, one potential solution consists in applying a Replace Constructor with
a Factory Method refactoring [32]. However, most developers do not have a complete
understanding of the system and, therefore, they may not know about the factory or
the exact factory method to call in this situation. As a second example, assume that
a particular database query is performed outside a Data Access Object (DAO) [33].
To fix this violation, developers may apply the Extract Method and then the Move
Method refactoring [32]. However, they may require considerable time to determine
the particular DAO the query must be moved to. Therefore, we claim that the task
of repairing architectural violations should not be addressed in ad hoc ways because
architecture repair is as important as architecture conformance checking in order to
reverse software architecture erosion.

1.2. An Overview of the Proposed Approach 3

1.2 An Overview of the Proposed Approach
As stated in the previous section, the task of repairing architectural violations is non-
trivial, time-consuming, and usually performed in ad hoc ways without adequate tool
support at the architecture level. In order to address the lack of support for removing
architectural violations, this thesis describes a solution based on recommendation sys-
tem principles that provides repairing guidelines for developers and maintainers when
fixing violations in the module architecture view of object-oriented systems.

As illustrated in Figure 1.1, considering a set of architectural violations raised
by a static architecture conformance tool, the proposed recommendation system—
called ArchFix—provides repairing recommendations to guide the process of fixing each
detected violation. For illustration purposes, we reconsider the motivating examples of
the previous section. In the first example, when a developer creates an object of type
Product in a module where the creation of this object is not allowed, our system not
only suggests the application of a Replace Constructor by a Factory Method, but it also
complements this information with the name of the Factory method that should be
called in this particular context. In the second example, when a developer mistakenly
implements a database operation outside a DAO, our system not only suggests the
application of the Extract Method and Move Method refactorings, but it also indicates
the most suitable target class where the extracted method should be moved to.

Figure 1.1: Proposed architectural repair recommendation system

First, we have formalized a catalog of repairing recommendations for addressing
architectural violations, including violations due to divergences and absences. This set
of 32 recommendations emerged after an in-depth investigation of possible fixes for
more than 2,200 architectural violations we detected in a previously evaluated sys-
tem [102]. Second, we have elaborated a suitable module heuristic to determine the
correct module for source code entities based on their structural similarity. Third, we
have designed a tool—called ArchFix—that implements our approach and hence pro-
vides recommendations for architectural violations in Java systems. Fourth, we have
evaluated the application of our approach in two industrial-strength systems. For the
first system—a 21 KLOC open-source strategic management system—our approach in-
dicated correct repairing recommendations for 75% of the detected violations. For the
second system—a 728 KLOC customer care system used by a major telecommunication

4 Chapter 1. Introduction

company—our approach triggered correct recommendations for 80% of the violations,
as endorsed by the architects. Furthermore, the architects scored 80% of these recom-
mendations as having moderate or major complexity [106, 98, 99, 104, 105, 77].

Such a solution may represent a promising approach, i.e., it may represent a
significant improvement to the state of the practice in architecture repair. On the
other hand, it is worthwhile to mention that, by definition, an approach based on
recommendations does not have the ambition to provide a fully sound and complete
solution to remove architectural violations, which is certainly a task ahead of the state
of the art in reengineering tools. In fact, even a bug-free implementation for typical
refactorings, i.e., refactorings whose scope are limited to a few classes, has proved to
be a complex task [95, 93].

1.3 Outline of the Thesis

We organized the remainder of this work as follows:

• Chapter 2 covers background work related to our research, such as archi-
tectural models, architecture conformance approaches, refactoring techniques,
remodularization methods, and recommendation systems;

• Chapter 3 provides a specification of the proposed architectural repair recom-
mendation system, including the description of a subset of recommendations,
underlying algorithms, and the design of the ArchFix tool;

• Chapter 4 introduces the Qualitas.class Corpus and provides empirical evi-
dences supporting the implementation decisions related to our suitable module
heuristic. This heuristic is used by our approach to trigger recommendations
that may involve moving methods or classes;

• Chapter 5 evaluates our approach by presenting and discussing results on
applying the repairing recommendations in two real-world systems; and

• Chapter 6 presents the final considerations of this thesis, including the contri-
butions, limitations, and future work.

1.4. Publications 5

1.4 Publications
This thesis generated the following publications and therefore contains material from
them:

• Reference #106: Terra, R., Valente, M. T., Czarnecki, K., and Bigonha, R. S.
(2013c). A recommendation system for repairing violations detected by static
architecture conformance checking. Software: Practice and Experience, pages 1–
28.

• Reference #98: Terra, R., Brunet, J., Miranda, L. F., Valente, M. T., Serey,
D., Castilho, D., and Bigonha, R. S. (2013a). Measuring the structural similar-
ity between source code entities. In 25th International Conference on Software
Engineering and Knowledge Engineering (SEKE), pages 753–758.

• Reference #99: Terra, R., Miranda, L. F., Valente, M. T., and Bigonha, R. S.
(2013b). Qualitas.class Corpus: A compiled version of the Qualitas Corpus. Soft-
ware Engineering Notes, 38(5):1–4.

• Reference #104: Terra, R., Valente, M. T., Bigonha, R. S., and Czarnecki, K.
(2012a). DCLfix: A recommendation system for repairing architectural violations.
In III Brazilian Conference on Software: Theory and Practice (CBSoft), Tools
Session, pages 1–6. (2nd best tool)

• Reference #105: Terra, R., Valente, M. T., Czarnecki, K., and Bigonha, R. S.
(2012b). Recommending refactorings to reverse software architecture erosion. In
16th European Conference on Software Maintenance and Reengineering (CSMR),
Early Research Achievements Track, pages 335–340.

• Reference #77: Passos, L., Terra, R., Diniz, R., Valente, M. T., and Mendonça,
N. (2010). Static architecture-conformance checking: An illustrative overview.
IEEE Software, 27(5):82–89.

Chapter 2

Background

In this chapter, we discuss background work related to our thesis. First, Section 2.1
describes different Architectural Models, including the one this thesis is based on. Sec-
ond, Section 2.2 introduces Architecture Conformance approaches, which are related
to our work in terms of providing the input of our approach. Third, Section 2.3
presents Refactoring techniques, since our approach also relies on primitive refactor-
ings to repair architectural violations. Fourth, Section 2.4 discusses Remodularization
approaches because they represent potential alternatives to architecture degradation.
Fifth, Section 2.5 provides an overview on Recommendation Systems, since our ap-
proach is based on recommendation principles. Finally, Section 2.6 concludes this
chapter with a general discussion.

2.1 Architectural Models

Kruchten defines software architecture using the following five concurrent views: logical
view (which defines the conceptual decomposition of the system), process view (which
partitions the software in independent tasks), physical view (which maps software tasks
to hardware elements), development view (which partitions a system into physical mod-
ules or subsystems), and use case view (which defines the functions provided to the
users by listing use cases) [53]. Each view addresses concerns of interest to different
stakeholders. Particularly, our work is centered on the development view (a.k.a. module
view), which describes the software’s static organization in its development environ-
ment. It concerns low-level design decisions, patterns, and best practices. In practice,
there are studies that refer to the development view as a high-level software model [68].
Similarly, there are studies that ascribe the violations tackled by our approach as due
to design erosion rather than architectural erosion [111, 16].

7

8 Chapter 2. Background

2.2 Architecture Conformance

Over the past decade, several techniques have been proposed to deal with the
architecture erosion problem [77, 79]. Since our approach works on the violations
detected as the result of a static architecture conformance process, an overview on
architecture conformance techniques is relevant. This section therefore presents an
overview of the following state-of-the-art techniques:

Reflexion Models (RM): The reflexion model technique was initially proposed by
Murphy et al. [68, 69]. The main idea is to compare two models—representing a high-
level and a low-level view of the target system [68, 69]. As a result, the technique
highlights the detected differences in terms of divergences and absences in what the
authors called a reflexion model. Basically, a divergence occurs when a relation not
prescribed by the high-level model exists in the source code, whereas an absence occurs
when a relation prescribed by the high-level model does not exist in the source code.
There are commercial tools based on reflexion model principles [48, 55, 50, 49], besides
several works extending the original reflexion model to support, for example, continuous
conformance checking [11, 10], hierarchical structures [52], behavioral design [1], and
software variants [51, 34].

As an illustrative example, we rely on Fraunhofer IESE’s SAVE (Software Archi-
tecture Visualization and Evaluation) tool.1 The architect must first build a high-level
model that captures the intended architecture of the system (Figure 2.1a). Such model
includes the main components of the system and the relations between them (e.g., calls,
creates, and inherits). In this example, we assume a strictly layered system with mod-
ules M2, M1, and M0 (where M0 represents the module in the lowest level of the hierarchy).
Hence, in this system, only Mi must use services provided by module Mi−1, i > 0.

(a) High-level model (b) Source code model (c) Mapping (d) Reflexion model

Figure 2.1: RM approach
1http://www.fc-md.umd.edu/save

http://www.fc-md.umd.edu/save/

2.2. Architecture Conformance 9

SAVE provides the automatic extraction of the source code model, i.e., the im-
plemented architecture of the system (Figure 2.1b). Next, the architect must define
a declarative mapping between the source code model and the high-level model (Fig-
ure 2.1c). In our example, module M2 contains all classes from packages org.m2.x
and org.m2.y, module M1 corresponds to package org.m1, and module M0 corresponds
to package org.m0. Finally, SAVE automatically computes the reflexion model (Fig-
ure 2.1d). In our example, a divergence was found because module M2 is directly using
services provided by module M0 (as indicated by an exclamation mark). In addition, an
absence was also found since module M1 is not using the services provided by module M0
(as indicated by a cross mark).

Dependency Structure Matrices (DSMs): The concept of DSM was originally
proposed by Baldwin and Clark to demonstrate the importance of modular design
principles in the hardware industry [7]. Afterwards, Sullivan et al. argued that DSM
could also be used in the software industry [96]. DSMs provide a scalable view of the
established dependencies among classes of a system [87, 96]. A DSM is a weighted
square matrix whose both rows and columns denote classes from an object-oriented
system. An x in row A and column B of a DSM denotes that class (or module) B
depends on class (or module) A, i.e., B has explicit references to syntactic elements
of A. Another possibility is to represent in cell (A,B) the number of references that B
contains to A.

As an illustrative example, we rely on a DSM as computed by Lattix Inc’s Depen-
dency Manager (LDM) tool.2 LDM includes a simple language to declare design rules that
the target system implementation must follow. Basically, design rules have two forms:
A can-use B and A cannot-use B, indicating that classes in the set A can (or cannot)
depend on classes in B. Violations in design rules are automatically detected by LDM
and visually represented in the extracted DSM. We assume again the aforementioned
strictly layered system. Figure 2.2a illustrates the DSM automatically extracted from
the source code. As can be observed, package org.m2.x depends on packages org.m1
and org.m0, and package org.m2.y depends on package org.m1. In order to improve
the visualization, LDM supports grouping and renaming of packages. Figure 2.2b illus-
trates the extracted DSM after packages org.m2.x and org.m2.y have been grouped
in a module named M2, and packages org.m1 and org.m0 have been renamed to M1
and M0, respectively.

In order to check architectural conformance, architects can define design rules.
For example, Figure 2.2c shows a design rule that allows only M1 to depend on M0.

2http://www.lattix.com

http://www.lattix.com

10 Chapter 2. Background

(a) Extracted DSM (b) DSM after grouping (c) Design rules (d) Checked DSM

Figure 2.2: DSM approach

First, this rule specifies that $root, which denotes all types of the system, cannot
access services provided by module M0. Next, an exception to the previous rule is
defined, specifying that classes in module M1 are able to use services of M0. As a
result, LDM highlights the existing dependencies from M2 to M0 as potential viola-
tions (Figure 2.2d). In contrast to SAVE, LDM does not provide means to detect absences.

Source Code Query Languages (SCQLs): SCQLs are usually employed to auto-
mate a broad range of software development tasks, such as checking coding conventions,
searching for bugs, computing software metrics, and detecting refactoring opportuni-
ties [23]. In this section, we present how to apply a particular SCQL—Semmle’s .QL3—
to find potential architectural violations. As a concrete example, De Schutter success-
fully used Semmle’s .QL to implement automated architectural reviews in a Belgian
electronic communications company [24].

.QL adopts an SQL-like syntax, which makes its query constructs familiar to
most software developers. Therefore, in order to check conformance, the architect
is supposed to write queries for each architectural constraint. Assuming again the
aforementioned strictly layered system, the architect can write the following query to
detect unauthorized accesses to M0:

1 from RefType ref , RefType m0
2 where
3 ref. fromSource ()
4 and not (ref. getPackage (). getName (). matches ("org.m0")
5 or ref. getPackage (). getName (). matches ("org.m1"))
6 and m0. getPackage (). getName (). matches ("org.m0")
7 and depends (ref , m0)
8 select ref as Type ,
9 " Architectural Violation : " + ref. getQualifiedName ()
10 + " uses " + m0. getQualifiedName () as Violation

3http://semmle.com

2.2. Architecture Conformance 11

In .QL queries, RefType represents any type for which references can be estab-
lished in the source code. RefType has functions such as getPackage() (that returns
the package where the type has been declared) and predicates such as fromSource()
(that checks whether the target type is part of the current project). The previous
query checks whether there is a type ref in the current project that is not part of
the module M0 or M1 (lines 4-5) and that depends on a type of module M0 (lines 6-7).
The query returns the type ref that contains the architectural violation and its
description (lines 8-10). Despite the expressiveness of .QL, we consider SAVE and LDM
more suitable to architecture conformance purposes. On the other hand, SCQLs have
a broader scope and hence they can be used for many other software engineering tasks.

Constraint Languages: The rationale behind constraint languages is to pro-
vide architects with means to restrict the spectrum of structural dependencies.
In this section, we describe DCL (Dependency Constraint Language), a domain-
specific language that supports the definition of structural constraints between mod-
ules [102, 100, 101, 91, 103]. Nevertheless, there is a wide range of constraint languages.
For instance, SCL (Structural Constraint Language) [44], its predecessor FCL (Frame-
work Constraint Language) [45], and LogEn [27] are first-order logic-based languages
for specifying structural design constraints.

DCL provides constraints to capture both divergences and absences [68, 77]. To
capture divergences, DCL allows architects to specify that dependencies only can, can
only or cannot be established by specified modules. In addition, to capture absences,
architects can specify that particular dependencies must be present in the source code.
Moreover, DCL supports a fine-grained model for the specification of structural depen-
dencies common in object-oriented systems, which can be generic (depend) or more
specific (e.g., access, declare, create, extend, etc.). However, since DCL relies on
static analysis techniques, it is not able to handle dynamic information or dependencies
generated using reflection. A complete description of DCL is found at [102].

In order to check architectural conformance, the architect specifies the DCL con-
straints, which are continuously enforced by the dclcheck tool.4 Assuming again
the aforementioned strictly layered system, the architect could specify the following
constraints:

1 module M0: org.m0.*
2 module M1: org.m1.*
3
4 only M1 can - depend M0
5 M1 must - depend M0

4www.dclsuite.org

www.dclsuite.org

12 Chapter 2. Background

First, we define the modules. Modules M0 and M1 include respectively all classes
from packages org.m0 and org.m1 (lines 1–2). To capture divergences, a constraint
states that only M1 can establish dependencies with M0 (line 4). On the other hand, to
capture absences, another constraint requires that classes from M1 depend on M0 (line 5).

Other Techniques: Architecture Description Language (ADL), such as Darwin [60],
Rapide [56, 57], Wright [3], and ACME [37], represent alternatives that can be used to
provide architectural conformance by construction [63]. Such languages allow develop-
ers to express the architectural behavior and the structure of software systems in an
abstract and declarative language. Code generation tools can then be used to map ar-
chitectural descriptions to source code in a given programming language. Nevertheless,
ADLs require the use of specific architecture-based development tools and compilers,
in order to keep the generated code synchronized with the architectural specification.
A variant of this approach—such as ArchJava [2]—advocates the extension of cur-
rent programming languages with architectural modeling constructs, which in practice
requires developers to use a new programming language.

In a novel line of research, Brunet et al. introduced the concept of design tests,
which are test-like programs that automatically check whether the current implemen-
tation conforms to a specific design rule [15, 16]. In contrast to DCL, where constraints
are defined using a DSL, design rules are implemented as Java code in traditional JUnit
test cases. As another approach to architecture conformance, Maffort et al. proposed
a data mining approach for architecture conformance based on a combination of static
and historical source code analysis that frees architects from specifying the architec-
tural constraints [58, 59]. For this purpose, data mining techniques automatically
extract architectural patterns and their tool—called ArchLint—uses these patterns to
indicate both absences and divergences in source-code based architectures.

2.3 Refactoring

The understanding of refactoring techniques as well their complexity and shortcomings
is relevant to our study, since our approach also relies on well-known refactorings to
repair architectural violations. This section first presents the basics of refactoring, i.e.,
concepts, catalogs, goals, etc. Next, it discusses challenges to formalize and therefore
to automatically perform refactorings. Finally, it provides an overview of research
related to identifying refactoring opportunities.

2.3. Refactoring 13

Refactoring Basics: The concept of refactoring was first coined by Opdyke [75]
and has been consolidated by Fowler [32] who has cataloged a collection of pro-
gram transformations to improve the structural design of systems, i.e., refactorings.
Refactoring is the process of changing a software system without modifying its exter-
nal behavior in order to improve the design and understanding of the code. Refactorings
are usually guided by bad smells, i.e., certain structures in the code or even intuitive
signals that indicate the need for refactoring [32, 46]. As an example, the Extract
Method refactoring turns a code fragment into a new method whose name explains its
purpose. Some bad smells might motivate this refactoring, e.g., too long method or
duplicated code. As another example, the Move Method refactoring moves a method f
from a class C to another class C ′ because f depends more on C ′ than on its current
class C (Feature Envy).

Kerievsky proposes a set of coarse-grained refactorings that focus on improving
the structure of systems with design patterns by applying sequences of well-known
refactorings [46]. For example, he proposes the Move Creation Knowledge to Factory
refactoring when data and code used to instantiate a class is spread across numerous
classes (a bad smell). In this case, the author suggests the creation of a factory class
to contain the factory methods and then update all direct instantiations to call the
factory method. Analogously in this thesis, we intend to rely as much as possible on
traditional refactorings to repair code that violates the existing system design.

By using four large data sets, Murphy-Hill et al. cast doubt on several previously
stated assumptions about how programmers refactor the code, while supporting oth-
ers [71]. They found that, for instance, programmers usually do not indicate refactoring
activities in commit logs; refactoring tools are underused; and different refactorings
are performed with and without tools. As one of the most relevant results related
to this study, although they found that refactoring is indeed commonly practiced,
manual refactoring is performed much more often than with a tool. Only very sim-
ple refactorings showed the opposite tendency, e.g., Rename Method and Rename Type.

Complexity: Although the understanding of refactorings is straightforward, the task
of formalizing and automating them is not trivial [90, 12, 95, 108, 112, 75, 94, 93]. The
mechanics behind refactorings is usually specified in natural language and does not
cover all possible scenarios and preconditions. In fact, even a bug-free implementation
for typical refactorings—i.e., refactorings whose scope are limited to few classes—has
proved to be a complex task [95].

Steimann and Thies demonstrated that most refactoring tools, such as the ones
provided by contemporary IDEs, are flawed in terms of maintaining accessibility mod-

14 Chapter 2. Background

ifiers (public, private, etc.) [95]. They argue that the problem is not caused by negli-
gence of the programmers who implemented the tools, but due to the high complexity
of object-oriented programming languages. In order to address accessibility problems,
they formalized accessibility in Java as a set of constraints rules and provided a frame-
work to check whether a refactoring affects the accessibility of program elements.

Whilst many refactorings have been proposed, Verbaere et al. argue that it would
be desirable for programmers to script their own refactorings [112]. For this purpose,
they proposed JunGL—a domain-specific language for refactoring—which can be seen
as a hybrid of a functional language and a logic query language. For example, the
authors were able to implement the well-known Rename Variable and Extract Method
refactorings. Nevertheless, as a limitation, they have not regarded two major features
of object-oriented languages: inheritance and accessibility.

Schäfer et al. described a new approach to specify how the refactorings should
work using the concepts of dependency preservation, language extensions, and mi-
crorefactorings [89]. Because refactoring implementations are commonly complex, hard
to understand and maintain, their main goal is to provide modular specifications that
are precise enough to serve as the basis of a reimplementation of existing refactorings.
Indeed, they re-implemented all Eclipse refactorings and they noticed an improvement
on size and clarity of the implementation.

Since it is known that mainstream refactoring engines contain critical bugs, Soares
et al. proposed a technique to test Java refactoring engines [94, 93]. Basically, the
refactoring under test is applied to hundreds of programs—exhaustively generated by
a Java program generator— in order to detect behavioral changes. Their evaluation
on 29 refactorings in Eclipse, NetBeans and the JastAdd Refactoring Tools identified
57 bugs related to compilation errors and 63 bugs related to behavioral changes.

In short, the aforementioned studies indicate problems and limitations on
automating refactorings. For this reason, we do not intend to address such problems,
but to delegate the repairing execution tasks to state-of-the-practice tools, such as the
automatic refactorings provided by today’s IDEs.

Refactoring Opportunities: Refactorings are usually motivated by bad smells,
which are implementation structures that negatively affect system’s quality properties,
such as understandability, testability, extensibility, and reusability. Fowler has first
introduced this concept and proposed an initial set of code bad smells [32]. Thencefor-
ward, many studies were conducted in order to identify refactoring opportunities based
on a subset of existing bad smells or on a set of new ones [46, 84, 35, 36, 108, 109, 86,
74, 114].

2.3. Refactoring 15

Kerievsky proposed a set of refactorings that focus on design patterns [46]. On
the one side, some of the proposed refactorings are motivated by existing bad smells,
e.g., a too long method is a bad smell that may motivate a Replace Conditional Logic
with Strategy refactoring. On the other side, other refactorings are motivated by new
bad smells, e.g., the lack of information hiding—a new bad smell named Indecent
Exposure—may motivate an Encapsulate Classes with Factory refactoring. Roock and
Lippert proposed a set of complex refactorings, i.e., large restructurings that takes
longer than a day and change significant parts of a system [84]. They mainly presented
refactorings of API and relational database refactorings. More important, they identi-
fied several architectural bad smells—i.e., bad smells that occur at a higher level of the
design of a system—and indicated techniques to detect and to avoid them.

In the same line, Garcia et al. described four representative architectural smells—
namely Connector Envy, Scattered Functionality, Ambiguous Interfaces, and Extra-
neous Connector—that emerged from the re-engineering of two large industrial sys-
tems [35, 36]. As an example, an Ambiguous Interface is an interface that offers only a
single, general entry-point into a component. As the system evolves, ambiguous inter-
faces reduce the system’s analyzability and understandability because developers have
to inspect the component implementation to be aware of its provided services.

Tsantalis and Chatzigeorgiou proposed a semi-automatic approach to identify
Move Method refactoring opportunities [108]. Their general goal is to tackle coupling
and cohesion anomalies manifested in the form of the Feature Envy bad smell [32].
Similarly to our approach, they employed the notion of a similarity between an entity
(attribute or method) and a class. For each method of the system, JDeodorant suggests
the most appropriate class to be moved to—which is the class that has lower Jaccard
distance and satisfies particular preconditions. JDeodorant has been recently extended
to also identify Extract Method refactorings using an adaptation of program slicing
techniques [109] and Extract Class refactorings [31].

In the same line, Sales et al. proposed a similar approach also based on the
notion of similarity [86, 85]. However, while JDeodorant relies on the set of accesses to
attributes and methods, JMove relies on the set of types that the method establishes
dependency with. Their evaluation on thirteen open-source systems indicated that
JMove was 49% more effective to detect misplaced methods than JDeodorant.

O’Keeffe and Ó Cinnéide proposed a search-based software maintenance tool that
relies on search algorithms, such as Hill Climbing and Simulated Annealing, to sug-
gest six inheritance-related refactorings [74]. Based on the Quality Model for Object-
Oriented Design (QMOOD) [8], they evaluated their approach in two packages of the

16 Chapter 2. Background

spec.benchmarks and demonstrated that some programs can be automatically refac-
tored to improve quality in terms of flexibility, reusability, and understandability.

Wong et al. proposed an approach that detects modularity violations through
algorithms that compare how components should change together according to their
modular structure (structural coupling) with how components actually change together
as revealed in version histories (change coupling) [114]. They evaluated their tool—
called Clio—in 15 releases of Hadoop Common and 10 releases of Eclipse JDT. As
a result, they identified hundreds of violations that represent design problems or that
were refactored in later versions.

In general terms, the ultimate goal of the aforementioned tools is to suggest
refactorings that improve the internal quality of the code—for example, in terms of
coupling and cohesion. On the other hand, the repairing recommendation system we
propose in this thesis aims to help developers to handle violations exposed as the result
of an architecture conformance process.

2.4 Remodularization

Remodularization approaches have been proposed as a potential solution for software
aging [76, 78, 25, 111]. Remodularization is a process that changes the modular design
of the system for the purposes of adaptation, evolution, or correction.5 As a matter of
fact, architectural erosion is one of the most evident manifestations of software aging.
When architecture erosion is neglected over the years, it may reduce the architecture
to a set of strongly-coupled and weakly-cohesive components [13]. At a certain point,
architecture conformance and refactoring techniques present themselves mostly inef-
fective and a complete remodularization can be the only solution [42]. Therefore, this
section describes some of the most relevant remodularization approaches reported in
the literature.

Rama and Patel analyzed several remodularization efforts in order to define re-
curring modularization operators [80]. More specifically, they formalized the following
operators: module decomposition/union, file/function/data transfer, and function to
API promotion. Their case study on Linux shows that some operators are continuously
applied as the software evolves and therefore they argue that remodularization is not
necessarily a one shot process. However, Rama and Patel do not provide tool support

5Remodularization does not imply the system behavior should be changed. In fact, in many
situations it can be very convenient to change the modular design of a system without changing its
external behavior. In this sense, it is quite similar to a refactoring. Perhaps, one could call this an
architectural refactoring or perhaps a large scale refactoring.

2.4. Remodularization 17

for applying the proposed operators. Particularly in this thesis, we intend to design an
approach that provides tool support and that can also be continuously applied as the
system evolves.

Moghadam et al. proposed a remodularization approach that automatically refac-
tors the source code of a system towards a desired design, provided in the format of a
UML class diagram [65]. The proposed approach automatically compares the current
and desired models and expresses the design differences as a set of detected refac-
torings [115]. Although their evaluation indicated a high degree of accuracy, it was
conducted in a very restricted context and hence the results may not be as good in
real scenarios. Therefore, we intend to evaluate our architectural repair recommenda-
tion system using real-world systems in order to avoid similar complaint. Although we
would not be either able to extrapolate our results to other systems, we can argue that
our evaluation was conducted in a real development scenario.

Bourquin and Keller argue that bad smells and code metrics should be comple-
mented with the analysis of architectural violations to spot opportunities for high-
impact refactorings, which are refactorings with a strong impact on the quality of the
system’s architecture [14]. They report an experience of applying an iterative refactor-
ing process that uses—besides traditional code metrics and well-known bad smells—an
architectural conformance tool called Sotograph [9].

Hierarchical clustering is another technique commonly proposed to evaluate al-
ternative software decompositions [5, 64]. However, the effectiveness of clustering in
reengineering tasks is often challenged. For example, Glorie et al. reported an ex-
periment in which clustering and formal concept analyses have failed to produce an
acceptable partitioning of a monolithic medical imaging application [39]. As another
example, using Eclipse as case study, Anquetil et al. reported that restructurings man-
ually performed by developers do not necessarily improve modularity in terms of cohe-
sion/coupling/cyclic dependencies [4]. Regardless the reasons, this finding undermines
the validity of clustering techniques that aims to minimize coupling and maximize cohe-
sion. For this reason, we do not intend to rely on traditional metrics in this thesis, but
on structural similarity among source code entities to recommend move refactorings.

On the other side, there are studies providing evidence that remodularization is
not trivial and should be prevented as far as possible [88, 41]. For example, Sarkar
et al. described a process to reengineer a monolithic banking application, which has
grown from 2.5 to 25 MLOC and was presenting several maintenance and evolution
problems [88]. The root causes of these problems include the fact that the code was
not organized by functional domains, the system did not have a layered architecture,
and developers commonly mix presentation and business logic in the code. More im-

18 Chapter 2. Background

portant, reconstructing the original architecture of this banking application demanded
2,100 person-days. As another example, High and Sutton described the modulariza-
tion approach adopted to reengineer Xenon, a large system that had outgrown its
initial design [41]. The authors indicated design erosion as the most relevant signal
of decay. More important, they employed tools for communication and enforcement—
such as SVN commit hooks, FindBugs6, and Structure1017—to prevent architecture
decay and consequently to avoid the need of further remodularizations. Besides pro-
viding evidence of the complexity behind remodularizations, these studies motivate
the development of new approaches and techniques—such as the one proposed in this
thesis—that aim to prevent remodularization processes.

Chern and De Volter claimed that the static-dynamic coupling—i.e., the degree
to which changes in a program’s modular structure imply changes in its dynamic
behavior—is a major obstacle to software remodularization [18]. To alleviate this
kind of coupling, they proposed a new language, called SubjectJ, which allows class
implementations to be split across different files.

In conclusion, most of the difficulties faced during remodularizations are caused
by the accumulation of the architectural erosion process over the years. As an evidence,
Silva and Balasubramaniam claim that architecture restoration strategies should com-
plement architecture conformance strategies in order to control architecture erosion [25].
For this reason, our goal in this thesis is to propose an approach that prevents large
restructurings by providing suggestions to repair a violation as soon as it is detected.

2.5 Recommendation System
Recommendation Systems for Software Engineering (RSSEs) is an emerging research
area [82]. An RSSE is a software application that provides potential valuable in-
formation for a software engineering task in a given context. These systems com-
bine computer science and engineering methods to proactively trigger suggestions that
meet developers’ particular needs. From reusing code (e.g., CodeBroker [116]) to rec-
ommending existing artifacts for development tasks (e.g., Hipikat [21]), RSSEs help
developers in a wide range of activities. This section presents some RSSEs with the
central objective to demonstrate the feasibility of a solution based on recommendation
system principles with focus on software architecture repair.

Murphy-Hill et al. proposed seven principles for the design of code smell detec-
tors [70]. For example, a code smell detector cannot block the programmer (unob-

6http://findbugs.sourceforge.net
7http://www.headwaysoftware.com

2.5. Recommendation System 19

trusiveness) and must explain why the smell exists (expressiveness). Particularly in
this thesis, we intend to contemplate these principles in the design of our architectural
repair recommendation system.

Some recommendation systems aim to raise the effectiveness and efficiency of
software quality assurance tasks. As an example, Nagappan et al. proposed an ap-
proach called Suade that provides suggestions for software investigation [72]. Suade
collects input data from several sources (bug database, version history, and source
code), maps historical failures to existing entities, and then use a combination of
metrics to best predict the failure probability of new entities. As another example,
Zimmermann et al. proposed an approach called eRose that identifies program arti-
facts that are usually changed together [117]. For instance, when developers need to
add a new preference to the Eclipse IDE and therefore have to change the fKeys[]
field and the initDefaults() method, eRose would recommend changing also the
Plugin.properties file, because, according to previous software repository mining
results, they are always changed together. In contrast, instead of detecting poten-
tial issues, our goal is to assist developers on repairing architectural violations already
detected by a conformance technique.

Several recommendation systems have also been proposed to assist developers in
using frameworks and APIs. McMillan et al. developed a recommendation system to
provide source code examples to developers by querying against API calls and their
official documentations [62]. On the other hand, Ye et al. proposed an approach that
frees the developers from making queries [116]. They designed a reuse-conducive de-
velopment environment called CodeBroker that analyzes comments and the signature
of the method under development to detect similarities to class library elements in
order to help developers implement the described functionality. Similarly, Holmes et
al. proposed a recommendation system, called Strathcona [43], which locates relevant
code in an example repository matching the structure of the code under development.
The tool also forms the query automatically based on the structural context. As a dif-
ferentiating factor from other approaches, the repository of examples is automatically
extracted from existing applications. Thummalapenta et al. proposed an approach,
called PARSEWeb, that takes queries of the form “Source Object Type → Destination
Object Query” and suggests method invocation sequences that can take the Source ob-
ject type as input and result in the Destination object type. However, the tool relies
on code search engines, instead of a local repository [107]. Montandon et al. proposed
a platform—called APIMiner—that instruments the standard Java-based API docu-
mentation format with concrete examples of usage [66]. The examples provided by
APIMiner are summarized by a static slicing algorithm.

20 Chapter 2. Background

Dagenais et al. claim that finding suitable replacements for program elements
deleted as part of a framework evolution can be a challenging task. Therefore, they pro-
posed an approach called SemDiff that recommends replacement methods for adapt-
ing code to a new framework version, i.e., the tool finds suitable replacements for
framework elements that are accessed by a client program but removed as part of the
framework’s evolution [22]. Analogously, we intend to provide suitable replacements
for implementation decisions that denote violations in the planned architecture of a
software system.

RSSEs usually present little or no information about the consequences of the
recommended changes. An exception is the system proposed by Muşlu et al. to inform
developers on the consequences of code transformations [67]. They built an Eclipse
plug-in—called QuickFixScout—that augments the Quick Fix dialog by adding the
number of compilation errors that remain after each proposal’s application (a technique
they called speculative analysis). Their experiments demonstrate that developers can
remove compilation-errors 10% faster when using their tool. Although their technique
originally focuses on compilation errors, we intend to reuse it to prioritize our repairing
recommendations when more than one can be triggered to fix an architectural violation.

In spite of the fact that several recommendation systems have been proposed to
assist developers in many software engineering tasks, there is no system whose precise
goal is to help developers in tackling the architectural erosion process. In practice, to
repair architectural violations, developers rely solely on their expertise to determine the
most appropriate repair action, which may be a time-consuming task. In this thesis,
we intend to address this shortcoming through a recommendation system that provides
repairing guidelines for developers and maintainers when fixing architectural violations.

2.6 Final Remarks

This chapter provided the background necessary to the fully understanding of the ar-
chitectural repair solution proposed in this thesis. In Section 2.1, we described different
Architectural Models, including the one this thesis is based on. According to the soft-
ware architecture definition by Kruchten [53], our work is centered on the development
view, which describes the software’s static organization in its development environment.
This view concerns low-level design decisions, patterns, and best practices.

In Section 2.2, we presented several architecture conformance checking ap-
proaches, which is related to our work in terms of detecting violations. Due to the

2.6. Final Remarks 21

existence of a large number of conformance approaches, our goal in this thesis is to
design an approach generic enough to be integrated to existing techniques and tools.

In Section 2.3, we emphasized the importance of refactorings to improve the
design of software systems. We focused on the relevance of bad smells to spot oppor-
tunities for refactoring. In this thesis, we intend to identify recurrent architectural
violation repair tasks to define a catalog of architectural repairing recommendations.

In Section 2.4, we described several remodularization tools and techniques. We
reported studies that show that remodularizations are usually performed when archi-
tecture erosion is neglected over the years and consequently architecture conformance
and refactoring techniques present themselves mostly ineffective.

Finally, in Section 2.5, we presented several Recommendation Systems for Soft-
ware Engineering. Despite the fact that RSSEs can assist developers in a variety of
software engineering tasks, we have not found recommendation systems whose precise
goal is to help developers in tackling the architectural erosion process.

In the next chapter, we present a specification of the architectural repair rec-
ommendation system proposed in this thesis, including the underlying algorithms, a
detailed description of a subset of the proposed recommendations, and the design of
the ArchFix tool.

Chapter 3

The Proposed Recommendation
System

Chapter 2 provided the background for the full understanding of this thesis. This chap-
ter then describes our approach: an architectural repair recommendation system that
provides repairing guidelines for developers and maintainers when fixing architectural
violations.

We organized this chapter as follows. Section 3.1 provides an overview of the
proposed approach. Section 3.2 provides definitions for central concepts needed to fol-
low our approach, such as architectural model, architectural violations, architecturally
defective code, and repairing recommendations. Section 3.3 presents a specification
of the proposed architectural repair recommendation system, including the descrip-
tion of a subset of recommendations, underlying algorithms, and similarity functions.
Section 3.4 describes the design and implementation of the ArchFix tool. Finally, Sec-
tion 3.5 provides a critical discussion about the proposed approach and Section 3.6
concludes with a general discussion.

3.1 Overview
As outlined in Chapter 2, although several architecture conformance techniques have
been proposed to detect architectural violations (e.g., reflexion models [68], dependency
structure matrices [87], source code query languages [23], constraint languages [102],
architecture description languages [2], and design tests [16]), the task of repairing archi-
tectural violations is still conducted without the adequate support. More specifically,
developers usually perform the repairing task in ad hoc ways, without tool support at
the architectural level. As a consequence, developers may spend a long time discovering

23

24 Chapter 3. The Proposed Recommendation System

how to repair architectural violations and they can even introduce new violations when
repairing one. Thereupon, we argue that the task of repairing architectural violations
should not be addressed in an ad hoc way because architecture repair—although not
trivial—is as important as architecture conformance checking.

In view of such circumstances, we propose an architectural repair recommenda-
tion system whose main purpose is to provide repairing guidelines for developers and
maintainers when fixing violations in the module architecture view of object-oriented
systems. As illustrated in Figure 3.1, considering a set of architectural violations raised
by a static architecture conformance tool, the proposed recommendation engine—called
ArchFix—provides repairing recommendations to guide the process of fixing each de-
tected violation.

Figure 3.1: Proposed approach

For example, when a class implemented in a wrong module is detected, ArchFix
may suggest a Move Method refactoring to fix the violation, including a suggestion
of a target class. As another example, when misusing the programming to interfaces
principle [33], our approach may suggest the replacement of a type with one of its most
appropriate supertypes. As a last example, when bypassing layers, our recommendation
system may suggest the replacement of an unauthorized call with a call to a delegate
method. A complete list of the proposed recommendations is presented in Section 3.3.3.

3.2 Basic Concepts

In this section, we provide definitions for the following fundamental concepts employed
in this thesis: recommendation system, architectural model, architectural violation,
architecturally defective code, and repairing recommendation.

Recommendation System: A recommendation system is a software system that
provides potentially valuable information in a given context [82, 81, 17]. As mentioned
in Section 2.5 (page 18), in the particular context of software engineering, recommen-
dation systems can recommend, for example, relevant source code fragments to help
developers to use frameworks and APIs (e.g., Strathcona [43]), software artifacts that
should be changed together (e.g., eRose [117]), and replacement methods for adapting

3.2. Basic Concepts 25

code to a new library version (e.g., SemDiff [22]). In this thesis, we propose a novel
recommendation system, called ArchFix, which provides repairing recommendations to
fix architectural violations. The proposed system is defined by the following function:

Arch. Model x Arch. Violation x Arch. Defective Code −→ Repairing Recommendation

In short, our system receives as input the intended architectural model (Arch. Model),
the description of the violation (Arch. Violation), and the piece of source code that
raised the architectural violation (Arch. Defective Code). ArchFix then returns a
Repairing Recommendation that might be useful to fix such violation. In the remainder
of this section, we discuss such elements in more detail.

Architectural Model: Kruchten defines software architecture using five concurrent
views, each one addressing a specific set of concerns of interest to different stakehold-
ers [53]. Particularly, our work is centered on the development view (a.k.a. module
view), which describes the software’s static organization in its development environ-
ment. It concerns low-level design decisions, patterns, and best practices. From this
viewpoint, an object-oriented software architecture is defined by a set of modules and
their interactions, where we consider a module as a set of classes [102]. Therefore, we
model relations at the level of classes. More specifically, a dependency (A, dep, B) is
established whenever a class A uses services provided by a target class B. We consider
that dependencies can be established using the following types of common operations
in object-oriented languages (i.e., these types are possible values of the dep field): call-
ing methods or attributes (access), declaring variables (declare), creating objects
(create), extending classes (extend), implementing interfaces (implement), throwing
exceptions (throw), or using annotations (useannotation). For example, the relations
(A, create, B) and (A, access, B) indicate that class A creates and calls methods of an
object of type B, respectively.

The architectural model considered by ArchFix is expressed in terms of architec-
tural constraints, which are formalized as follows:

Module1 [cannot|must]−dep Module2

where dep denotes the dependency type, i.e., dep can be access, declare, create,
etc. As an illustrative example, assume that MA and MB are modules, i.e., sets of classes.
A constraint in the form MA cannot-dep MB indicates that types from module MA

cannot establish a dependency of the dep kind with types from module MB, e.g.,
ViewLayer cannot-access ModelLayer. On the other hand, a constraint in the form

26 Chapter 3. The Proposed Recommendation System

MA must-dep MB indicates that types from module MA must establish a dependency of
the dep kind with types from module MB, e.g., DTO must-implement Serializable.

Architectural Violation: Basically, there are two types of violations in the static ar-
chitecture of software systems: divergences (when an existing dependency in the source
code violates the architectural model) and absences (when the source code does not es-
tablish a dependency that is prescribed by the architectural model) [68, 50, 77]. In our
approach, divergences occur when architectural constraints of type cannot are not re-
spected by the source code. Conversely, absences occur when architectural constraints
of type must are not respected.

We consider that an architectural violation is defined by a tuple
[A, viol_type, dep, B], where (A, dep, B) is the dependency that caused the vio-
lation and viol_type indicates whether the violation is due to a divergence or an
absence. To increase readability, when expressing a value for viol_type we use the
words cannot and must to denote divergences and absences, respectively. For example,
a violation [ProductView, cannot, access, ProductModel] denotes a divergence where
a class ProductView is accessing an object of type ProductModel. As another example,
a violation [ProductDTO, must, implement, Serializable] denotes an absence when
the class ProductDTO is not implementing the interface Serializable.

Formal Definition: Assume that MA and MB are modules, A and B are classes, and
that dep denotes a dependency type, i.e., dep can be access, declare, create, etc.
A violation of a constraint in the form MA cannot-dep MB happens whenever

∃A∃B [A ∈ MA ∧ B ∈ MB ∧ establishes(A, dep, B)]

where the predicate establishes checks whether there is a dependency of type dep
from A to B. Conversely, a violation of a constraint in the form MA must-dep MB happens
whenever

∃A@B [A ∈ MA ∧ B ∈ MB ∧ establishes(A, dep, B)]

Architecturally Defective Code: An architectural violation, as defined before, stat-
ically occurs in a piece of code. In our recommendation system, we consider that the
code responsible for a violation (i.e., the architecturally defective code) follows one of
the code templates defined in Table 3.1. As an example, the template new B(exp) cov-

3.2. Basic Concepts 27

Table 3.1: Code templates

Template Interpretation
class A Class implementation
class A derive B Class that extends or implements type B
@B class A Class with an annotation of type B
g (p){ S } Implementation of a method g, with formal parameters p and body S

(S is matched in its maximal form; also in the following code templates)
@B g (p){ S } Implementation of a method g, with annotation @B, formal parame-

ters p, and body S
g (B b){ S } Implementation of a method g, with a formal parameter of type B, and

body S
g (p){ T v = exp_b } Implementation of a method g, with formal parameters p and whose

body declares a local variable v of type T initialized with exp_b (which
returns an object of type B, a subtype of T)

g (p){ return new B(exp) } Implementation of a method g, with formal parameters p, returning
an object of type B created using parameters exp

g (p) throws B { S } Implementation of a method g, with formal parameters p, and body S
that can throw an exception of type B

B b; S Declaration of a variable b of type B followed by statements S
B b = exp; S Declaration of a variable b of type B, initialized with exp and followed

by statements S
try { S } catch (B b) { S′} Implementation of a try-catch block with protected body S containing

a clause for exceptions of type B with handling body S′

b.f(exp) Invocation of a method f using the target object b and actual param-
eters exp

new B(exp) Instantiation of an object of type B using parameters exp

ers instantiations of a given class B. As another example, consider the architectural
constraint UI cannot−access Bar and the class Screen presented in Code 3.1.

1 public class Screen {
2 private Bar bar;
3 ...
4 public void init () {
5 ...
6 bar.foo (13,’b’);
7 }
8 }

Code 3.1: Code template matching example

Assuming that Screen is located in module UI, a violation
[Screen, cannot, access, Bar] is raised by the call bar.foo(13, ‘b’) located at
line 6. This call matches the template b.f(exp) with b bound to the target object bar,
f bound to the method foo, and exp bound to the list of expressions [13, ‘b’].

28 Chapter 3. The Proposed Recommendation System

Repairing Recommendation: In our approach, the recommendations consist in a
repair activity to fix an architectural violation. In fact, a repairing recommendation is a
sequence of repairing operations, using the functions described in Table 3.2. Although
most repairing functions are familiar, Appendix A provides a detailed description of the
following particular functions: inline, promote_param, and unwrap_return. Partic-
ularly, we may suggest transformations that may change the semantics/behavior of the
system and may also not be well-formedness preserving. An in-depth discussion on the
behavior preservation of our repairing recommendations is presented in Section 3.5.

Table 3.2: Repairing functions

Function Description Type
extract(stm) Applies an Extract Method refactoring [32] with the set of state-

ments stm
ct

inline(exp, v, S) Inlines exp in the uses of variable v in the block of code S (see
Appendix A)

ct

move(f, M) Moves method f to the most suitable class in module M, i.e.,
applies a Move Method refactoring [32]

mv

move(C, M) Moves class C to module M, i.e., applies a Move Class refactor-
ing [32]

mv

promote_param(f, v, exp) Promotes variable v to a formal parameter of method f; exp
is used as the additional argument in the calls to f (see Ap-
pendix A)

ct

replace(S1, S2) Replaces block of code S1 with S2 ct
remove(S) Removes block of code S, which is equivalent to replace(S, φ) ct
remove_catch(Ex, S) Removes the catch clause for exception Ex from the try-catch

block S
ct

unwrap_return(f, T, exp) Modifies the return type of method f to the type of exp and
moves the instantiations of the wrapper type T to the respective
call sites (see Appendix A)

ct

As reported in Table 3.2, the recommendations include two types of transforma-
tions:

• (ct) stands for a code transformation, which is a repair action more common
to handle divergences. For instance, suppose that a given module should
not use List objects, but it can use Collection. In this case, function
replace([List], [Collection]) locally replaces a declaration of the unauthorized
type List with its supertype Collection. As another example, we can men-
tion a repair action that promotes a local variable to a formal parameter. In
this case, function promote_param(f, v, exp) locally modifies the method and
globally adjusts call sites of the respective method.

• (mv) stands for a transformation that requires moving code, which may be
useful to handle both divergences and absences, as will be discussed in Sec-

3.3. Architectural Repairing Recommendations 29

tion 3.3.5. As an example, suppose that a class ProductReport is imple-
mented in module Controller, while the architectural model prescribes that
all reports must be implemented in module Report. In this case, function
move(ProductReport, Report) may indicate the correct repair action to handle
this particular violation.

3.3 Architectural Repairing Recommendations
This section defines the architectural repairing recommendations triggered by ArchFix.
We start by explaining how the recommendations have emerged and then we define
and illustrate our recommendations.

3.3.1 Training System

The proposed recommendations emerged after an in-depth investigation of possible
fixes for more than 2,200 violations we detected in a previously evaluated system called
SGP (our training set system, which is a system different from the systems used for
evaluation in this thesis) [102]. The choice of SGP was motivated by the following
facts: (i) it is a large web system with around 240 KLOC, (ii) its architecture reflects
the one commonly used in Java-based web systems, and (iii) the system was facing a
serious architectural erosion process, i.e., we detected 2,241 architectural violations.

We considered this set of violations as our training set to define our recommen-
dations. We analyzed and generalized the solution (repairing task) employed by the
system architect for each violation. More important, we also documented short pre-
conditions to minimize potential side effects of the repair actions, such as compilation
errors or new violations. As a result, we reached a catalog of 32 architectural repair-
ing recommendations. We hypothesized that many of the recommendations would be
useful in other systems (a discussion on the completeness of our repairing recommen-
dations is presented in Section 3.5). Our evaluation confirms this hypothesis; however,
we acknowledge that the catalog is likely incomplete.

3.3.2 Syntax and Auxiliary Functions

Assuming the definitions and concepts outlined in Section 3.2, the architectural repair-
ing recommendations triggered by our system are defined using the following syntax:

[A, viol_type, dep, B]
code_template =⇒ recommendation, if preconditions

30 Chapter 3. The Proposed Recommendation System

This recommendation syntax is interpreted as follows: whenever the indi-
cated violation [A, viol_type, dep, B] is found in a piece of code that matches the
code_template and the preconditions hold, the recommendation is triggered (i.e.,
suggested to the user).

A recommendation consists of one or more repairing functions, as previously
defined in Table 3.2. Table 3.3 lists a set of auxiliary functions used to define the
preconditions. Some of such functions define a simple source code query language, in-
cluding functions such as call_sites(f), which returns the call sites of a given method
f, and super(T), which returns the supertypes of a given type T. Other functions are
slightly more complex, such as can(T1, dep, T2), which checks whether the establishment
of a dependency (T1, dep, T2) raises an architectural violation, and typecheck(stm),
which checks whether a piece of code compiles without type errors. Appendix B pro-
vides a detailed description of the following non-trivial functions: delegate, factory,
gen_decl, and gen_factory.

Table 3.3: Auxiliary functions

Function Description
call_sites(f) Returns the statements that call method f
can(T1, dep, T2) Checks whether a dependency of the dep type from type T1 to type T2 does

not raise any violation, i.e., respects the architectural model
has_catch(Ex, S) Checks whether there is a catch clause for exception Ex in the try-catch block S
delegate(f) Searches for a delegate method for f, i.e., a method that just encapsulates a

call to f (see Appendix B)
equals_sig(f1, f2) Checks whether methods f1 and f2 have the same signature
factory(C, exp) Searches for a factory method for class C, accepting exp as input (see Ap-

pendix B)
gen_decl(f) Declares a variable of the type C, which defines the method f, to be the target

of a call to the method f (see Appendix B)
gen_factory(C, exp) Generates a factory for class C, accepting exp as parameter (see Appendix B)
override(C1, C2) Checks whether class C1 overrides a method defined in superclass C2

sub(T) Returns the subtypes of type T
suitable_module(E) Returns the most suitable module for a source code entity E (see Section 3.3.5)
super(T) Returns the supertypes of type T
target(A) Returns the target entity of an annotation A, which can be a type or a method
type(v) Returns the type of variable v
typecheck(stm) Checks whether code stm type checks (the context is implicitly assumed)
user_code() Returns a block of code with only a TODO comment, which the user must fill

3.3.3 Recommendations

Table 3.4 specifies the recommendations using the aforementioned syntax and
functions. The table formalizes recommendations to address both divergences

3.3. Architectural Repairing Recommendations 31

(recs. D1 to D24) and absences (recs. A1 to A8). In the specifications, we consider
that M(A)—or just MA for the sake of simplicity—is a total function that returns the
module of a given class A. We also consider that MA is the complement of the module
returned by MA, i.e., all classes in the project under analysis except those in MA.

As further described in Section 3.3.4, when multiple recommendations match
a given violation, we sort the potential recommendations according to the number
of architectural violations that remain after their application (a technique known as
speculative analysis [67]). In other words, the recommendation that repairs the largest
number of architectural violations takes the highest priority.

To provide an overview of our architectural repairing recommendations, we
describe next a small subset of our recommendations:

D2: Replace the unauthorized type B with one of its subtypes B′. As an example,
developers when implementing web-based systems using GWT (Google Web Toolkit)
should avoid the use of generic types (e.g., java.util.Collection) on GWT interfaces
to reduce the size of the generated JavaScript code. Therefore, whenever possible,
they should rely on more specialized types (e.g., java.util.ArrayList instead of
java.util.Collection).

D9: Remove a call to a given method f when no class in the system can access the class
where f is implemented. This recommendation is particularly useful when developers
access methods whose usage is restricted. For instance, developers tend to establish
dependencies with the Java API System class (e.g., by calling System.out.println)
as a practice of rudimentary debugging. Nevertheless, these calls must be removed,
especially in web-based systems.

D11: Replace a new operator with a call to the get method of a Factory FB. It
addresses the situation where developers—due to unawareness or forgetfulness—create
directly objects of classes that have a well-defined factory.

D16: Remove the throws clause and insert a try−catch block around the body
of the method to handle a given exception internally. In this particular case, the
developers must provide the code that handles the exception, as required by the
auxiliary function user_code.

D20: Move a class A to a most suitable module M. It is particularly useful when
developers mistakenly implement a class in the wrong module, e.g., a ProductReport
class in the View layer.

32 Chapter 3. The Proposed Recommendation System

Table 3.4: Repairing Recommendations

[A, cannot, declare, B]
B b; S =⇒replace([B], [B′]), if B′ ∈ super(B) ∧ typecheck([B′ b ; S]) ∧ B′ /∈ MB D1

B b; S =⇒replace([B], [B′]), if B′ ∈ sub(B) ∧ typecheck([B′ b ; S]) ∧ B′ /∈ MB D2

B b = exp; S =⇒propagate([exp], b, [S]), if can(A, access, B) D3

g (B b) { S } =⇒remove([B b]), if typecheck([g(){ S }]) D4

try { S } catch (B b) { S′}=⇒replace([B], [B′]), if B′ ∈ super(B) ∧ typecheck([try { S } catch (B b) { S′}]) ∧ B′ /∈ MB D5

[A, cannot, access, B]
b.f =⇒replace([b.f], [D; c.g]), if g = delegate(f) ∧ 〈D,c〉 = gen_decl(g) ∧ type(c) /∈ MB D6

b.f =⇒replace([b.f], [D; c.g]), if equals_sig(f, g) ∧ 〈D,c〉 = gen_decl(g) ∧ type(c) /∈ MB D7

b.f =⇒g = extract([b.f]), move(g, M), if M = suitable_module(g) ∧ can(A, access, M) D8

b.f =⇒remove([b.f]), if MA = ∅ D9

g (p){ T v = exp_b } =⇒promote_param(g, v, [exp_b]), if ∀C ∈ call_sites(g), can(C, access, B) D10

[A, cannot, create, B]
new B(exp) =⇒replace([new B(exp)], [FB.getB(exp)]), if FB = factory(B, [exp]) ∧ can(A, access, FB) D11

new B(exp) =⇒replace([new B(exp)], [null]), if MA = ∅ D12

new B(exp) =⇒replace([new B(exp)], [FB.getB(exp)]), if FB = gen_factory(B, [exp]) ∧ can(A, access, FB) D13

g (p){return new B(exp)}=⇒unwrap_return(g, B, [exp]), if ∀C ∈ call_sites(g), can(C, create, B) D14

[A, cannot, throw, B]
g (p) throws B { S } =⇒remove([throws B]), if typecheck([g (p) { S }]) D15

g (p) throws B { S } =⇒remove([throws B]), replace([S], [try {S} catch(B b) {S′}]), if can(A, declare, B) ∧
S′ = user_code()

D16

g (p) throws B { S } =⇒replace([B], [B′]), if B′ ∈ super(B) ∧ B′ /∈ MB D17

g (p) throws B { S } =⇒move(g, M), if M = suitable_module(g) ∧ M 6= MA D18

[A, cannot, derive, B]
class A derive B =⇒replace([B], [B′]), if B′ ∈ super(B) ∧ typecheck([A derive B′]) ∧ ¬override(B, B′) ∧ B′ /∈ MB D19

class A derive B =⇒move(A, M), if M = suitable_module(A) ∧ can(A, derive, B) D20

[A, cannot, useannotation, B]
@B class A =⇒move(A, M), if M = suitable_module(A) ∧ M 6= MA D21

@B class A =⇒remove([@B]) if MA = suitable_module(A) D22

@B g (p){ S } =⇒move(g, M), if M = suitable_module(g) ∧ M 6= MA D23

@B g (p){ S } =⇒remove([@B]) if MA 6= suitable_module(A) D24

[A, must, throw, B]
g (p){ S } =⇒replace([g (p){ S }] , [g (p) throws B { S }]), remove_catch(B, S) if has_catch(B, S) A1

g (p){ S } =⇒move(g, M) if M = suitable_module(g) ∧ M 6= MA A2

[A, must, derive, B]
class A =⇒replace([A], [A derive B]), if MA = suitable_module(A) ∧ typecheck([class A derive B]) A3

class A =⇒move(A, M), if M = suitable_module(A) ∧ M 6= MA A4

[A, must, useannotation, B]
class A =⇒move(A, M), if M = suitable_module(A) ∧ M 6= MA ∧ target(B) = type A5

class A =⇒replace([class A], [@B class A]), if MA = suitable_module(A) ∧ target(B) = type A6

g (p){ S } =⇒move(g, M), if M = suitable_module(A) ∧ M 6= MA ∧ target(B) = method A7

g (p){ S } =⇒replace([g(p)], [@B g(p)]), if MA = suitable_module(g) ∧ target(B) = method A8

3.3. Architectural Repairing Recommendations 33

A3: Make class A extend or implement B. It addresses the situation where developers
have failed to derive from the base types of the module. For instance, an Entity class
must implement Serializable to provide persistence. However, assume that a given
entity class Product does not implement Serializable. Because Entity classes rely
extensively on the same types, the suitable_module function will likely infer that
Product is indeed in its correct module and therefore must implement Serializable.

Chapter 5 provides concrete examples on the use of the proposed recommenda-
tions in two real-world systems. Furthermore, a detailed description of all architectural
repairing recommendations is available in Appendix C.

3.3.4 Algorithm

In order to provide an operational description for our approach, Algorithm 1 presents
the steps followed by ArchFix to trigger architectural repairing recommendations.
First, function getRecommendations returns a list with the possible recommendations
for a particular violation (line 1). For each recommendation ri ∈ potentialRecs, we ver-
ify whether the architecturally defective code matches the code template and whether
the preconditions are satisfied (lines 3–7). In the positive cases, we insert ri in the re-
sulting list (line 5). Prior to return the selected recommendations (line 9), we sort them
according to the number of architectural violations that remain in the system after their
application, i.e., we employ a technique known as speculative analysis [67] (line 8).1

Algorithm 1 Recommendation Algorithm
Input: Architectural model (arch), violation (viol), and defective code (code)
Output: List of repairing recommendations (result)

1: potentialRecs← getRecommendations(viol)

2: result← φ

3: for each ri in potentialRecs do
4: if (match(code, ri.code_template) and satisfy(〈code, viol, arch〉, ri.preconditions)) then
5: result ← result + ri.recommendation

6: end if
7: end for

8: result ← prioritize(result) . by the # of remaining violations

9: return result

1Although we decided to consider the remaining violations globally in the system, it is straight-
forward to consider the remaining violations more locally, i.e., in the respective method or class.

34 Chapter 3. The Proposed Recommendation System

For instance, assume a violation [A, cannot, derive, B]. Consequently, the list
of potential recommendations is [D19, D20]. Assume also that such violation matches
the code template and satisfies the preconditions of both recommendations. However,
suppose that if the maintainer accepts the recommendation D19, three architectural
violations would still remain in the system. On the other hand, if the maintainer
accepts the recommendation D20, only one violation will remain. In this case, our
algorithm returns the priority-sorted list of recommendations [D20, D19]. In case of tie,
we rely on the pre-defined order (i.e., [D19, D20]), which was defined considering the
complexity of the recommended repair actions. For instance, it is simpler to change
the superclass of a class (D19) than to move the entire class to another package (D20).

3.3.5 Module Suitability

In Table 3.4, a number of 14 out of 32 recommendations (e.g., D18, D20, D21, A4,
etc.) include a suggestion to move methods or classes to more suitable modules, as
computed by the suitable_module function. In essence, this function considers the
structural similarity among source code entities to make a recommendation. In order
to measure this similarity, we rely on the Relative Matching coefficient [83], which is
a statistical measure for the similarity between two sets. To calculate this coefficient,
we assume that a given source code entity (method, class, or package) is represented
by the set of types it establishes dependency with. This assumption is based on the
fact that our recommendations are proposed to remove divergences or absences in the
structural dependencies established between the modules of object-oriented software
architectures. Furthermore, Chapter 4 describes an empirical study that supports this
assumption.

The Relative Matching similarity between source code entities i and j is de-
fined by:

S(i, j) = a+
√
ad

a+ b+ c+ d+
√
ad

where a denotes the number of common types on both entities, b denotes the number
of types on entity i only, c denotes the number of types on entity j only, and d denotes
the number of types on neither of the entities. In this way, this coefficient considers a
set of similarity properties such as no mismatch, minimum match, no match, complete
match, and maximum match, as detailed in Section 4.2.1.

To determine the most suitable module for a method or class ei,
the suitable_module function returns the respective class or package m that pro-
vides the following maximal value:

3.4. The ArchFix Tool 35

max
∀m

S(Deps(ei), Deps(m))

where Deps(E) is the function that returns the set of types that the source code
entity E establishes dependency with.

Illustrative example: Using a simple web-based e-commerce system de-
veloped for academic purposes called MyWebMarket [105], we implemented
ProductReport—a class responsible for report generation—in module
Controller. Particularly in this system, the architectural model prescribes
that Controller classes must extend ActionSupport. However, suppose that
ProductReport does not extend ActionSupport and hence a violation in the form
[ProductReport, must, extend, ActionSupport] is raised by a static architecture
conformance checking tool.

In this scenario, our recommendation system can trigger either recommenda-
tion A3 or A4, depending on the result of the suitable_module function. In order
to determine the correct module for class ProductReport, the function returns the
package m that provides the following maximal value:

max {
S(Deps(ProductReport), Deps(Report)) = 0.328,

S(Deps(ProductReport), Deps(Controller)) = 0.154,

S(Deps(ProductReport), Deps(DAO)) = 0.142,

S(Deps(ProductReport), Deps(Mail)) = 0.088,

S(Deps(ProductReport), Deps(DTO)) = 0.085,

S(Deps(ProductReport), Deps(Schedule)) = 0.083,

S(Deps(ProductReport), Deps(Ajax)) = 0.000 } = Report

As the result, the suitable module heuristic indicates module Report as the most
suitable one. Since Report is not the current module of the class ProductReport,
our approach triggers recommendation A4—move(ProductReport, Report)—which is
exactly the correct repair action to handle this particular violation.

3.4 The ArchFix Tool

We developed a prototype tool called ArchFix that implements our approach. In
its current implementation, ArchFix relies on violations raised by the DCL lan-

36 Chapter 3. The Proposed Recommendation System

guage [102, 100], which is a domain-specific language for defining structural constraints
between modules in Java. Compared to other approaches, DCL relies on a simple
syntax and supports architecture compliance by construction, in order to proactively
prevent architecture decay [49]. For example, to capture divergences, DCL supports
constraints expressing that dependencies only can, can only, or cannot be established by
specified modules. In addition, to capture absences, it is possible to specify constraints
to check that particular dependencies must be present in the source code.

More specifically, we implemented ArchFix as an extension of DCLcheck [102],
an Eclipse-based conformance tool that checks architectural constraints defined in
DCL. As illustrated in Figure 3.2, ArchFix exploits some preexisting data structures
available in DCLcheck, such as the graph of existing dependencies, the defined
architectural constraints, and the detected violations. Moreover, ArchFix also
reuses some auxiliary functions from DCLcheck, e.g., a function that checks whether a
type can establish a particular dependency with another type (function can, Table 3.3).

Figure 3.2: ArchFix architecture

ArchFix follows an architecture with three main modules:

• Recommendation Engine: Based on the specification shown in Table 3.4, this
module is responsible for suggesting appropriate repairing recommendations for
a given violation (when applicable). In fact, this module implements the Algo-
rithm 1 presented in Section 3.3.4. In our current implementation, ArchFix was
designed as a marker resolution because DCLcheck marks architectural violations

3.5. Discussion 37

in the source code. In other words, ArchFix is invoked whenever the developers
request Quick Fixes for problem markers2 that represent architectural violations.

As illustrated in Figure 3.2, the module Recommendation Engine in-
spects the recommendations using services from modules Auxiliary and
Repairing Functions. More specifically, the Recommendation Engine exports
the public method getResolutions that receives a problem marker as input—
which contains information on the architectural violation (e.g., the violated con-
straint and the architecturally defective code)—and then returns a list of potential
repairing recommendations.

• Auxiliary Functions: This module implements the auxiliary functions listed in
Table 3.3.

• Repairing Functions: This module is responsible for applying the repair actions
listed in Table 3.2. In the current stage of its implementation, ArchFix is mostly
a recommendation engine, i.e., the tool suggests actions to repair architectural
violations. Nevertheless, ArchFix already supports some simple repair actions,
such as replacing a type and removing annotations (which are only applied when
the user accepts a given recommendation).

To illustrate ArchFix’s interface, assume an architectural constraint of
the form ControllerLayer cannot−declare HibernateDAO. Assume also a
class ProductController that declares a variable of a type
ProductHibernateDAO, i.e., a class that introduces a violation in the form
[ProductController, cannot, declare, HibernateDAO]. When the maintainer
requests a recommendation to fix such violation, ArchFix indicates the most ap-
propriate repair action (see Figure 3.3). The provided recommendation suggests
replacing the declaration of the unauthorized type ProductHibernateDAO with its
interface IProductDAO (which corresponds to recommendation D1 in Table 3.4). This
recommendation is particularly useful to handle violations due to references to a
concrete implementation of a service, instead to its general interface.

3.5 Discussion
This section includes a critical analysis about the architectural repair recommendation
system proposed in this thesis. Our analysis is based on the following criteria:

2A problem marker (an object of type org.eclipse.core.resources.problemmarker) represents
an error or warning listed in the Problems view of the Eclipse IDE.

38 Chapter 3. The Proposed Recommendation System

Figure 3.3: ArchFix interface

Completeness: Although our repairing recommendations have emerged from a web-
based system (refer to Section 3.3.1) and our evaluation relies on two web-based systems
(refer to Chapter 5), we claim that our approach is not limited to web-based systems. In
fact, our approach is applicable in systems that are structured into modules and that
specifies constraints on how these modules must interact [38, 33]. However, we agree
that we need new case studies on different contexts to provide concrete evidences for
such claim.

The current implementation of our approach—ArchFix—relies on architectural
violations detected by DCL for the following reasons: (i) simplicity; (ii) the language
is based on a fine-grained model for the specification of structural dependencies; and
(iii) DCLcheck is an open-source conformance tool that provides an easy way to be
extended and adapted. Nevertheless, we claim that it is straightforward to adapt our
approach to other conformance techniques and tools.

Module Suitability: Even though the way that developers decide how to fix a viola-
tion might be more semantically oriented—i.e., considering the concerns implemented
in the source code—we decide to rely on structurally oriented heuristics (refer to Sec-
tion 3.3.5). This decision is based on the fact that our recommendations are proposed to
repair divergences or absences in the structural dependencies established between the
modules of object-oriented software architectures. However, we argue that semantic
properties (as revealed, for example, by the source code vocabulary) might enhance
the precision of our module suitability heuristic.

3.6. Final Remarks 39

Behavior Preservation: Our repairing recommendations cannot always ensure be-
havior preservation (refer to Section 3.2). In practice, some architectural repair activities
may lead to semantic changes. For instance, assume that a class B extends a class A.
Assume also that A defines a method f and B does not override it. Therefore, when
invoking f from an object of type B, it is actually invoked A::f(). Nevertheless, when
the user accepts a recommendation to move another method f to B (e.g., rec. D23), the
system behavior is changed. In this case, when invoking f from an object of type B,
the moved method B::f() is called instead of A::f() as expected. In short, it is the
developer’s responsibility to carry out the recommendations without disturbing the
system semantics. In fact, our approach does not actually apply the repair actions but
suggests them to the user who decides to apply or not.

Finally, it is worth noting that: (i) our preconditions may not be complete.
In some cases, they only provide minimal conditions to prevent the insertion of new
violations and to reduce undesirable side effects; and (ii) our recommendation system
was not designed to deal with concurrency issues. It means that the user must pay
closer attention when our approach suggests moving or transforming synchronized code.

3.6 Final Remarks
Architectural erosion is a recurrent problem faced by software architects. However, a
clear dichotomy is perceived in the techniques already proposed to tackle this prob-
lem. On the one hand, there are several approaches and commercial tools proposed to
uncover architectural violations [68, 87, 23, 102, 2, 16]. On the other hand, the task
of fixing the hundreds of violations raised by an architecture conformance process is
normally conducted with limited tool support.

To address this shortcoming, we described a recommendation system that pro-
vides repairing guidelines for developers and maintainers when fixing architectural vi-
olations. To automate the task of triggering recommendations, we developed a pro-
totype tool called ArchFix that implements our approach and provides recommenda-
tions for violations—divergences and absences—raised by static architectural confor-
mance techniques. The ArchFix tool—including its source code—is publicly available
at github.com/rterrabh/DCL.

In the next chapter, we provide the empirical evidences supporting the imple-
mentation decisions related to our suitable module heuristic, as computed by the
suitable_module function (refer to Section 3.3.5). Beyond that, we introduce the
Qualitas.class Corpus, which is the dataset the ensuing empirical study relies on.

http://github.com/rterrabh/DCL

Chapter 4

Evaluation of the Suitable Module
Heuristic

From the repairing recommendations proposed in the previous chapter, fourteen recom-
mendations (e.g., D18, D20, D21, A4, etc.) rely on the suitable_module function,
which implements our heuristic based on structural similarity (refer to Section 3.3.5,
page 34). However, the problem of determining whether methods or classes are well
located is not trivial [98]. In this chapter, our goal is to provide empirical evidences for:
(i) the choice of the Relative Matching coefficient; and (ii) the dependency set of a source
code entity (e.g., a method or a class) contemplates only the types that it establishes de-
pendency with, e.g., only a single [ProductDAO] instead of a pair [access, ProductDAO].

We organized this chapter as follows. Section 4.1 introduces the Qualitas.class
Corpus, which represents the dataset our evaluation relies on. Section 4.2 describes an
empirical study that compares several coefficients and strategies to identify which one
is the most appropriate in determining where a source code entity should be located.
Section 4.3 concludes this chapter with a general discussion.

4.1 The Qualitas.class Corpus

The Qualitas.class Corpus is a compiled version of the Qualitas Corpus proposed by
Tempero et al. [97]. In short, it provides compiled Eclipse Java projects for the 111
systems included in the last release of the original corpus.1 Table 4.1 provides an
overview on our compiled corpus. It contains more than 18 million LOC, 200,000
compiled classes, and 1.5 million compiled methods. As another contribution, we have

1The current release is 20120401.

41

42 Chapter 4. Evaluation of the Suitable Module Heuristic

gathered a large amount of metrics data (such as measurements from size, coupling,
and CK metrics) about the systems (see Section 4.1.2).

Table 4.1: Qualitas.class Corpus

Systems 111
Lines of Code (LOC) 18,548,026
Internal Projects (NOIP) 802
Packages (NOP) 16,509
Classes (NOCL) 202,052
Interfaces (NOI) 22,115
Methods (NOM) 1,464,893

The original Qualitas Corpus provides a valuable contribution for experimenta-
tion in software engineering. However, there are several scenarios—e.g., experiments
that rely on Abstract Syntax Tree (AST) or bytecode, as the one reported in this
chapter—in which researchers need to import and compile the source code. Since this
task is not trivial in the case of systems with many external dependencies, we decided
to address such effort by providing a compiled variant of the Qualitas Corpus.

4.1.1 Compilation Process

The corpus contains a collection of systems, each of which contains one or more
projects. For instance, the AspectJ system is divided in four internal projects:
matcher, rt, tools, and weaver. Thus, considering the 111 systems, the Qualitas.class
Corpus has a total of 802 internal projects (including 461 projects from NetBeans).

Since the Qualitas Corpus provides us with the source code of the systems, our
main work consisted in organizing the code in well-defined Java projects according to
the following guidelines:

• In the case of outdated systems, we compiled their most recent version, instead
of those in the original Qualitas Corpus.

• Source code distributions usually do not include third-party libraries, which are
required by the compilation process. We hence searched for these libraries using
Maven repositories2 or version control systems.

• Some projects rely on particular libraries. For instance, JTOpen 7.8 relies on
the IBM AS/400 library, which is not publicly available. In these cases, we
manually created stub JAR files to simulate the internal structure of the libraries
(e.g., ibm_as400_stub.jar).

2Maven repositories: search.maven.org and mvnrepository.com.

http://search.maven.org/
http://mvnrepository.com

4.1. The Qualitas.class Corpus 43

• Some projects presented compilation errors. In these cases, we fixed the er-
ror and explained our fixing procedure in a comment.3 For instance, package
etc.testcases on Ant 1.8.2 has some classes whose file name differs from the
public class name. Therefore, we renamed the class names and inserted comments
in the code to explain the changes.

4.1.2 Measurements

The Qualitas.class Corpus also includes the values of 23 source code metrics measured
at the level of classes (detailed in Appendix D). In a summarized perspective, Figure 4.1
illustrates the distribution of the average value for a subset of metrics. Basically, each
circle represents a system and the values in the vertical indicate the overall average
for each metric.4 As can be noticed, the corpus is very heterogeneous. For example,
the MLOC (Method lines of code) metric ranges from 3.35 (fitlibraryforfitnesse) to 23.4
(jparse) and the overall average is 7.88 ± 2.7.

Overall average

M
LO
C

N
O
M

N
O
A

N
O
C

D
IT

N
O
R
M

S
IX V
G

W
M
C

LC
O
M C
A

C
E I A

3.35

23.4

7.
88

 ±
 2

.7
0

4.04

20.9

7.
44

 ±
 2

.3
5

0.86

8.1

2.
56

 ±
 1

.2
5

0.16

4.0

0.
75

 ±
 0

.4
6

1.15

4.5

2.
11

 ±
 0

.6
1

0.12

2.5

0.
63

 ±
 0

.4
1

0.05

1.1

0.
28

 ±
 0

.1
7

1.38

7.3

2.
35

 ±
 0

.8
1

6.30

114.7

19
.8

4
±

13
.5

4

0.08

0.6

0.
21

 ±
 0

.0
8

0.87

128.5

19
.8

8
±

16
.9

2

0.60

38.0

8.
55

 ±
 5

.8
8

0.36

0.9
0.

58
 ±

 0
.1

1

0.01

0.3

0.
14

 ±
 0

.0
6

Figure 4.1: Distribution of the metric values in systems from the Qualitas.class
Corpus (average values)

3Comments like //Qualitas.class: ... to be easily identified.
4We used average (arithmetic mean) for illustrative purposes, but it is worth noting that the data

do not follow a normal distribution.

44 Chapter 4. Evaluation of the Suitable Module Heuristic

4.2 Empirical Study on the Module Suitability
Similarity coefficient measures the degree of correspondence between two entities ac-
cording to an established criterion. This concept is widely used in software engi-
neering for several different purposes, such as identification of refactoring opportuni-
ties [108, 109, 92] and system remodularizations [73, 30]. Particularly in this thesis, we
employ the similarity concept in our heuristic to determine the most suitable package
for a class (which may lead to a Move Class refactoring) and the most suitable class
for a method (which may lead to a Move Method refactoring), as computed by the
suitable_module function.

Although the literature is prolific and reports several similarity coefficients that
vary on their computing methods, there are few works comparing similarity coefficients
using structural dependencies as source of information [73]. This lack of knowledge
may lead researchers to choose an inadequate coefficient to this purpose, once there is
a tendency among researchers to make habitual use of certain coefficients that others
in their field are using, even without sound scientific or empirical reasons [83].

In order to make our approach as accurate as possible, we conducted a quantita-
tive study that compares 18 coefficients and four different strategies to identify which
one is the most appropriate in determining where a source code entity should be lo-
cated. In short, we measured the similarity between classes and packages of 111 open
source systems from the Qualitas.class Corpus to evaluate which configuration achieves
the highest precision values. Although we have not evaluated the similarity between
methods and classes, we assumed that relations class/package and method/class are
quite similar w.r.t. structural dependencies. From our results, we can point out three
main findings:

1. Structural dependencies are indeed precise enough to determine where a source
code entity should be located. In our evaluation, we achieved an overall precision
of 80% in indicating the correct package of a class up to rank 3.

2. Considering the dependency type or the multiplicity of dependencies does not im-
prove the overall precision. Our results show that simply relying on the existence
of dependencies between two entities—i.e., without considering the dependency
type and the number of dependency instances—achieves the best precision results.

3. Jaccard—one of the most used coefficients—has not presented the best results.
While Jaccard indicated the correct package to only 22% of the classes, other
coefficients—such as Relative Matching, Kulczynski, and Russell and Rao—were
able to achieve a precision slightly over 60%.

4.2. Empirical Study on the Module Suitability 45

These findings were crucial to our decision to implement the suitable_module
function based on: (i) structural dependencies as source of information; (ii) Relative
Matching as the coefficient to measure the similarity between source code entities (both
class/package and method/class); and (iii) sets (and not for example multisets) to
represent the types that a source code entity establishes dependency with.

The remainder of this study is structured as follows. Section 4.2.1 provides a
description of similarity coefficients. Section 4.2.2 describes strategies for extract-
ing structural dependencies from a class. Section 4.2.3 presents and discusses re-
sults on comparing our coefficients and strategies in 111 real-world systems of the
Qualitas.class Corpus.

4.2.1 Similarity Coefficients

Table 4.2 shows 18 similarity coefficients that we have evaluated to determine the
most appropriated one in the context of measuring similarity among classes [83, 28].
To calculate these coefficients, we assume that a given source code entity (method,
class, or package) is represented by the dependencies it establishes with other types.
Therefore, the measure of the structural similarity between two source code entities i
and j (i.e., Sij) considers the following variables:

a = |Deps(i) ∩Deps(j)| = the number of dependencies on both entities,
b = |Deps(i) \Deps(j)| = the number of dependencies on entity i only,
c = |Deps(j) \Deps(i)| = the number of dependencies on entity j only, and
d = |Deps(i) ∪Deps(j) | = the number of dependencies on neither of the entities.

where Deps(E) is the function that returns the set of types that the source code
entity E establishes dependency with.

For instance, Jaccard—one of the simplest and most used coefficient in our field—
is defined by:

Sij = a

a+ b+ c
(4.1)

Basically, Jaccard indicates maximum similarity when two entities have identical
dependencies, i.e., when b = c = 0 and thus Sij = 1.0. On the other hand, it indicates
minimum similarity when there are no dependencies in common, i.e., when a = 0 and
thus Sij = 0.0.

46 Chapter 4. Evaluation of the Suitable Module Heuristic

Table 4.2: General Purpose Similarity Coefficients

Coefficient Definition Sij Range
1. Jaccard a/(a + b + c) 0–1*
2. Simple matching (a + d)/(a + b + c + d) 0–1*
3. Yule (ad− bc)/(ad + bc) -1–1*
4. Hamann [(a + d)− (b + c)]/[(a + d) + (b + c)] -1–1*
5. Sorenson 2a/(2a + b + c) 0–1*
6. Rogers and Tanimoto (a + d)/[a + 2(b + c) + d] 0–1*
7. Sokal and Sneath 2(a + d)/[2(a + d) + b + c] 0–1*
8. Russell and Rao a/(a + b + c + d) 0–1*
9. Baroni-Urbani and Buser [a + (ad)

1
2]/[a + b + c + (ad)

1
2] 0–1*

10. Sokal binary distance [(b + c)/(a + b + c + d)]
1
2 0*–1

11. Ochiai a/[(a + b)(a + c)]
1
2 0–1*

12. Phi (ad− bc)/[(a + b)(a + c)(b + d)(c + d)]
1
2 -1–1*

13. PSC a2/[(b + a)(c + a)] 0–1*
14. Dot-product a/(b + c + 2a) 0–1*
15. Kulczynski 1

2 [a/(a + b) + a/(a + c)] 0–1*
16. Sokal and Sneath 2 a/[a + 2(b + c)] 0–1*
17. Sokal and Sneath 4 1

4 [a/(a + b) + a/(a + c) + d/(b + d) + d/(c + d)] 0–1*
18. Relative Matching [a + (ad)

1
2]/[a + b + c + d + (ad)

1
2] 0–1*

The symbol “∗” denotes the maximum similarity.

As an illustrative example, Code 4.1 presents two hypothetical classes. In order
to measure the similarity between Bar and Foo, we first determine the value of the
variables a, b, c, and d. In this example: a = 3 since both classes rely on A, B,
and X; b = 1 since only Bar relies on D; c = 2 since only Foo relies on E and G; and
d = 3 since none establishes dependencies with the three other classes of the system
(namely C, F, and Y). For example, the similarity between Bar and Foo using Jaccard
results in 0.5, whereas using Phi decreases to 0.35 or using Kulczynski increases to 0.675.

class Bar extends X { class Foo extends X {
A a; B b;
B b; G g;

exampleBar (D d){ exampleFoo (E e){
a.f(); e.j();
d.g(); new A().f()

} }
} }

Code 4.1: Hypothetical classes to explain the measurement of similarity

Each coefficient has unique properties that distinguish it from the others. For
example, while Jaccard does not consider what both entities do not have in order to
compute their similarity (variable d), Simple matching and ten other coefficients con-
template this variable. The Yule and Hamann coefficients are mathematically related.

4.2. Empirical Study on the Module Suitability 47

Although both have the same variables in their numerators and denominators, Yule
relates them by multiplication whereas Hamann relates the variable by addition.

As other examples, Sorenson5 gives twice the weight to what the entities have in
common (variable a), while the Rogers and Tanimoto coefficient gives twice the weight
to what each entity has independently (variables b and c). Except for the variable d in
the denominator, Russell and Rao resembles Jaccard. On the other hand, the Sokal and
Sneath coefficient—which is quite similar to Simple matching—reduces the importance
of what each entity has independently (variables b and c) by half.

Kulczynski and Sokal and Sneath 4 are based on conditional probability. Kulczyn-
ski assumes that a characteristic is present in one item, given that it is present in the
other, whereas the Sokal and Sneath 4 coefficient assumes that a characteristic in one
item matches the value in the other.

Finally, Relative Matching considers a set of similarity properties such as no
mismatch (Sij tends to 1 for b and c close to 0), minimum match (Sij tends to 0 for a
and d = 0 or close to 0), no match (Sij = 0 for a = 0), complete match (Sij = 1 for
a = |U |, where U represents the universal set), and maximum match (Sij tends to 1
for a+ d tending to |U |, a 6= 0, and the higher the a, the higher the Sij).

4.2.2 Strategies

In order to measure the similarity between two source code entities, we assume that
a given source code entity (method, class, or package) is represented by the structural
dependencies it establishes with other types. We also distinguish the type of the de-
pendency, i.e., whether a given dependency was established by accessing methods and
fields (access), declaring variables (declare), creating objects (create), extending
classes (extend), implementing interfaces (implement), throwing exceptions (throw),
or using annotations (useannotation). Structural dependencies are extracted from
the source code using a function named Deps(E, S). Basically, this function returns
E’s dependencies according to a strategy S. A strategy is a pair [C, D] that defines the
collection6 and the dependency information to be employed in the extraction. The
collection C can assume one of the following values:

1. set: a collection that contains no duplicated elements. For example, if a class
establishes more than one dependency to java.util.Date, it considers only one.

5Sorenson is also referred in the literature as Czekanowski or Dice.
6We use the generic term “collection” when we do not want to be specific about the kind of

structure (set or multiset) under consideration.

48 Chapter 4. Evaluation of the Suitable Module Heuristic

2. multiset: a generalization of the notion of set in which elements are allowed to
appear more than once. For instance, if a class establishes three dependencies to
java.util.Date, we actually consider all of them.

The dependency information D can assume one of the following values:

1. target type (tt): in this case the extraction function returns a collection of tar-
get types that the entity establishes dependencies with. Thus, an element is a
single [T], denoting the existence of at least one dependency between the entity
under analysis and T.

2. target and dependency type (dtt): in this case the extraction function returns a
collection whose elements are pairs [dt, T], denoting the existence of a dependency
of type dt between the class under analysis and T.

public class Bar {
public void foo (Date d){

if (d == null){
d = new Date ();

} else {
new Date ()

}
}

}

Code 4.2: An example class that explains our strategies

As an illustrative example, consider the class presented in Code 4.2. The collec-
tion returned by function Deps(Bar, S) differs according to the employed strategy S.
More specifically, the following calls (and respective results) are possible:

Deps(Bar, [set, tt]) = { Date }

Deps(Bar, [mset, tt]) = ({Date}, {(Date,3)})

Deps(Bar, [set, dtt]) = { [declare, Date], [create, Date] }

Deps(Bar, [mset, dtt]) = ({[declare, Date], [create, Date]}, {([declare,Date],1),([create,Date],2)})

Strategies that rely on target and dependency type (dtt) may be particularly
important when the classes of the system rely on types differently according to their
location. For example, a factory method that creates a DTO (Data Transfer Object)
and a logic presentation method that handles a DTO may not be similar. As another
example, a class that implements java.io.Serializable and a method that declares

4.2. Empirical Study on the Module Suitability 49

a variable of type java.io.Serializable may also not be similar. Although this strat-
egy might perform better in particular cases, our evaluation is concerned with the
overall precision.

Last but not least, the set of dependencies of a package Pkg is calculated by the
union of the set of the dependencies of its classes as follows:

Deps(Pkg, S) =
⋃

Ci ∈ P kg

Deps(Ci, S)

4.2.3 Evaluation

4.2.3.1 Research Questions

We designed a study to address the following overarching research questions:

RQ #1 – Are structural dependencies precise enough to indicate whether a class is
located in its correct package?

RQ #2 – Considering the multiplicity of dependencies—i.e., a multiset rather than a
set—improves the overall precision?

RQ #3 – Considering the dependency type—i.e., representing a target dependency
as a pair [dt, T] rather than only a single type [T]—improves the overall precision?

RQ #4 – Which coefficient is the most suitable to measure the similarity among
classes of object-oriented systems?

4.2.3.2 Target Systems

As described in Section 4.1, our evaluation relies on the Qualitas.class Corpus, which
is a compiled version of the Qualitas Corpus proposed by Tempero et al. [97]. The
corpus includes many popular systems, such as JRE, Eclipse, NetBeans, and Apache
Tomcat. It is worth noting that the corpus is large and heterogeneous, ranging from
small frameworks and text processors to complete IDEs and virtual machines.

4.2.3.3 Major Assumption

We made the following assumption due to the infeasibility of obtaining a 100% accurate
oracle for thousands of classes:

“We assume that every class under analysis is in its right package.”

Therefore, similarity coefficients should indicate the current package of the class
as its most suitable one.

50 Chapter 4. Evaluation of the Suitable Module Heuristic

Risks of the Assumption: Although our assumption is likely to be false, we argue that
such assumption only favors our results when the following two unlikely conditions hold
for a class C implemented in a package Pkg: (a) C is mistakenly implemented in the
package Pkg; and (b) Pkg is exactly the package the similarity coefficient indicates as
most suitable one. For example, when condition (a) holds, but condition (b) does not
hold, our results are not favored. On the other hand, despite having a probability of
misplaced classes, these classes in our corpus affect equally the results, making at least
our comparison of the similarity coefficients and strategies fair.

4.2.3.4 Methodology

To provide answers to our research questions, we performed the following tasks:

1. Data Extraction: For the 111 projects provided by the Qualitas.class Corpus, we
first extracted the structural dependencies of classes using the four strategies de-
scribed in Section 4.2.2, which are [set, tt], [set, dtt], [mset, tt], and [mset, dtt].

2. Comparative Analysis: Second, we measured the similarity using all coefficients
described in Section 4.2.1. The coefficients were applied to measure the similarity
between pairs [class, package] from our corpus.

3. Qualitative Analysis: Last, we conducted a qualitative discussion in order to
answer our research questions.

4.2.3.5 Experimental Setup

In order to conduct this study, the following policies have been proposed:

1. We have not considered the class under analysis while searching for its right
location. For example, when measuring the similarity between a class A and its
package Pkg, we actually considered its own package Pkg as being Pkg− {A}.

Thereupon, we have not sought the suitable location of classes whose package
contains a single class. For example, assume that package Pkg contains only
class A. It would be unlikely to indicate package Pkg as the correct package for
class A, since Deps(Pkg− {A}, S) = φ.

2. We have not considered a class Ci when |Deps(Ci, S)| < 5, i.e., we have not evalu-
ated classes that establish less than five dependencies. These classes contain too
little information to make any inference based on their structural dependencies.

4.2. Empirical Study on the Module Suitability 51

3. We have not evaluated test classes, since most systems organize their test classes
in a single package. Consequently, the test package contains classes related to
different components of the system—i.e., they are not structurally related—which
certainly reduces the precision of any approach based on structural dependencies.

4. We have filtered trivial dependencies, such as those established with primitive
and wrappers types (e.g., int and java.lang.Integer), java.lang.String, and
java.lang.Object. Since virtually all classes establish dependencies with these
types, they do not actually contribute for the measure of similarity. This decision
is quite similar to text retrieval systems that exclude stop words because they
are rarely helpful in describing the content of a document [6].

4.2.3.6 Results

Figure 4.2 illustrates the overall precision for each coefficient regarding the four ana-
lyzed strategies. The overall precision is defined by the ratio between the total number
of analyzed classes that have their location (package) correctly predicted by the simi-
larity coefficient and the total number of analyzed classes. We also provided the Top
1, 2, and 3 ranking, which stands for the position of the correct package of a class. As
an example, considering strategy [set, tt], the Relative Matching precision has reached
60% on Top 1, 72% on Top 2, and 78% on Top 3. In other words, it means that Relative
Matching located the correct package of a class 60% on the first position of its ranking,
12% on the second position, and 6% on the third position.

Simple Matching
Hamann

Rogers and Tanimoto
Sokal and Sneath

Sokal Binary Distance

Baroni−Urbani Phi

Jaccard
Sorenson

Dot Product
Sokal and Sneath 2

Ochiai
PSC Yule Sokal and Sneath 4 Russell and Rao Kulczynski Relative Matching

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

[m
se

t,d
tt]

[m
se

t,t
t]

[s
et

,d
tt]

[s
et

,tt
]

Strategy

O
ve

ra
ll

P
re

ci
si

on

Ranking

1st

2nd

3rd

Figure 4.2: Top 3 ranking of similarity coefficients using all strategies

Before providing answers to our research questions, it is worth noting that many
similarity coefficients presented very similar (mostly identical) results. In fact, the
Spearman correlation among these coefficients was very close to 1, which allowed us to
group them. The multiple correlation among Simple Matching, Hamann, Rogers and

52 Chapter 4. Evaluation of the Suitable Module Heuristic

Tanimoto, Sokal and Sneath, and Sokal Binary Distance presented lowest correlation
value of 0.999994. Similarly, Jaccard, Sorenson, Dot-product, and Sokal and Sneath 2
presented lowest correlation value of 0.999999. Finally, Ochiai and PSC presented
correlation equal to 0.998251. These results explain why there is no variance in the
ranks within the same group.

Next, we answer our research questions based mainly on Figure 4.2. Our data
interpretation always considers the Top 3 ranking—when not stated differently.

RQ #1: Are structural dependencies precise enough to indicate whether a class is
located in its correct package?

Yes. As can be observed in Figure 4.2, there are coefficients that achieved a
high precision when determining the package where a class should be located. In
particular, Relative Matching, Kulczynski, Russell and Rao, and Sokal and Sneath 4
achieved, in the worst scenario, over than 70% of precision.

RQ #2: Considering the multiplicity of dependencies—i.e., a multiset rather than a
set—improves the overall precision?

No. Figure 4.2 shows that strategies that use traditional sets ([set, tt] and
[set, dtt]) perform better than equivalent multiset-based strategies for all coefficients.
The only exception is the Russell And Rao coefficient, which presented results
slightly better for the [mset, tt] strategy. More important, if we consider only Top
1, a traditional set-based strategy performs better than multiset-based one for all
coefficients.

RQ #3 – Considering the dependency type—i.e., representing a target dependency as
a pair [dt, T] rather than only a single type [T]—improves the overall precision?

No. On the one hand, analyzing set data, we can observe that [set, tt] provides
better results for all coefficients, except for Russell and Rao and Sokal and Sneath 4
that presented results slightly better using the dependency type ([set, dtt]).

On the other hand, we notice that multiset-based data (i.e., [mset, tt] and
[mset, dtt]) presents very similar results for all coefficients. This fact is expected
since the extracted collections are usually very similar. For instance, assume a collec-
tion A extracted using strategy [mset, dtt] and a collection B extracted using strategy
[mset, tt], for the same class. If A(i) = [access, Foo] for an index i, then B(i) = [Foo].

From now on, our discussion considers only strategy [set, tt], since we showed
that the use of multiset (mset) and dependency type (dtt) does not actually improve
the overall precision.

4.2. Empirical Study on the Module Suitability 53

RQ #4: Which coefficient is the most suitable to measure the similarity among classes
of object-oriented systems?

Relative Matching, Kulczynski, and Russell and Rao. These coefficients
reached the highest precision values in our study. As can be observed in Figure 4.2,
Relative Matching (60.83%) and Russell and Rao (60.27%) achieved the highest similarity
values of the Top 1, and Relative Matching (72.78% and 78.18%) and Kulczynski (72.15%

and 79.23%) of the Top 2 and 3, respectively.
As the central finding of our study, these three coefficients significantly outper-

form Jaccard—one of the most used similarity coefficients. While Jaccard indicated
the correct package to 22% (Top 1) and 39% (Top 3) of the classes, Relative Matching,
Kulczynski and Russell and Rao were able to indicate the correct package to 60% (Top

1) and 79% (Top 3).
To better explain this behavior, we anecdotally analyzed some systems to under-

stand the influence of the variables a, b, c, and d (see Section 4.2.1) on the precision
measurements. We performed this analysis by plotting each variable against the rank-
ing. Our major finding regards to the fact that large packages negatively influence Jac-
card and other coefficients that presented very low precision (e.g., Simple Matching).
Usually, large packages imply a relevant difference between c and d, which negatively
impacts the precision of coefficients like Jaccard. On the other hand, by their nature,
this scenario does not influence Relative Matching, Kulczynski, and Russell and Rao.
It explains why these coefficients presented the best results on systems that contain
either small or large packages.

4.2.3.7 Supplementary Results

Figure 4.3 illustrates the Top N ranking of every coefficient using strategy [set, tt]. In
contrast to Figure 4.2 that displays only the Top 3, it displays the full distribution of
the ranks until full coverage (i.e., precision of 1.0). As a second relevant finding from
our study, Figure 4.3 shows that there is no coefficient that drastically improves its
precision right after the top 3 ranking (e.g., Top 4 or Top 5). This behavior reinforces
our decision in using Top 3.

As can also be observed in Figure 4.3, Russell and Rao achieved precision of 1.0
in the rank 79. It means that the suitable package of a class was detected, in the worst
case, in the 79th position. This result is quite relevant, since the other coefficients only
achieved precision of 1.0 from the rank 347.

Since our analysis so far has considered the overall precision, we also analyzed the
results of each coefficient per system. Figure 4.4 summarizes the number of systems

54 Chapter 4. Evaluation of the Suitable Module Heuristic

Figure 4.3: General ranking using strategy [set, tt]

in which a particular coefficient has presented the best result (i.e., better identified
the correct package of a class). For instance, Relative matching has better determined
correct modules to Eclipse classes, whereas the Russell and Rao coefficient has behaved
better to ArgoUML classes. Furthermore, we have not presented some coefficients (e.g.,
Simple Matching and Jaccard) because they have not presented the best result for
any system.

As can be observed in Figure 4.4, Relative Matching, Kulczynski, and Russell
and Rao presented the best results for most systems, which reinforces our claim that
these coefficients are the most suitable ones to assess the similarity among classes in
object-oriented systems.

Phi
PSC/Ochiai

Sokal And Sneath 4
Yule

Russel and Rao
Kulczynski

Relative Matching

1 4 22 40 62
systems

Figure 4.4: # systems in which a particular coefficient presented the best result

4.3. Final Remarks 55

4.2.3.8 Threats to Validity

In this section, we identify and classify threats to validity in our evaluation [20, 113]:

Conclusion Validity: First, our study assumes that every class is in its right location
(i.e., package). Although there might be misplaced classes, we argue that, besides
we considered a stable and trustworthy collection of systems, these misplaced classes
can lead to a bias on the results in rare circumstances, as already discussed in
Section 4.2.3.3. However, we acknowledge that we need to assess the impact of
misplaced classes in our corpus or even to replicate our experiment in a more reliable
dataset (future work). Second, our analysis is based only on the overall precision,
as defined in Section 4.2.3.6. Although the distribution of the precision per system
could provide more insights, we argue that the overall precision supports the main
objective of our study, which is to indicate the best coefficient and strategy to be
employed by our suitable module heuristic.

External Validity: We must state a particular threat that might impact the approach
proposed in this thesis. Although the relations class/package and method/class seem
similar w.r.t. structural dependencies, we cannot claim that an empirical study assess-
ing the suitable class for a method—instead of the suitable package for a class, as
conducted—will provide equivalent results.

4.3 Final Remarks

The approach proposed in this thesis relies on the structural similarity between source
code entities to recommend Move Method and Move Class refactorings, as computed
by the suitable_module function. Particularly, we take the position that the choice
of a similarity coefficient should not be made without well-founded reasons, as usually
occur [83]. Therefore, we conducted a quantitative study that compares 18 similar-
ity coefficients and four strategies to identify which one is the most appropriate in
determining where a class should be located.

We observed that Jaccard—one of the most used coefficients by software engi-
neering tools—has not presented the best results. Particularly, large packages imply
a large difference between variables c and d, which negatively impacts the precision of
coefficients like Jaccard, but does not affect other coefficients. While Jaccard indicated
the correct package to only 22% of the classes, other coefficients—such as Relative
Matching, Kulczynski, and Russell and Rao—achieved a precision slightly over 60%.

56 Chapter 4. Evaluation of the Suitable Module Heuristic

Moreover, we also observed that the simplest strategy to extract structural dependen-
cies from a class—set with only types ([set, tt])—has presented the best results.

These findings led us: (i) to choose Relative Matching as the coefficient to measure
the similarity between source code entities (both class/package andmethod/class), since
it presented the best overall precision (60.93% on Top 1) and the best result for most
systems (62 out of 111); and (ii) to adopt the strategy [set, tt], since we evidenced that
neither multisets (mset) or fine-grained dependency types (dtt) improves the overall
precision.

The study described in this chapter was based on the Qualitas.class Corpus,
which is a compiled variant of the Qualitas Corpus proposed by Tempero et al. [97].
The Qualitas.class Corpus is publicly available at:

http://aserg.labsoft.dcc.ufmg.br/qualitas.class

In the next chapter, we describe the evaluation of our recommendation system.
Basically, we present and discuss results on applying our repairing recommendations
in two real-world systems.

http://aserg.labsoft.dcc.ufmg.br/qualitas.class

Chapter 5

Evaluation of the Recommendation
System

In this chapter, we present and discuss results on applying the approach proposed in
this thesis in two real-world systems. The main goal is to demonstrate the applicability
of our approach in real development contexts through an analysis of the correctness
and complexity of our repairing recommendations.

We organized this chapter as follows. Section 5.1 states our research questions.
Section 5.2 describes the two real-world systems our evaluation is based on. Section 5.3
presents the methodology we adopted. Sections 5.4 and 5.5 present the results on
applying our repairing recommendations in our target systems. Section 5.6 provides
a qualitative discussion on the results and Section 5.7 enumerates the lessons learned.
Finally, Section 5.8 points the threats to validity and Section 5.9 concludes this chapter
with a general discussion.

5.1 Research Questions

We designed a study to address the following research questions:

RQ #1 – For what portion of architectural violations detected in a real-world system
can the proposed approach provide repairing recommendations?

RQ #2 – Does the proposed approach provide correct recommendations for repairing
architectural violations?

RQ #3 – How complex is to discover a correct repair action without the support of
our recommendation system?

57

58 Chapter 5. Evaluation of the Recommendation System

RQ #4 – How complex is to reject an incorrect repair action provided by our
recommendation system?

The strategies we follow to assert correctness (RQ #2) and to measure complex-
ity (RQ #3 and RQ #4) are presented in the Methodology section (respectively in
Sections 5.3.2 and 5.3.3).

5.2 Target Systems
Our evaluation relies on two Java web-based systems. The first one is a 21 KLOC open-
source strategic management system, called Geplanes.1 The system handles strategic
management activities, including management plans, goals, performance indicators,
actions, etc. The second one is a large and complex customer care platform of a major
Brazilian telecommunication company. Due to a non-disclosure agreement, we will
omit the company’s name in this thesis and will refer to this second system just as
BrTCom. The system has 728 KLOC and it handles a full range of customer related
services, including account activation, claims and inquiries, offers, etc. Table 5.1 shows
information on the size of both systems.

Table 5.1: Target systems used in the evaluation

Geplanes BrTCom
LOC 21,799 728,814
Subsystems 1 146
Packages 25 2,289
Classes 278 4,724
Interfaces 1 1,893
External libraries 47 58

5.3 Methodology
To provide answers to our research questions, we performed the following major steps:

5.3.1 Triggering Recommendations

As illustrated in Figure 5.1, the chief architect of each system first defined the archi-
tectural constraints based on an existing high-level model of their systems. Since the

1http://www.softwarepublico.gov.br

5.3. Methodology 59

constraints were provided in natural language, we translated the informal definitions
to DCL and validated them with the architects in a 30-minute individual meeting.

Figure 5.1: Methodology followed in the evaluation

Next, we executed the DCLcheck tool to detect violations in both systems. A sec-
ond meeting was scheduled with the architects to validate the architectural violations
raised by DCLcheck. Although Geplanes’ meeting lasted 25 minutes, BrTCom’s meet-
ing lasted almost one hour due to the considerable number of violations unrecognized
by the architect. This additional time was necessary to refine the initial definitions of
modules and to disregard violations that in fact represent exceptions to general rules
or that are not relevant (e.g., violations detected in test classes). Finally, we executed
ArchFix to provide repairing recommendations for the true violations asserted by the
architects.

It is important to mention that when this evaluation was conducted, ArchFix was
limited to trigger a single repairing recommendation, specifically the first one that fits.
In fact, our approach has been recently improved to trigger multiple recommendations,
as detailed in Section 3.3.4 (page 33). Since the architects involved in this study were
no longer available, this study does not contemplate an evaluation of the prioritization
policy, which is listed as future work in Section 6.3.

5.3.2 Correctness Evaluation

We showed the recommendations to the chief architect of each system who classified
them as correct, partially correct, or incorrect. We instructed the architects to classify a
recommendation as correct when it is the appropriate solution to the detected violation
(e.g., a violation whose fixing involves replacing an instantiation with the respective
factory method and our approach has precisely suggested this repair action), as in-
correct when it is definitely not part of the architectural fix (e.g., a violation whose
fixing involves making the class implement a particular interface, but our approach
has suggested moving the class to another module), and as partially correct when the

60 Chapter 5. Evaluation of the Recommendation System

recommendation is only part of the required repair action (e.g., a violation whose fixing
involves replacing an annotation with a new one, but our approach has only suggested
inserting the new annotation, without a suggestion to remove the existing one).

A third meeting was scheduled with the architects to evaluate the correctness
of the triggered recommendations. Since Geplanes triggered few violations (only 41 in
total), this classification was possible during a 30-minute meeting. For each recommen-
dation, we reminded the architect of the constraint, presented the code responsible by
the violation, and the recommendation triggered by our approach. For BrTCom, due
to the large number of detected violations in this system (787 in total), we grouped
similar recommendations before the meeting and asked the architect to classify only
a subset of the recommendations in a given group. For instance, a single constraint
(named TC11) raised 270 violations due to forbidden declarations. Since the violations
were very similar, we randomly selected six to be scored by the architect. In this way,
in two 30-minute meetings with the architect, it was possible to classify 89 recommen-
dations that represent the whole set of recommendations triggered for the BrTCom
system.

5.3.3 Complexity Evaluation

We conducted a 30-minute meeting with the Geplanes’ architect to assess the com-
plexity of all triggered recommendations. In the case of BrTCom, similarly to the
correctness evaluation, we asked the architect to assess the complexity of the subset of
89 recommendations in a single 50-minute meeting.

During these meetings, for each correct recommendation, we asked the architects
to assess how complex would be for a typical developer to discover the suggested repair
actions without the support of our recommendation system. More specifically, we
instructed the architects to consider the scope of the classes that might be inspected by
the developers as the most relevant property to assess this complexity. We defined three
levels of complexity: minor (when discovering the correct repair actions does not require
inspecting other classes), moderate (when discovering the correct repair actions might
require inspecting classes located in well-known modules), or major (when discovering
the correct repair actions might require inspecting classes whose location is not known
a priori).

As an example of a recommendation with minor complexity, assume a violation in
which a View class misses a required annotation and our approach correctly suggests
adding the annotation. In this case, a typical developer can conclude after a local
inspection that the class is indeed a View class and requires the annotation. On the

5.4. Geplanes Results 61

other hand, as an example of a recommendation with moderate complexity, assume
a violation in which an object of a Product class is created in a module that is not
allowed to perform this operation and our approach correctly suggests replacing the
direct instantiation with the respective factory method. In this case, a typical developer
needs to inspect other classes in the current module or even in the Factory module to
find the appropriate factory method. Finally, as an example of a recommendation with
major complexity, assume a violation in which a class is located in the wrong module
and our approach correctly suggests moving the class to another module. In this case,
a typical developer may need to perform a system-wide inspection to determine the
most suitable module.

Finally, we also asked the architects to assess how complex would be for a typical
developer to discover that a given recommendation is incorrect. In this case, we also
relied on the scope of the classes that might be inspected by the developers to make
the decision.

5.4 Geplanes Results

The results achieved by applying our methodology to Geplanes are discussed next.

Recommendations (RQ #1): Table 5.2 lists the architectural constraints prescribed by
the Geplanes’ chief architect. Figure 5.2 illustrates such constraints and the detected
architectural violations in the form of a reflexion model [68].2 They are mainly
related to the MVC-based framework used by Geplanes’ current implementation.
In general, constraints GP1−GP7 require that classes from some modules receive
particular annotations, constraints GP8−GP9 restrict the modules that are allowed to
receive particular annotations, and constraints GP10−GP11 forbid some modules to
create classes of specific modules. As reported in Table 5.2, we found 41 architectural
violations and ArchFix was able to provide recommendations for all of them (100%).

Correctness (RQ #2): Table 5.2 also presents the results of the correctness classifica-
tion, according to Geplanes’ architect. As reported, 31 recommendations were classified
as correct (75%), eight recommendations were classified as partially correct (20%), and
two recommendations were classified as incorrect (5%).

As reported in Table 5.2, most violations are related to constraints GP1−GP7. In
such cases, the usual recommendation was adding the required annotation to the class

2We are using this reflexion model just for illustrative purposes. In fact, as mentioned in Sec-
tion 5.3.1, we relied on DCL to detect architectural violations in our target systems.

62 Chapter 5. Evaluation of the Recommendation System

Table 5.2: Recommendations and correctness evaluation (Geplanes)

Violations Number Recommendations Total
(correct – pr. cor. – incor.)

GP1 [Entities, must, useannotation, javax.persistence.Entity] 3 A5(1−0−1); A6(1−0−0) 2−0−1
GP2 [Entities, must, useannotation, javax.persistence.Id] 1 A8(1−0−0) 1−0−0
GP3 [Entities, must, useannotation, javax.persistence.GeneratedValue] 1 A8(1−0−0) 1−0−0
GP4 [Entities, must, useannotation, linkcom.neo.bean.DescriptionProperty] 18 A6(18−0−0) 18−0−0
GP5 [Controllers, must, useannotation, linkcom.neo.controller.DefaultAction] 1 A6(1−0−0) 1−0−0
GP6 [Controllers, must, useannotation, linkcom.neo.controller.Controller] 2 A6(1−0−1) 1−0−1
GP7 [Services, must, useannotation, linkcom.neo.bean.ServiceBean] 1 A6(1−0−0) 1−0−0
GP8 [Entities, cannot, useannotation, javax.persistence.Entity] 1 D21(1−0−0) 1−0−0
GP9 [Controllers, cannot, useannotation, linkcom.neo.controller.Input] 1 D24(1−0−0) 1−0−0
GP10 [System, cannot, create, [Services, DAOs, Controllers]] 5 D12(2−3−0) 2−3−0
GP11 [DAOs, cannot, create, linkcom.neo.persistence.QueryBuilder] 7 D11(2−0−0); D13(0−5−0) 2−5−0

41 31−8−2

Figure 5.2: Geplanes’ reflexion model (an ‘x′ denotes absences and a ‘!′ denotes
divergences)

or method where the violation was detected (recs. A6 and A8). For example, as can be
observed in Code 5.1, class AnomaliaCrud is missing annotation @Controller required
by the underlying MVC-based framework. Therefore, this absence represents a viola-
tion of constraint GP6, as illustrated by an arrow with an ‘x′ mark from Controllers to
@Controller in Figure 5.2. In this particular case, our approach correctly suggested
adding annotation @Controller (rec. A6) to the AnomaliaCrud class.

5.4. Geplanes Results 63

1 package br.com. linkcom .sgm. controller .crud;
2
3 public class AnomaliaCrud extends
4 SGMCrudController < AnomaliaFiltro , Anomalia , Anomalia > {
5 private FerramentaAnomaliaService fas = new FerramentaAnomaliaService ();
6 ...
7 }

Code 5.1: Controller class AnomaliaCrud

ArchFix also suggested removing instantiations of objects that are provided by
dependency injection techniques (rec. D12). For example, the AnomaliaCrud class
(Code 5.1) creates an object of FerramentaAnomaliaService (line 5). This instantia-
tion represents a divergence regarding constraint GP10, as illustrated by an arrow with
an ‘!′ mark from Controllers to Services in Figure 5.2. The recommendation for
this particular divergence was regarded as partially correct because, besides removing
the instantiation, the architect also indicated the need to create a local setter method
for the respective attribute fas.

As a final example, class Verbo—located in module Controllers—has an
annotation @Entity, as can be observed at line 3 in Code 5.2. The use of this
annotation represents a divergence regarding constraint GP8, as illustrated by an
arrow with an ‘!′ mark from Controllers to @Entity in Figure 5.2. In this case,
our approach correctly suggested moving Verbo to module Entities (rec. D21).
More specifically, the suitable_module function returned Entities as the module
with the highest similarity—S(Deps(Verbo), Deps(Entities))=0.114—, whereas the
current module of the class (Controllers) has a significant lower similarity—
S(Deps(Verbo), Deps(Controllers))=0.038.

1 package br.com. linkcom .sgm. controller ;
2
3 @Entity
4 @SequenceGenerator (name = " sq_verbo ", sequenceName = " sq_verbo ")
5 public class Verbo {
6 private Integer id;
7 private String nome;
8 ...
9 @Id

10 @GeneratedValue (strategy = GenerationType .AUTO , generator =" sq_verbo ")
11 public Integer getId () {
12 return id;
13 }
14 }

Code 5.2: “Controller” class Verbo

64 Chapter 5. Evaluation of the Recommendation System

Complexity (RQ #3, RQ #4): In the case of correct recommendations, two recom-
mendations have been scored as having a minor complexity (A5 and A6), four recom-
mendations (D11, D21, D24, and A8) as having a moderate complexity, and another
recommendation (D12) as having a major complexity. For example, rec. A5 for viola-
tions GP1 was classified as having a minor complexity, because it just requires adding
an annotation to classes that represent database entities (which can be locally inferred
by the presence of other database annotations). On the other hand, rec. D11 for viola-
tions GP11 was classified as having a moderate complexity, because it requires replacing
the direct instantiation of a query builder object with its factory method. In this case,
the developer should search for the factory inspecting classes located in the DAO mod-
ule (i.e., a previously known module). Finally, rec. D12 for violations GP10 has been
scored as major complexity. Although it solely suggests to remove the instantiation of
DataSource and Controller objects, the developer must be aware that such objects
are provided by a dependency injection framework.

In the case of incorrect recommendations, rec. A5 has been considered as having
moderate complexity and rec. A6 as presenting a minor complexity. Rec. A5 suggests
moving a class without a particular annotation to other module. In this case, the
developer must inspect the classes of the target module to realize that the moving
is incorrect. On the other side, rec. A6 suggests adding a specific annotation and the
developer can infer that such annotation is incorrect by considering only the class itself.

5.5 BrTCom Results

The results for BrTCom are discussed next.

Recommendations (RQ #1): Table 5.3 lists the 14 architectural constraints prescribed
by the BrTCom’s chief architect. These constraints are mainly used to enforce several
architectural rules, such as decomposition in layers (e.g., TC8), factories (e.g., TC5),
interfaces (e.g., TC13), persistence patterns (e.g., TC1), etc. ArchFix raised 727 recom-
mendations for the 787 violations we detected using the constraints in Table 5.3 (92%).
Regarding the 60 violations without recommendation, 54 violations are associated
to TC14. Particularly in such violations, ServerLayer classes were calling methods
that should not be implemented in ClientUtil classes but rather in a layer common
both to server and client modules.

5.5. BrTCom Results 65

Table 5.3: Recommendations and correctness evaluation (BrTCom)

Violations Number Recommendations Total
(correct – pr. cor. – incor.)

TC1 [DTOs, must, implement, java.io.Serializable] 63 A3(53−0−0); A4(0−0−10) 53−0−10
TC2 [SAOs, must, extend, brtcom.server.sao.AbstractSAO] 1 A4(1−0−0) 1−0−0
TC3 [Controllers, must, useannotation, brtcom.client.controller.Controller] 1 A6(1−0−0) 1−0−0
TC4 [DataSources, must, useannotation, brtcom.client.datasource.DataSource] 1 A6(1−0−0) 1−0−0
TC5 [brtcom.server.dao.BaseJPADAO, cannot, create, DAOs] 13 D11(13−0−0) 13−0−0
TC6 [DAOs, cannot, throw, brtcom.server.dao.DAOException] 15 D15(11−0−0);D16(2−0−0) 13−0−0
TC7 [[CtrlLayer, DSLayer], cannot, useannotation, CtrlDSAnnotations] 20 D21(2−0−0); D22(18−0−0) 20−0−0
TC8 [[Services, SAOLayer], cannot, depend, SAOs] 5 D20(1−0−0) 1−0−0
TC9 [System, cannot, create, [Controllers, DataSources]] 3 D12(3−0−0) 3−0−0
TC10 [CtrlLayer, cannot, create, java.util.Date] 84 D13(0−84−0) 0−84−0
TC11 [ScreenWrappers, cannot, useannotation, JavaLangAnnotations] 18 D21(0−0−1); D22(17−0−0) 17−0−1
TC12 [System, cannot, depend, java.lang.System] 14 D9(14−0−0) 14−0−0
TC13 [ServicesAsync, cannot, declare, UnallowedAbstractTypes] 270 D2(270−0−0) 270−0−0
TC14 [ServerLayer, cannot, depend, ClientUtil] 279 D7(225−0−0) 225−0−0

787 632−84−11

Correctness (RQ #2): As can be observed in Table 5.3, BrTCom’s architect has scored
632 recommendations as correct (80%), 84 recommendations as partially correct (11%),
and 11 recommendations as incorrect (2%).

For example, constraint TC1, which specifies that DTO classes must implement
Serializable, raised violations in 63 classes. For 53 classes, ArchFix suggested the
correct repair action, i.e., making the class implement Serializable (rec. A3). Never-
theless, Data Transfer Objects (DTOs) by their very nature rely extensively on types
from the Java API. For this reason, ArchFix—based on the structural similarity calcu-
lated by the suitable_module function described in Section 3.3.5 (page 34)—has im-
properly recommended moving the other 10 classes to the Constants module (rec. A4),
whose classes are also heavily based on Java’s built-in types.

The highest number of correct recommendations for a single constraint has
been raised for the 270 violations associated to constraint TC13, which forbids
ServicesAsync classes to declare abstract types due to a pattern recommended by the
GWT framework. For each of such violations, ArchFix suggested a more specialized
type (rec. D2). For instance, most of the violations were due to references to List
and Map in GWT interfaces. In such cases, ArchFix has properly suggested replacing
these abstract types with the concrete types ArrayList and HashMap, respectively.

Complexity (RQ #3, RQ #4): BrTCom’s architect assessed the complexity of correct
recommendations in the following way: four recommendations as having a minor com-
plexity (D9, D22, A3, and A6), two recommendations (D2 andD11) as having amoderate
complexity, and six recommendations (D7, D12, D15, D16, D20, and D21) as present-

66 Chapter 5. Evaluation of the Recommendation System

ing a major complexity. For example, rec. D2 for violations TC13 was considered as
having a moderate complexity, since the concrete implementations for an abstract type
usually have a well-known location (e.g., the package java.util). On the other hand,
rec. D7 for Server classes making an unauthorized use of Client services associated
to constraint TC14 was scored as having a major complexity, because it is not trivial to
delimit the scope of the task of searching for a class that provides equivalent services
to the ones provided by another class.

Regarding the incorrect recommendations, one recommendation (D21) was con-
sidered as having a major complexity and another recommendation (A4) as presenting
a moderate complexity. Rec. D21 suggests moving an incorrectly annotated class to
another module (where the annotation does not represent a violation). The task of dis-
carding it was considered as having a major complexity because a global understanding
of the system is required to decide whether the indicated module is correct or not.3

5.6 Analysis of Results

Based on the experience gained with the Geplanes and BrTCom case studies, we
conducted a deeper analysis on the major themes of the detected violations and
the root causes of them. Table 5.4 classifies the detected violations according to a
set of architectural defect types initially proposed by Knodel and Popescu [50] and
later extended by us [102]. As a general fact, the architects ascribed most of the
detected violations due to the lack of awareness about the architectural model [110]
and copy-and-paste procedures [29].

Table 5.4: Classification of the detected violations (focusing on correctness)

Architectural Defect Type Constraints # viols. # recs. # correct recs. precision
Misusage of persistence patterns GP1−3; TC1 68 68 57 0.84
Misusage of domain-specific patterns GP4−7; TC2−4 25 25 24 0.96
Bypassing layers GP8−9; TC6−8; TC14 321 261 261 1.00
Unintended dependencies GP10; TC9; TC11−12 40 40 36 0.90
Bypassing creational patterns GP11; TC5 20 20 15 0.75
Context exploration TC10 84 84 0 0.00
Misusage of interfaces TC13 270 270 270 1.00

828 768 663

3A similar recommendation (A5) was triggered in Geplanes’ case study and it was considered as
having a moderate complexity. Basically, the recommendations involves moving a DTO, a well-known
design pattern. On the other hand, rec. D21 triggered in BrTCom involves moving a domain-specific
class, which explains its higher complexity.

5.6. Analysis of Results 67

Next, we rely on this classification to answer our research questions.

RQ #1 – For what portion of architectural violations detected in a real-world system
can the proposed approach provide repairing recommendations?

As reported in Table 5.4, our approach was able to trigger recommendations
for 768 out of 828 detected violations (93%). Particularly, we were able to provide
recommendations for all architectural defect types, with the exception of 60 con-
straints whose violations were classified in the bypassing layers category. However,
we argue that our approach can be improved to handle some of the violations in this
category. As an example, we noticed that an additional recommendation suggesting
the replacement of an exception with another one could correctly repair the two
violations without recommendations in the case of constraint TC6. As another
example, BrTCom’s architect mentioned that an additional recommendation suggest-
ing to move the accessed class or method might address the 54 violations without
recommendations in the case of constraint TC14. Currently, ArchFix only suggests
moving the class or method where the violations was detected. For example, in
Code 3.1 (page 27), we can suggest to move the method init (where the violation was
detected) to another class, but currently we do not suggest moving the method foo. In
short, our proposed approach handles the vast majority of the detected violations and
further improvements are possible and some of them seem to be general to OO systems.

RQ #2 – Does the proposed approach provide correct recommendations for repairing
architectural violations?

As can be observed in Table 5.4, our approach triggered correct recommendations
for 663 out of 828 detected violations (80%). More specifically, we achieved a precision
greater than 75% for all architectural defect types, with the exception of the constraints
whose violation were classified in the context exploration category. We define precision
as the number of correct recommendations by the total number of recommendations
triggered by ArchFix.

According to the architects’ feedback, ArchFix was very precise handling the
architectural defect types that do not involve complex repair actions. As evidence,
BrTCom’s architect highlighted the 270 violations on constraint TC13 (misusage of
interfaces) fixed by recommendation D2—which suggests replacing the declaration
of an unauthorized abstract type (mostly, List) with one of its concrete subtypes
(mostly, ArrayList)—as one of the “most important recommendations”. According to
the architect, by not following this recommendation (associated to the correct use of the

68 Chapter 5. Evaluation of the Recommendation System

GWT framework), the current implementation experiences an overhead in the size of
the generated JavaScript code, with important negative consequences both in terms of
CPU performance and network bandwidth consumption. On the other hand, ArchFix
was unable to achieve good precision on violations related to context exploration. For
example, constraint TC10 defines that Client classes cannot create Date objects (to
avoid time synchronization bugs). As a result of the conformance process, we found
84 violations of this constraint in BrTCom classes. However, the recommendations
suggested by ArchFix just include the removal of the instantiations. This repair action
was classified by BrTCom’s architect as partially correct. In fact, he indicated that the
correct repair action in this case would require a refactoring in the Server interfaces
to return Date instances in particular cases. Therefore, instead of creating the Date
on the client process, the client code should invoke the refactored interfaces.

As another relevant finding, we noticed that some incorrect recommendations
were triggered because the suitable_module function did not indicate the current
(and also correct) module as the most suitable one. For instance, in the case of one
violation in constraint TC11 due to unintended dependencies, our approach failed to
indicate the most suitable module. However, the module calculated with the second
best similarity was in fact the correct one. For this reason, we are considering a revision
in our suitable_module implementation to indicate more than one module whenever
the similarity value is very close to the highest calculated one, or even boost the priority
of the current module.

Last but not least, as a practical contribution of our evaluation, the architects
of both systems opened a maintenance request in the issue management platform of
their systems requesting a correction for the detected violations and suggesting the
use of the recommendations provided by ArchFix. Particularly, Geplanes’ maintainers
have repaired the detected violations in the system’s main development trunk. On
the other hand, BrTCom’s maintainers still have not repaired the detected violations.
In fact, it is not clear to the company the return on investment (ROI) of fixing
architectural violations.

RQ #3 – How complex is to discover a correct repair action without the support of
our recommendation system?

As reported in Table 5.5, most correct recommendations were scored as having
moderate or major complexity. Particularly, 241 violations related to bypassing layers
were the ones classified predominantly as having a major complexity. After asking the
architects for clarification, we realized that repairing these violations requires a global

5.7. Lessons Learned 69

understanding of the system, including knowledge on the public interfaces of all layers.
On the other hand, recommendations associated to the misusage of persistence and
other domain-specific patterns were mostly classified as having a minor complexity.
They are usually associated to missing or incorrect use of annotations, which can be
fixed more easily, by just inserting or removing a given annotation.

Table 5.5: Classification of the detected violations (focusing on complexity)

Complexity
correct recs. incorrect recs.

Architectural Defect Type minor moderate major minor moderate major
Misusage of persistence patterns 55 2 - - 11 -
Misusage of domain-specific patterns 24 - - 1 - -
Bypassing layers 18 2 241 - - -
Unintended dependencies 31 - 5 - - 1
Bypassing creational patterns - 15 - - - -
Context exploration - - - - - -
Misusage of interfaces - 270 - - - -

128 289 246 1 11 1

RQ #4 – How complex is to reject an incorrect repair action provided by our
recommendation system?

As also reported in Table 5.5, the results indicate that rejecting an incorrect
recommendation has a higher complexity than accepting a correct one (12 out of 13
incorrect recs. require a moderate or major effort). However, we argue that the number
of correct recommendations raised by our approach outperforms by a large margin the
number of incorrect ones (663 vs 13 recs. in our case studies).

5.7 Lessons Learned

We identified five lessons learned from our experience on evaluating the use of ArchFix
in the Geplanes and BrTCom systems. We learned that we could have avoided many
incorrect recommendations if the suitable_module function indicated a set of mod-
ules with close similarity values, rather than a single module. In certain cases, we
noticed that the suitable module was indeed the one with the second best similarity.
For this reason, we are considering a revision in our suitable module heuristic to indi-
cate more than one module whenever the similarity value is very close to the highest
calculated one.

70 Chapter 5. Evaluation of the Recommendation System

Second, the architects highlighted that ArchFix does not target senior developers
but mainly developers who recently joined the project. They typically refer to the lack
of awareness about architectural rules as the main cause of the violations. According to
the architects, our approach might help less experienced developers to understand the
system architecture by showing the correct repair procedure for the detected violations.

Third, the real value of conformance checking occurs when it is integrated to the
regular development and maintenance processes. As an evidence, Knodel et at. demon-
strate that teams supported by constructive compliance checking may insert about 60%
less structural violations into the architecture [49]. In this thesis, we claim that an ar-
chitectural repair recommendation system—such as ArchFix—can also be integrated
into the regular development process. In such way, besides the detection of points of
violations, we would also contemplate a mechanism to repair the detected violations.

Forth, only 17 out of the 32 proposed recommendations, which emerged from
our initial study [102], were triggered in our case studies. However, we believe that
the unused recommendations are generic enough to be triggered in other architecture
erosion fixing contexts. For example, the unused recommendation D1 addresses viola-
tions due to the misusage of interfaces, which were commonly detected in other case
studies [88, 50, 102].

Last but not least, most recommendations were scored as having moderate or
major complexity. Therefore, we claim that our approach may save developers’ time
when fixing architectural violations, although we have not measured this aspect in our
evaluation. Instead, we assumed that the more complex the recommendation is, the
more time is required to discover and to apply the suggested repair action.

5.8 Threats to Validity

In this section, we identify and classify threats to validity in our evaluation [20, 113]:

Internal Validity: Since many steps of our evaluation require the involvement of
architects, they could be affected negatively (e.g., tired or bored) during the exper-
iment. In order to minimize this threat, we conducted one meeting for each task:
constraints definition, violations validation, correctness assessment, and complexity as-
sessment. More important, we carefully planned each meeting to last up to 50 minutes.

External Validity: First, although we used two industrial-strength web systems that
have different architectures and constraints, we cannot claim that our approach will
provide equivalent results in other systems (as usual in empirical studies in software

5.9. Final Remarks 71

engineering). Second, since the target systems presented a moderate number of viola-
tions (slightly over 1 violation/KLOC), we cannot claim that our approach provides
the same precision in systems already facing a major architectural erosion process.
Fundamentally, a major erosion process may impact the precision of underlying
functions, such as suitable_module. Third, since we detected violations using DCL,
we cannot claim that our approach provides equivalent coverage and precision when
using other architecture conformance tools. More important, the proposed approach
targets specific classes of violations, and other types of violations may be present in
a particular system. However, DCL was able to express all constraints proposed by
the architects of two large and complex systems (BrTCom, as reported in this thesis,
and SGP, our training system, as reported in Section 3.3.1, page 29). Fourth, since we
used half of the proposed repairing recommendations, it was not possible to evaluate
the remaining recommendations. However, the unused recommendations would have
been useful at least once in our training system [102].

Construct Validity: In our evaluation, we relied on two chief architects (one per system)
to define the constraints, to validate whether the detected violations are in fact true
positives, to judge the correctness, and to assess the complexity of the recommenda-
tions. As typical in human-based classifications, our results might be affected by some
degree of subjectivity. However, it is important to highlight that we interviewed the
chief architects who designed the evaluated architectures and are responsible for their
maintenance and evolution. Therefore, they are the right experts to evaluate the cor-
rectness of a given recommendation. Moreover, our assessment of complexity is based
on a fairly precise definition, which relies on the scope of the classes that might be in-
spected. Furthermore, instead of assessing each violation separately, we grouped similar
recommendations to make the evaluation easier to the architects. More important, the
architects’ answers for the recommendations in the same group were always consistent.

5.9 Final Remarks

In this chapter, we conducted an evaluation with two industrial-strength systems that
provided us with encouraging feedback on the applicability and correctness of our rec-
ommendations. For the first system—a 21 KLOC open-source strategic management
system—our approach indicated correct repairing recommendations for 31 out of 41
violations detected as the result of an architecture conformance process. For the sec-
ond system—a 728 KLOC customer care system used by a major telecommunication

72 Chapter 5. Evaluation of the Recommendation System

company—our approach triggered correct recommendations for 632 out of 787 viola-
tions, as asserted by the system’s architect.

In conclusion, considering both systems, ArchFix indicated the correct repair
action for 663 out of 828 violations detected as the result of an architecture conformance
process (80%). Moreover, the architects scored 81% of these recommendations as having
moderate or major complexity. These results support our claim that the approach
proposed in this thesis can assist developers when repairing violations in the static
architecture of object-oriented systems.

Chapter 6

Conclusion

Architectural erosion is a recurrent problem faced by software architects. However, a
clear dichotomy is perceived in the tools already designed to tackle this problem. On
the one hand, there are several approaches and commercial tools proposed to uncover
architectural violations [68, 96, 23, 102, 2, 16]. On the other hand, the task of fixing
the hundreds of violations raised after an architecture conformance process is normally
conducted with limited tool support.

To address this shortcoming, we described a solution based on recommendation
system principles that provides repairing guidelines for developers and maintainers
when fixing violations in the module architecture view of object-oriented systems. The
proposed system provides recommendations for violations—divergences and absences—
raised by static architecture conformance checking approaches. We also elaborated a
suitable module heuristic to determine the correct module for source code entities based
on their structural similarity and designed a tool—called ArchFix—that implements
our approach and hence provides recommendations for architectural violations in Java
systems. Moreover, we conducted an evaluation with two industrial-strength systems
that provided us with encouraging feedback on the applicability of our recommenda-
tions. Considering both systems, ArchFix indicated the correct repair actions for 632
(80%) out of 828 violations detected as the result of an architecture conformance pro-
cess. The architects also scored 80% of these recommendations as having moderate or
major complexity.

We organized this chapter as follows. First, Section 6.1 reviews the contributions
of our research. Next, Section 6.2 points the limitations of our approach. Finally,
Section 6.3 presents the further work.

73

74 Chapter 6. Conclusion

6.1 Contributions

This research makes the following contributions:

• The design of a solution based on recommendation system principles that pro-
vides repairing guidelines for developers and maintainers when reversing software
architecture erosion (Chapter 3);

• The specification of 32 repairing recommendations that emerged after an in-depth
investigation of possible fixes for more than 2,200 violations (Section 3.3);

• A prototype tool called ArchFix that implements our approach and hence
provides recommendations for violations—divergences and absences—raised by
static architectural constraints (Section 3.4);

• The employment of speculative analysis on our prioritization policy (Section 3.3.4);

• A suitable module heuristic to infer the correct module for source code entities
based on their structural similarity (Section 3.3.5);

• An empirical study that supports the implementation decisions (coefficients and
strategies) related to our suitable module heuristic (Section 4.2);

• An evaluation of the correctness and complexity of our repairing recommenda-
tions on two real-world systems, including a qualitative discussion on the re-
sults (Chapter 5);

• The Qualitas.class Corpus, which is a compiled version of the original Qualitas
Corpus (Section 4.1);

• A review of the state-of-the-art and state-of-the-practice w.r.t. architectural mod-
els, architecture conformance approaches, refactoring techniques, remodulariza-
tion methods, and recommendation systems (Chapter 2).

6.2 Limitations

Our work has the following limitations:

• Our approach may not provide the same precision in systems already facing a
major architectural erosion process. Such scenario may impact the precision of
important functions, such as suitable_module;

6.3. Future Work 75

• Our suitable module heuristic is based only on structural similarity, even though
the way that developers decide how to fix a violation might consider semantic
aspects;

• Our catalog of repairing recommendations is not complete, which is far ahead of
our initial objectives;

• The preconditions of our repairing recommendations are not complete. They
only provide minimal conditions to prevent the insertion of new violations and
to reduce undesirable side effects;

• Our tool has been initially designed to work as a recommendation system and au-
tomatizes only some trivial repair actions, such as replacing a type and removing
annotations;

• We have not evaluated whether our approach provides equivalent coverage and
precision when using architecture conformance tools other than DCL;

• We have not evaluated whether our approach provides equivalent results in con-
texts other than web-based systems;

• Our approach has not been designed to deal with concurrency issues.

6.3 Future Work
In particular, we intend to complement this work with the following future work:

• The Proposed Approach: (i) the design of an architecture-repair recommendation
language to allow maintainers to extend our catalog of repairing recommenda-
tions with their own domain-specific ones; (ii) a crossover study to compare the
effort required by developers to repair architectural violations with and without
ArchFix; (iii) new cases studies to refine and to extend the catalog of recom-
mendations, to evaluate the prioritization policy based on speculative analysis,
and to demonstrate the applicability of our approach in contexts other than web-
based systems; (iv) an evolutionary case study in which architectural violations
were detected and solved as the system evolves to quantify how many violations
were repaired exactly as our approach would have suggested; (v) an analysis of
the order in which the suggested repair actions are applied to maximize the num-
ber of repairing recommendations; and (vi) the design of a strategy to indicate
confidence levels for triggered repairing recommendations.

76 Chapter 6. Conclusion

• The Suitable Module Heuristic: (i) the replication of the conducted experiment
to consider the most suitable class for a method; (ii) the assessment the impact
of misplaced classes in the corpus; (iii) a statistical analysis of the distribution
of the precision per system; (iv) the use of semantic properties to improve the
precision of our heuristic; (v) a sensitivity analysis of the factors a, b, c, and d
in the ranking to propose a specific coefficient for measuring similarity in object-
oriented systems; and (vi) an investigation of the impact on the results when the
similarity between a class C and a package Pkg are calculated by the average of the
resulting similarity between C and each Pkg class—rather than by the resulting
similarity between C and Pkg, as evaluated in this thesis.

• The ArchFix Tool: (i) the implementation of the repairing functions; (ii) the
investigation of new heuristics to enhance the precision of auxiliary functions,
such as factory and delegate; and (iii) the definition of a public interface to
make our solution more extensible and open in order to facilitate its use with
other architectural conformance tools.

Bibliography

[1] Ackermann, C., Lindvall, M., and Cleaveland, R. (2009). Towards behavioral re-
flexion models. In 20th International Symposium on Software Reliability Engineering
(ISSRE), pages 175–184.

[2] Aldrich, J., Chambers, C., and Notkin, D. (2002). ArchJava: connecting soft-
ware architecture to implementation. In 22nd International Conference on Software
Engineering (ICSE), pages 187–197.

[3] Allen, R. and Garlan, D. (1997). A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213–249.

[4] Anquetil, N. and Laval, J. (2011). Legacy software restructuring: Analyzing a con-
crete case. In 15th European Conference on Software Maintenance and Reengineering
(CSMR), pages 279–286.

[5] Anquetil, N. and Lethbridge, T. (1999). Experiments with clustering as a soft-
ware remodularization method. In 6th Working Conference on Reverse Engineering
(WCRE), pages 235–255.

[6] Baeza-Yates, R. and Ribeiro-Neto, B. (2011). Modern Information Retrieval. Pear-
son, 2nd edition.

[7] Baldwin, C. Y. and Clark, K. B. (1999). Design Rules: The Power of Modularity.
MIT Press.

[8] Bansiya, J. and Davis, C. (2002). A hierarchical model for object-oriented design
quality assessment. IEEE Transactions on Software Engineering, 28(1):4–17.

[9] Bischofberger, W. R., Kühl, J., and Löffler, S. (2004). Sotograph - a pragmatic
approach to source code architecture conformance checking. In European Workshop
on Software Architecture (EWSA), pages 1–9.

77

78 Bibliography

[10] Bittencourt, R. (2010). Conformance checking during software evolution. In 17th
Working Conference on Reverse Engineering (WCRE), pages 289–292.

[11] Bittencourt, R., Jansen de Souza Santos, G., Guerrero, D., and Murphy, G. (2010).
Improving automated mapping in reflexion models using information retrieval tech-
niques. In 17th Working Conference on Reverse Engineering (WCRE), pages 163–
172.

[12] Borba, P., Sampaio, A., Cavalcanti, A., and Cornélio, M. (2004). Algebraic rea-
soning for object-oriented programming. Science of Computer Programming, 52(1-
3):53–100.

[13] Borchers, J. (2011). Invited talk: Reengineering from a practitioner’s view –
a personal lesson’s learned assessment. In 15th European Conference on Software
Maintenance and Reengineering (CSMR), pages 1–2.

[14] Bourquin, F. and Keller, R. K. (2007). High-impact refactoring based on ar-
chitecture violations. In 11th European Conference on Software Maintenance and
Reengineering (CSMR), pages 149–158.

[15] Brunet, J., Guerreiro, D., and Figueiredo, J. (2009). Design tests: An approach
to programmatically check your code against design rules. In 31st International
Conference on Software Engineering (ICSE), New Ideas and Emerging Results Track,
pages 255 –258.

[16] Brunet, J., Guerreiro, D., and Figueiredo, J. (2011). Structural conformance
checking with design tests: An evaluation of usability and scalability. In 27th Inter-
national Conference on Software Maintenance (ICSM), pages 143–152.

[17] Burke, R. (2007). Hybrid web recommender systems. In The Adaptive Web,
volume 4321 of Lecture Notes in Computer Science, pages 377–408. Springer Berlin
Heidelberg.

[18] Chern, R. and Volder, K. D. (2008). The impact of static-dynamic coupling on
remodularization. In 23rd Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 261–276.

[19] Chidamber, S. and Kemerer, C. (1994). A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6):476--493.

[20] Cook, T. D. and Campbell, D. T. (1979). Quasi-experimentation: design and
analysis issues for field settings. Houghton Mifflin.

Bibliography 79

[21] Cubranic, D. and Murphy, G. (2003). Hipikat: recommending pertinent software
development artifacts. In 25th International Conference on Software Engineering,
pages 408–418.

[22] Dagenais, B. and Robillard, M. P. (2008). Recommending adaptive changes for
framework evolution. In 30th International Conference on Software Engineering
(ICSE), pages 481–490.

[23] de Moor, O. (2007). Keynote address: .QL for source code analysis. In 7th IEEE
International Conference on Source Code Analysis and Manipulation (SCAM), pages
3–14.

[24] De Schutter, K. (2012). Automated architectural reviews with semmle. In 28th
IEEE International Conference on Software Maintenance (ICSM), pages 557–565.

[25] de Silva, L. and Balasubramaniam, D. (2012). Controlling software architecture
erosion: A survey. Journal of Systems and Software, 85(1):132–151.

[26] Ducasse, S. and Pollet, D. (2009). Software architecture reconstruction: A process-
oriented taxonomy. IEEE Transactions on Software Engineering, 35(4):573–591.

[27] Eichberg, M., Kloppenburg, S., Klose, K., and Mezini, M. (2008). Defining and
continuous checking of structural program dependencies. In 30th International Con-
ference on Software Engineering (ICSE), pages 391–400.

[28] Everitt, B. S., Landau, S., Leese, M., and Stahl, D. (2011). Cluster Analysis.
Wiley, 5th edition.

[29] Feilkas, M., Ratiu, D., and Jurgens, E. (2009). The loss of architectural knowledge
during system evolution: An industrial case study. In 17th IEEE International
Conference on Program Comprehension (ICPC), pages 188–197.

[30] Fokaefs, M., Tsantalis, N., Stroulia, E., and Chatzigeorgiou, A. (2011). Jdeodor-
ant: identification and application of extract class refactorings. In 33rd International
Conference on Software Engineering (ICSE), pages 1037–1039.

[31] Fokaefs, M., Tsantalis, N., Stroulia, E., and Chatzigeorgiou, A. (2012). Identifica-
tion and application of extract class refactorings in object-oriented systems. Journal
of Systems and Software, 85(10):2241–2260.

[32] Fowler, M. (1999). Refactoring: improving the design of existing code. Addison-
Wesley, Boston.

80 Bibliography

[33] Fowler, M. (2002). Patterns of Enterprise Application Architecture. Addison-
Wesley, Boston.

[34] Frenzel, P., Koschke, R., Breu, A., and Angstmann, K. (2007). Extending the
reflexion method for consolidating software variants into product lines. In 14th
Working Conference on Reverse Engineering (WCRE), pages 160 –169.

[35] Garcia, J., Popescu, D., Edwards, G., and Medvidovic, N. (2009a). Identifying
architectural bad smells. In 13th European Conference on Software Maintenance and
Reengineering (CSMR), pages 255–258.

[36] Garcia, J., Popescu, D., Edwards, G., and Medvidovic, N. (2009b). Toward a
catalogue of architectural bad smells. In 5th International Conference on the Quality
of Software Architectures (QoSA), pages 146–162.

[37] Garlan, D., Monroe, R., and Wile, D. (1997). Acme: an architecture descrip-
tion interchange language. In Conference of the Centre for Advanced Studies on
Collaborative Research (CASCON), pages 1–15.

[38] Garlan, D. and Shaw, M. (1996). Software Architecture: Perspectives on an Emerg-
ing Discipline. Prentice Hall.

[39] Glorie, M., Zaidman, A., van Deursen, A., and Hofland, L. (2009). Splitting a large
software repository for easing future software evolution - an industrial experience
report. Journal of Software Maintenance, 21(2):113–141.

[40] Henderson-Sellers, B. (1996). Object-oriented metrics: measures of complexity.
Prentice-Hall.

[41] High, T. and Sutton, I. (2010). Re-architecting a large code base: The "remod-
ularization" of xenon. http://www.slideshare.net/Rinky25/rearchitecting-a-large-
codebase.

[42] Hochstein, L. and Lindvall, M. (2005). Combating architectural degeneration: a
survey. Information and Software Technology, 47(10):643–656.

[43] Holmes, R., Walker, R., and Murphy, G. (2006). Approximate structural context
matching: An approach to recommend relevant examples. IEEE Transactions on
Software Engineering, 32(12):952–970.

[44] Hou, D. and Hoover, H. J. (2006). Using SCL to specify and check design intent
in source code. IEEE Transactions on Software Engineering, 32(6):404–423.

Bibliography 81

[45] Hou, D., Hoover, H. J., and Rudnicki, P. (2004). Specifying framework constraints
with FCL. In Conference of the Centre for Advanced Studies on Collaborative Re-
search (CASCON), pages 96–110.

[46] Kerievsky, J. (2004). Refactoring to Patterns. Pearson.

[47] Knodel, J., Muthig, D., Haury, U., and Meier, G. (2008a). Architecture compli-
ance checking - experiences from successful technology transfer to industry. In 12th
European Conference on Software Maintenance and Reengineering (CSMR), pages
43–52.

[48] Knodel, J., Muthig, D., Naab, M., and Lindvall, M. (2006). Static evaluation of
software architectures. In 10th European Conference on Software Maintenance and
Reengineering (CSMR), pages 279–294.

[49] Knodel, J., Muthig, D., and Rost, D. (2008b). Constructive architecture compli-
ance checking - an experiment on support by live feedback. In 24th International
Conference on Software Maintenance (ICSM), pages 287–296.

[50] Knodel, J. and Popescu, D. (2007). A comparison of static architecture com-
pliance checking approaches. In 6th Working IEEE/IFIP Conference on Software
Architecture (WICSA), page 12.

[51] Koschke, R., Frenzel, P., Breu, A., and Angstmann, K. (2009). Extending the
reflexion method for consolidating software variants into product lines. Software
Quality Journal, 17:331–366.

[52] Koschke, R. and Simon, D. (2003). Hierarchical reflexion models. In 10th Working
Conference on Reverse Engineering (WCRE), pages 36–47.

[53] Kruchten, P. (1995). The 4+1 view model of architecture. IEEE Software,
12(6):42–50.

[54] Lanza, M., Marinescu, R., and Ducasse, S. (2005). Object-Oriented Metrics in
Practice. Springer-Verlag.

[55] Lindvall, M. and Muthig, D. (2008). Bridging the software architecture gap.
Computer, 41(6):98–101.

[56] Luckham, D., Kenney, J., Augustin, L., Vera, J., Bryan, D., and Mann, W. (1995).
Specification and analysis of system architecture using Rapide. IEEE Transactions
on Software Engineering, 21(4):336–354.

82 Bibliography

[57] Luckham, D. and Vera, J. (1995). An event-based architecture definition language.
IEEE Transactions on Software Engineering, 21(9):717–734.

[58] Maffort, C., Valente, M. T., Anquetil, N., Hora, A., and Bigonha, M. (2013a).
Heuristics for discovering architectural violations. In 20th Working Conference on
Reverse Engineering (WCRE), pages 1–10.

[59] Maffort, C., Valente, M. T., Bigonha, M., Hora, A., Anquetil, N., and Menezes,
J. (2013b). Mining architectural patterns using association rules. In 25th Inter-
national Conference on Software Engineering and Knowledge Engineering (SEKE),
pages 375–380.

[60] Magee, J., Dulay, N., Eisenbach, S., and Kramer, J. (1995). Specifying distributed
software architectures. In 5th European Software Engineering Conference (ESEC),
pages 137–153.

[61] Martin, R. (1994). OO design quality metrics – an analysis of dependencies. In
Workshop Pragmatic and Theoretical Directions in Object-Oriented Software Met-
rics, OOPSLA’94, pages 1--8.

[62] McMillan, C., Poshyvanyk, D., and Grechanik, M. (2010). Recommending source
code examples via API call usages and documentation. In 2nd International Work-
shop on Recommendation Systems for Software Engineering (RSSE), pages 21–25.

[63] Medvidovic, N. and Taylor, R. N. (2000). A classification and comparison frame-
work for software architecture description languages. IEEE Transactions on Software
Engineering, 26(1):70–93.

[64] Mitchell, B. S. and Mancoridis, S. (2006). On the automatic modularization of
software systems using the Bunch tool. IEEE Transactions on Software Engineering,
32(3):193–208.

[65] Moghadam, I. H. and Cinnéide, M. Ó. (2012). Automated refactoring using design
differencing. In 15th European Conference on Software Maintenance and Reengineer-
ing (CSMR), pages 43–52.

[66] Montandon, J. E., Borges, H., Felix, D., and Valente, M. T. (2013). Documenting
apis with examples: Lessons learned with the apiminer platform. In 20th Working
Conference on Reverse Engineering (WCRE), Practice Track, pages 1–8.

[67] Muşlu, K., Brun, Y., Holmes, R., Ernst, M. D., and Notkin, D. (2012). Spec-
ulative analysis of integrated development environment recommendations. In 27th

Bibliography 83

Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 1–15.

[68] Murphy, G., Notkin, D., and Sullivan, K. (1995). Software reflexion models: Bridg-
ing the gap between source and high-level models. In 3rd Symposium on Foundations
of Software Engineering (FSE), pages 18–28.

[69] Murphy, G., Notkin, D., and Sullivan, K. (2001). Software reflexion models. IEEE
Transactions on Software Engineering, 27(4):364–380.

[70] Murphy-Hill, E. and Black, A. P. (2008). Seven habits of a highly effective smell
detector. In 1st International Workshop on Recommendation Systems for Software
Engineering (RSSE), pages 11–15.

[71] Murphy-Hill, E., Parnin, C., and Black, A. P. (2009). How we refactor, and how
we know it. In 31st International Conference on Software Engineering (ICSE), pages
287–297.

[72] Nagappan, N., Ball, T., and Zeller, A. (2006). Mining metrics to predict com-
ponent failures. In 28th International Conference on Software Engineering (ICSE),
pages 452–461.

[73] Naseem, R., Maqbool, O., and Muhammad, S. (2011). Improved similarity mea-
sures for software clustering. In 15th European Conference on Software Maintenance
and Reengineering (CSMR), pages 45–54.

[74] O’Keeffe, M. K. and Cinnéide, M. Ó. (2006). Search-based software maintenance.
In 10th European Conference on Software Maintenance and Reengineering (CSMR),
pages 249–260.

[75] Opdyke, W. (1992). Refactoring object-oriented frameworks. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign.

[76] Parnas, D. L. (1994). Software aging. In 16th International Conference on Software
Engineering (ICSE), pages 279–287.

[77] Passos, L., Terra, R., Diniz, R., Valente, M. T., and Mendonça, N. (2010).
Static architecture-conformance checking: An illustrative overview. IEEE Software,
27(5):82–89.

[78] Perry, D. E. and Wolf, A. L. (1992). Foundations for the study of software archi-
tecture. Software Engineering Notes, 17(4):40–52.

84 Bibliography

[79] Pruijt, L., Koppe, C., and Brinkkemper, S. (2013). On the accuracy of architecture
compliance checking support. In 21st IEEE International Conference on Program
Comprehension (ICPC), pages 172–181.

[80] Rama, G. M. and Patel, N. (2010). Software modularization operators. In 26th
International Conference on Software Maintenance (ICSM), pages 1–10.

[81] Resnick, P. and Varian, H. R. (1997). Recommender systems. Communications
of the ACM, 40(3):56–58.

[82] Robillard, M., Walker, R., and Zimmermann, T. (2010). Recommendation systems
for software engineering. IEEE Software, 27(4):80–86.

[83] Romesburg, H. C. (2005). Cluster Analysis for Researchers. Lulu Press, North
Carolina.

[84] Roock, S. and Lippert, M. (2006). Refactoring in Large Software Projects: Per-
forming Complex Restructurings Successfully. Wiley.

[85] Sales, V., Terra, R., Miranda, L. F., and Valente, M. T. (2013a). JMove: Seus
métodos em classes apropriadas. In IV Brazilian Conference on Software: Theory
and Practice (CBSoft), Tools Session, pages 1–6.

[86] Sales, V., Terra, R., Miranda, L. F., and Valente, M. T. (2013b). Recommending
move method refactorings using dependency sets. In 20th Working Conference on
Reverse Engineering (WCRE), pages 232–241.

[87] Sangal, N., Jordan, E., Sinha, V., and Jackson, D. (2005). Using dependency
models to manage complex software architecture. In 20th Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
167–176.

[88] Sarkar, S., Ramachandran, S., Kumar, G. S., Iyengar, M. K., Rangarajan, K., and
Sivagnanam, S. (2009). Modularization of a large-scale business application: A case
study. IEEE Software, 26:28–35.

[89] Schäefer, M. and de Moor, O. (2010). Specifying and implementing refactorings.
In 25th Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA), pages 286–301.

[90] Schäfer, M., Ekman, T., and de Moor, O. (2009). Challenge proposal: verifica-
tion of refactorings. In 3rd Workshop on Programming Languages meets Program
Verification (PLPV), pages 67–72.

Bibliography 85

[91] Silva, L. H., Terra, R., and Valente, M. T. (2011). A case study on improv-
ing maintainability and evolvability using architectural constraints. In X Simpósio
Brasileiro de Qualidade de Software (SBQS), pages 1–15.

[92] Simon, F., Steinbruckner, F., and Lewerentz, C. (2001). Metrics based refactoring.
In 5th European Conference on Software Maintenance and Reengineering (CSMR),
pages 30–38.

[93] Soares, G., Gheyi, R., and Massoni, T. (2013). Automated behavioral testing of
refactoring engines. IEEE Transactions on Software Engineering, 39(2):147–162.

[94] Soares, G., Gheyi, R., Serey, D., and Massoni, T. (2010). Making program refac-
toring safer. IEEE Software, 27(4):52–57.

[95] Steimann, F. and Thies, A. (2009). From public to private to absent: Refactoring
Java programs under constrained accessibility. In 23rd European Conference on
Object-Oriented Programming (ECOOP), pages 419–443.

[96] Sullivan, K. J., Griswold, W. G., Cai, Y., and Hallen, B. (2001). The structure
and value of modularity in software design. In 9th International Symposium on
Foundations of Software Engineering (FSE), pages 99–108.

[97] Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,
and Noble, J. (2010). The Qualitas Corpus: A curated collection of Java code for
empirical studies. In 17th Asia Pacific Software Engineering Conference (APSEC),
pages 336–345.

[98] Terra, R., Brunet, J., Miranda, L. F., Valente, M. T., Serey, D., Castilho, D., and
Bigonha, R. S. (2013a). Measuring the structural similarity between source code
entities. In 25th International Conference on Software Engineering and Knowledge
Engineering (SEKE), pages 753–758.

[99] Terra, R., Miranda, L. F., Valente, M. T., and Bigonha, R. S. (2013b). Quali-
tas.class Corpus: A compiled version of the Qualitas Corpus. Software Engineering
Notes, 38(5):1–4.

[100] Terra, R. and Valente, M. T. (2008a). Towards a dependency constraint lan-
guage to manage software architectures. In 2nd European Conference on Software
Architecture (ECSA), pages 256–263.

86 Bibliography

[101] Terra, R. and Valente, M. T. (2008b). Verificação estática de arquiteturas de
software utilizando restrições de dependência. In II Simpósio Brasileiro de Compo-
nentes, Arquiteturas e Reutilização de Software (SBCARS), pages 1–14.

[102] Terra, R. and Valente, M. T. (2009). A dependency constraint language to
manage object-oriented software architectures. Software: Practice and Experience,
32(12):1073–1094.

[103] Terra, R. and Valente, M. T. (2010). Definição de padrões arquiteturais e seu
impacto em atividades de manutenção de software. In VII Workshop de Manutenção
de Software Moderna (WMSWM), pages 1–8.

[104] Terra, R., Valente, M. T., Bigonha, R. S., and Czarnecki, K. (2012a). DCLfix:
A recommendation system for repairing architectural violations. In III Brazilian
Conference on Software: Theory and Practice (CBSoft), Tools Session, pages 1–6.

[105] Terra, R., Valente, M. T., Czarnecki, K., and Bigonha, R. S. (2012b). Rec-
ommending refactorings to reverse software architecture erosion. In 16th European
Conference on Software Maintenance and Reengineering (CSMR), Early Research
Achievements Track, pages 335–340.

[106] Terra, R., Valente, M. T., Czarnecki, K., and Bigonha, R. S. (2013c). A rec-
ommendation system for repairing violations detected by static architecture confor-
mance checking. Software: Practice and Experience, pages 1–28.

[107] Thummalapenta, S. and Xie, T. (2007). PARSEWeb: a programmer assistant
for reusing open source code on the web. In 22nd International Conference on
Automated Software Engineering (ASE), pages 204–213.

[108] Tsantalis, N. and Chatzigeorgiou, A. (2009). Identification of move method refac-
toring opportunities. IEEE Transactions on Software Engineering, 99:347–367.

[109] Tsantalis, N. and Chatzigeorgiou, A. (2011). Identification of extract method
refactoring opportunities for the decomposition of methods. Journal of Systems and
Software, 84(10):1757–1782.

[110] Unphon, H. and Dittrich, Y. (2010). Software architecture awareness in long-term
software product evolution. Journal of Systems and Software, 83(11):2211–2226.

[111] van Gurp, J. and Bosch, J. (2002). Design erosion: problems and causes. Journal
of Systems and Software, 61:105–119.

Bibliography 87

[112] Verbaere, M., Ettinger, R., and de Moor, O. (2006). JunGL: a scripting language
for refactoring. In 28th International Conference on Software Engineering (ICSE),
pages 172–181.

[113] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A.
(2000). Experimentation in software engineering: an introduction. Kluwer Academic
Publishers.

[114] Wong, S., Cai, Y., Kim, M., and Dalton, M. (2011). Detecting software modu-
larity violations. In 33rd International Conference on Software Engineering (ICSE),
pages 411–420.

[115] Xing, Z. and Stroulia, E. (2008). The JDEvAn tool suite in support of object-
oriented evolutionary development. In 30th International Conference on Software
Engineering (ICSE), Research Demonstration Track, pages 951–952.

[116] Ye, Y. and Fischer, G. (2005). Reuse-conducive development environments. Au-
tomated Software Engineering, 12:199–235.

[117] Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S. (2005). Mining version
histories to guide software changes. IEEE Transactions on Software Engineering,
31(6):429–445.

Appendix A

Repairing Functions

In this appendix, we provide detailed descriptions and illustrative examples on the
non-trivial repairing functions used by ArchFix to recommend architectural repair
actions, as introduced in Table 3.2 (Chapter 3).

Function inline(exp, v, S): Inlines exp in the uses of variable v in the block of
code S. To illustrate, assume a constraint in the form Bar cannot−declare Foo, but
it is allowed to access Foo as presented in Figure A.1(before). Therefore, a violation
[Bar, cannot, declare, Foo] occurs at line 3 in this figure.

before
1 public class Bar {
2 public void init(Context ctx) {
3 Foo foo = ctx. getFoo ();
4 int x = foo. getX ();
5 int y = foo. getY ();
6 ...
7 }
8 }

=⇒

after
1public class Bar {
2public void init(Context ctx) {
3
4int x = ctx. getFoo (). getX ();
5int y = ctx. getFoo (). getY ();
6...
7}
8}

Figure A.1: inline([ctx.getFoo()], foo, S)

Since class Bar is allowed to access Foo, a potential repair action to fix such
violation is as follows: inline([ctx.getFoo()], foo, S), where S is the body of method
init(Context). As can be observed in Figure A.1(after), this repair action removes
the declaration of variable foo (line 3) and inlines the expression ctx.getFoo() to its
previous uses (lines 4–5).

89

90 Appendix A. Repairing Functions

Function promote_param(f, v, exp): Promotes variable v to a formal parameter of
method f; exp is the corresponding argument in the calls to f. To illustrate,
assume a constraint in the form Facade cannot−access Foo, but Facade is al-
lowed to declare Foo as presented in Figure A.2(before). Therefore, a violation
[Facade, cannot, access, Foo] occurs at line 9 in this figure.

before
1 public class MainClass {
2 public void main () {
3 ...
4 facade . setup (foo);
5 }
6 }
7 public class Facade {
8 public void setup (Foo foo) {
9 Date d = foo. getDate ();

10 ...
11 }
12 }

=⇒

after
1public class MainClass {
2public void main () {
3...
4facade . setup (foo , foo. getDate ());
5}
6}
7public class Facade {
8public void setup (Foo foo , Date d) {
9...
10...
11}
12}

Figure A.2: promote_param(setup(Foo), d, [foo.getDate()])

Assuming that MainClass is allowed to access Foo, a poten-
tial repair action to fix such violation may be defined as follows:
promote_param(setup(Foo), d, [foo.getDate()]). As can be observed in Fig-
ure A.2(after), after this repair action, (i) variable d is promoted to a formal
parameter of setup(Foo) (line 8); and (ii) calls to setup(Foo, Date) are adjusted to
include the actual parameter foo.getDate() (line 4).

Function unwrap_return(f, T, exp): Considering a method f that returns new T(exp),
this function modifies this statement to just return exp and moves the instantiations
of the wrapper type T to the respective call sites. To illustrate, assume a constraint in
the form Model cannot−create Foo as presented in Figure A.3(before). Therefore, a
violation [Model, cannot, create, Foo] occurs at line 10 in this figure.

before
1 public class MainClass {
2 public void main () {
3 Foo foo = m. retrieve ();
4 ...
5 }
6 }
7 public class Model {
8 public Foo retrieve () {
9 ...

10 return new Foo(obj);
11 }
12 }

=⇒

after
1public class MainClass {
2public void main () {
3Foo foo = new Foo(m. retrieve ());
4...
5}
6}
7public class Model {
8public ObjType retrieve () {
9...
10return obj;
11}
12}

Figure A.3: unwrap_return(retrieve(), Foo, [obj])

91

Assuming that class MainClass is allowed to create Foo, a potential repair ac-
tion to fix this violation is as follows: unwrap_return(retrieve(), Foo, [obj]). As
can be observed in Figure A.3(after), (i) the return statement is modified to return
just obj (line 10); (ii) the return type of retrieve is modified to ObjType (i.e., the
type of obj) (line 8); and (iii) an object of Foo is created to wrap the result returned
by the call to retrieve (line 3).

Appendix B

Auxiliary Functions

In this appendix, we provide detailed descriptions and illustrative examples on the
non-trivial auxiliary functions used by ArchFix to recommend architectural repair
actions, as introduced in Table 3.3 (Chapter 3).

Function delegate(f): Searches a delegate method for f, i.e., a method that just
encapsulates a call to f [33]. Basically, our heuristic to find delegate methods consists
in finding a method that (i) only invokes method f and (ii) returns the same type of f.
For instance, as presented in Figure B.1, Persistence::persist(Bar) is a delegate
method for Bar::save(Connection) because it only forwards the call (line 5).

1 public class Persistence {
2 Connection conn = ...;
3 ...
4 public int persist (Bar bar) {
5 return bar.save(conn);
6 }
7 }

Figure B.1: delegate(Bar::save(Connection)) = Persistence::persist(Bar)

Function factory(C, exp): Searches for a factory method for class C, accepting exp
as input. Basically, our heuristic to find a factory method for a class C consists in
finding a method that just returns an object of type C created using exp. For in-
stance, as presented in Figure B.2, DAOFactory::getBar(int) is a factory method for
Bar (lines 3–5).

93

94 Appendix B. Auxiliary Functions

1 public class DAOFactory {
2 ...
3 public int getBar (int max) {
4 return new Bar(max);
5 }
6 }

Figure B.2: factory(Bar, {[5]}) = DAOFactory::getBar(int)

Function gen_decl(f): Returns a declaration D for a variable c of type C, where
C is the class that defines the method f. The simplest scenario happens when f is a
static method and this function returns the static reference to the class C. However,
when f is not static, this function proceeds as follows: (i) if C is a singleton, it uses
the getInstance method, e.g., C c = C.getInstance(); (ii) when C has a factory,
it obtains an instance from the factory, e.g., C c = Factory.getC(); (iii) otherwise
the function creates a null-initialized stub object to make the call, e.g., C c = new C(. . .).

Function gen_factory(C, exp): Generates a factory for class C, accepting exp as in-
put. Basically, it creates a class using the template illustrated on the left of Fig-
ure B.3, where <T> is the target type and <exp_t> is the list of expression types.
For instance, the subfigure on the right illustrates the generated factory class for
gen_factory(Bar, {[‘a’], [5]}).

Factory Template
1 public class <T> Factory {
2 private <T> <t >;
3
4 private <T> Factory () { }
5
6 public <T> get <t >(<exp_t >) {
7 if (<t> == null) {
8 <t> = new <T >(<exp_t >);
9 }

10 return <t >;
11 }
12 }

=⇒

Factory of class Bar
1public class BarFactory {
2private Bar bar;
3
4private BarFactory () { }
5
6public Bar getBar (char c, int i) {
7if (bar == null) {
8bar = new Bar(c,i);
9}
10return bar;
11}
12}

Figure B.3: gen_factory(Bar, {[‘a’], [5]})

Appendix C

Description of Repairing
Recommendations

This appendix describes the architectural repair recommendations in details. We
explain each proposed recommendation—the preconditions and the indicated repair
action—and then illustrate application scenarios.

[A, cannot, declare, B]

B b; S =⇒ replace([B], [B′]), if B′ ∈ super(B) ∧ typecheck([B′ b ; S]) ∧ B′ /∈ MB D1

B b; S =⇒ replace([B], [B′]), if B′ ∈ sub(B) ∧ typecheck([B′ b ; S]) ∧ B′ /∈ MB D2

B b = exp; S =⇒ propagate([exp], b, [S]), if can(A, access, B) D3

g (B b) { S } =⇒ remove([B b]), if typecheck([g(){ S }]) D4

try { S } catch (B b) { S′} =⇒ replace([B], [B′]), if B′ ∈ super(B) ∧ typecheck([try { S } catch (B b) { S′}]) ∧ B′ /∈ MB D5

D1: Replace the unauthorized type B with one of its supertypes B′, since such B′ is
outside MB and it can be type checked. This recommendation is particularly useful to
handle violations due to the use of a concrete implementation of a service, instead of
its general interface.

D2: Replace the unauthorized type B with one of its subtypes B′. As an example,
developers when implementing web-based systems using GWT (Google Web Toolkit)
should avoid the use of generic types (e.g., java.util.Collection) on GWT inter-
faces to reduce the size of the generated JavaScript code. Therefore, whenever possi-
ble, they should rely on more specialized types (e.g., java.util.ArrayList instead of
java.util.Collection).

95

96 Appendix C. Description of Repairing Recommendations

D3: Remove the unauthorized declaration followed by the propagation of the initial-
ization expression exp to all uses of the declared identifier. This recommendation can
be triggered when A cannot declare B but is allowed to access it.

D4: Remove a parameter declaration whenever it is not being used, i.e., the removal
does not cause any compiler error.

D5: Replace the unauthorized exception of type B with one of its supertypes B′

whenever such B′ is outside MB.

[A, cannot, access, B]

b.f =⇒ replace([b.f], [D; c.g]), if g = delegate(f) ∧ 〈D,c〉 = gen_decl(g) ∧ type(c) /∈ MB D6

b.f =⇒ replace([b.f], [D; c.g]), if equals_sig(f, g) ∧ 〈D,c〉 = gen_decl(g) ∧ type(c) /∈ MB D7

b.f =⇒ g = extract([b.f]), move(g, M), if M = suitable_module(g) ∧ can(A, access, M) D8

b.f =⇒ remove([b.f]), if MA = ∅ D9

g (p){ T v = exp_b } =⇒ promote_param(g, v, [exp_b]), if ∀C ∈ call_sites(g), can(C, access, B) D10

D6: Replace an unauthorized call to a method f with a call to a delegate method g—
i.e., a method that just encapsulates a call to f. This recommendation can only be
triggered if the type that contains such delegate method is outside MB.

D7: Similarly to D6, replace an unauthorized call to a method f with a method g
that has an equal signature.

D8: Extract a new method g that encapsulates the call to f and then move g to a
class inside the most suitable module M. Moreover, the current module (MA) must not
be the most suitable one (M).

D9: Remove a call to a given method f when no class in the system can access the class
where f is implemented. This recommendation is particularly useful when developers
access methods whose usage is restricted. For instance, developers tend to establish
dependencies with the Java API System class (e.g., by calling System.out.println)
as a practice of rudimentary debugging. Nevertheless, these calls must be removed,
especially in web-based systems.

D10: Promote variable v—whose initialization expression exp_b contains the unau-
thorized access—to a formal parameter of the enclosing method g. In this case, the
initialization expression exp_b must be used as the argument in g calls. This recom-
mendation is particularly useful when accessing B is allowed from all g call sites.

97

[A, cannot, create, B]

new B(exp) =⇒ replace([new B(exp)], [FB.getB(exp)]), if FB = factory(B, [exp]) ∧ can(A, access, FB) D11

new B(exp) =⇒ replace([new B(exp)], [null]), if MA = ∅ D12

new B(exp) =⇒ replace([new B(exp)], [FB.getB(exp)]), if FB = gen_factory(B, [exp]) ∧ can(A, access, FB) D13

g (p){return new B(exp)}=⇒ unwrap_return(g, B, [exp]), if ∀C ∈ call_sites(g), can(C, create, B) D14

D11: Replace a new operator with a call to the get method of a Factory FB. It
addresses the situation where developers—due to unawareness or forgetfulness—create
directly objects of classes that have a well-defined factory.

D12: Remove the instantiation whether no class in the system is allowed to create B.
For example, this recommendation is useful when objects of some classes are supposed
to be provided by dependency injection techniques.

D13: Replace the new operator with a call to the get method of a new Factory class,
which will be created by the auxiliary function gen_factory.

D14: Replace an instantiation of B using exp in a return statement with only exp,
delegating the responsibility for the creation of B to the call sites. Moreover, this
recommendation involves modifying the signature of method g (as performed by the
function replace_return) and it can only be triggered if all call sites are able to
create B.

[A, cannot, throw, B]

g (p) throws B { S } =⇒ remove([throws B]), if typecheck([g (p) { S }]) D15

g (p) throws B { S } =⇒ remove([throws B]), replace([S], [try {S} catch(B b) {S′}]), if can(A, declare, B) ∧
S′ = user_code()

D16

g (p) throws B { S } =⇒ replace([B], [B′]), if B′ ∈ super(B) ∧ B′ /∈ MB D17

g (p) throws B { S } =⇒ move(g, M), if M = suitable_module(g) ∧ M 6= MA D18

D15: Remove the throws clause, in the cases it is not need. This recommendation
addresses the tendency of developers to over-declare the exceptions that can be raised
in a method.

D16: Remove the throws clause and insert a try−catch block around the body of the
method to handle a given exception internally. In this particular case, the developers
must provide the code that handles the exception, as required by the auxiliary function
user_code.

98 Appendix C. Description of Repairing Recommendations

D17: Replace the unauthorized exception type B with one of its supertypes B′, assum-
ing that B′ is outside MB.

D18: Move method g to a class in the most suitable module M, assuming that M is
different than the current module. For instance, suppose that a method g throw-
ing DAOException—which possibility should be implemented by a DAO class—was
mistakenly implemented by a class outside the DAO module. In such case, this
recommendation suggests to move g to a DAO class.

[A, cannot, derive, B]

class A derive B =⇒ replace([B], [B′]), if B′ ∈ super(B) ∧ typecheck([A derive B′]) ∧ ¬override(B, B′) ∧ B′ /∈ MB D19

class A derive B =⇒ move(A, M), if M = suitable_module(A) ∧ can(A, derive, B) D20

D19: Make class A derive from B′, which is one of the supertypes of B. This recom-
mendation can only be triggered if such replacement type checks, if B does not override
methods of B′ (in order to avoid any possible changes in semantics), and if B′ is out-
side MB.

D20: Move a class A to a most suitable module M. It is particularly useful when
developers mistakenly implement a class in the wrong module, e.g., a ProductReport
class in the View layer.

[A, cannot, useannotation, B]

@B class A =⇒ move(A, M), if M = suitable_module(A) ∧ M 6= MA D21

@B class A =⇒ remove([@B]) if MA = suitable_module(A) D22

@B g (p){ S } =⇒ move(g, M), if M = suitable_module(g) ∧ M 6= MA D23

@B g (p){ S } =⇒ remove([@B]) if MA 6= suitable_module(A) D24

D21: Move class A to the most suitable module M, assuming that M is different than
MA, i.e., the current module of A is not the most suitable one. This recommendation
is particularly useful when developers implement a class in the wrong module, e.g., a
class using annotations related to persistent concerns in the Controller layer.

D22: Remove the class-type annotation B from class A whenever MA is already the
suitable module for A and it is not able to receive B.

99

D23: Similarly to D21, move method g to a class located in the most suitable module
M whenever the current module of g is not the most suitable one.

D24: Similarly toD22, remove the method-type annotation B from method g whenever
MA is already the suitable module for g and it is not able to receive B.

[A, must, throw, B]

g (p){ S } =⇒ replace([g (p){ S }] , [g (p) throws B { S }]), remove_catch(B, S) if has_catch(B, S) A1

g (p){ S } =⇒ move(g, M) if M = suitable_module(g) ∧ M 6= MA A2

A1: Add exception B in the throws clause of method g when such exception is being
handled by a certain catch in the method’s body. This recommendation is particularly
useful to guide developers in throwing exceptions that should not be handled internally
by a method.

A2: Move method g to a class in the most suitable module M whenever the current
module of g is not the most suitable one.

[A, must, derive, B]

class A =⇒ replace([A], [A derive B]), if MA = suitable_module(A) ∧ typecheck([class A derive B]) A3

class A =⇒ move(A, M), if M = suitable_module(A) ∧ M 6= MA A4

A3: Make class A extend or implement B. It addresses the situation where developers
have failed to derive from the base types of the module. For instance, an Entity class
must implement Serializable to provide persistence. However, assume that a given
entity class Product does not implement Serializable. Because Entity classes rely
extensively on the same types, the suitable_module function will likely infer that
Product is indeed in its correct module and therefore must implement Serializable.

A4: Move class A to a most suitable module M, because the current module of A is not
the most suitable one. For instance, suppose a class that must derive View but estab-
lishes dependencies only with Controller types. In such case, this recommendation
will suggest the movement of this class to a module in the Controller layer.

100 Appendix C. Description of Repairing Recommendations

[A, must, useannotation, B]

class A =⇒ move(A, M), if M = suitable_module(A) ∧ M 6= MA ∧ target(B) = type A5

class A =⇒ replace([class A], [@B class A]), if MA = suitable_module(A) ∧ target(B) = type A6

g (p){ S } =⇒ move(g, M), if M = suitable_module(A) ∧ M 6= MA ∧ target(B) = method A7

g (p){ S } =⇒ replace([g(p)], [@B g(p)]), if MA = suitable_module(g) ∧ target(B) = method A8

A5: Move class A to the most suitable module M, assuming that M is different than MA,
i.e., the current module of A is not the most suitable one.

A6: Add class-type annotation B to class A whenever MA is already the suitable module
for A and hence A has to receive annotation B.

A7: Move method g to a class in the most suitable module M whenever the current
module of g is not the most suitable one.

A8: Add method-type annotation B to method g, assuming that MA is already the
suitable module for g and hence g has to receive annotation B.

Appendix D

Metrics Data from the
Qualitas.class Corpus

This appendix presents a subset of the metrics gathered for the 111 systems in the
Qualitas.class Corpus. More specifically, the corpus includes the values of the following
23 source code metrics measured at the level of classes1 [19, 54, 40, 61]:

• Basic Metrics: Number of lines of code (LOC)2, Number of packages (NOP), Num-
ber of classes (NOCL), Number of interfaces (NOI), Number of methods (NOM),
Number of attributes (NOA), Number of overridden methods (NORM), Number
of parameters (PAR), Number of static methods (NSM), and Number of static
attributes (NSA).

• Complexity Metrics: Method lines of code (MLOC), Specialization index (SIX),
McCabe cyclomatic complexity (VG), Nested block depth (NBD), and Normal-
ized distance (RMD).

• CK Metrics: Weighted methods per class (WMC), Depth of inheritance
tree (DIT), Number of children (NOC), and Lack of cohesion in methods (LCOM).3

• Coupling Metrics: Afferent coupling (CA), Efferent coupling (CE), Instability (I),
and Abstractness (A).

1Except for the metrics LOC, NOP, NOCL, and NOI that were measured at the system level.
2Our metric counts non-blank and non-comment lines of codes.
3Our metric relies on the LCOM HS (Henderson-Sellers) method [40].

101

102 Appendix D. Metrics Data from the Qualitas.class Corpus

We relied on Google CodePro Analytix4 and Metrics5 to compute the metrics.
For each project P , the Qualitas.class Corpus provides a XML file with a Metric el-
ement for each metric M (identified by the attribute id). For example, the element
<Metric id = ′′NOM′′ avg = ′′4.04′′ stddev = ′′7.189′′ ... > contains the average value
and the standard deviation of the metric Number of Methods. Particularly, such ele-
ment was extracted from the XML file of JASML 0.1.

Table D.1 presents a subset of the metrics gathered for the systems in the corpus.
As can be noticed, the corpus is very heterogeneous. For example, systems’ size
ranges from 3.5 KLOC (fitjava) to 2,500 KLOC (eclipse). There are lowly- (e.g., jasml,
LCOM 0.08) and highly-cohesive systems (e.g., freecs, LCOM 0.57). Analogously, there
are lowly- (e.g., xmojo, CE 0.6) and highly-coupled systems (e.g., megamek, CE 38).

4CodePro Analytix 7.1.0, http://developers.google.com/java-dev-tools.
5Metrics 1.3.8, http://metrics2.sourceforge.net.

http://developers.google.com/java-dev-tools
http://metrics2.sourceforge.net

103

Table D.1: The Qualitas.class Corpus (1 of 2)

System Version∗ KLOC NOP NOCLNOI MLOC
NOM NOA NOC DIT NORM SIX VG WMC LCOM CA CE I A

ant 1.8.2 127.6 127 1627 97 6.30±12.4 7.77±10.3 2.46±4.6 0.83±6.2 2.45±1.4 0.68±1.3 0.33±0.6 2.12±3.0 17.19±28.0 0.25±0.4 14.43±69.7 7.45±14.6 0.81±0.3 0.09±0.1
antlr 3.4 47.4 20 381 20 8.80±13.3 10.14±16.2 2.73±5.5 1.45±10.8 1.90±1.2 0.82±2.3 0.35±0.8 2.05±2.9 21.66±38.4 0.20±0.3 15.60±22.4 8.60±10.8 0.58±0.4 0.07±0.1
aoi 2.8.1 110 23 604 32 12.38±29.0 10.33±11.5 6.27±7.6 0.60±3.0 2.16±1.8 1.67±3.3 0.32±0.6 3.39±6.7 37.34±62.8 0.38±0.3 62.56±93.3 18.56±19.0 0.55±0.4 0.09±0.1
argouml 0.34 105.8 77 1408 107 7.50±15.5 6.01±8.7 1.29±3.1 0.79±4.4 3.03±2.1 0.91±2.2 0.57±1.1 2.32±3.8 14.92±25.6 0.13±0.3 31.78±63.4 13.83±23.8 0.48±0.3 0.14±0.2
aspectj 1.6.9 501.8 144 3600 564 8.40±23.3 11.01±20.8 3.18±12.1 0.85±2.5 1.85±1.5 1.53±5.4 0.42±0.8 3.03±8.6 36.58±100.4 0.25±0.3 37.19±63.9 13.91±20.8 0.41±0.3 0.25±0.3
axion 1.0-M2 24.2 13 257 38 5.03±11.6 11.81±22.1 2.08±6.5 1.02±2.5 1.60±1.0 0.96±2.1 0.21±0.4 2.22±4.4 26.45±89.7 0.20±0.3 24.31±41.6 14.54±11.2 0.53±0.2 0.21±0.2
azureus 4.7.0.2 495.5 473 4038 1077 8.68±26.0 8.15±14.4 2.60±5.7 1.27±10.8 1.20±1.1 0.21±0.7 0.11±0.4 2.36±4.4 20.97±45.3 0.22±0.3 20.56±64.0 4.61±6.5 0.43±0.3 0.28±0.3
batik 1.7 194.7 117 2624 288 7.90±22.1 5.96±8.0 2.77±19.0 0.86±3.8 2.19±2.0 0.58±1.6 0.33±0.8 2.37±5.5 14.90±34.5 0.17±0.3 16.76±38.8 9.65±19.2 0.61±0.4 0.20±0.3
c_jdbc 2.0.2 95.5 145 777 16 10.60±24.1 7.53±15.5 2.50±5.0 0.65±2.9 2.88±1.9 0.43±1.2 0.25±0.7 2.47±4.1 19.45±44.7 0.22±0.3 14.88±28.9 4.26±4.6 0.51±0.4 0.11±0.2
castor 1.3.3* 219.7 381 2803 156 7.01±20.0 7.35±11.4 2.08±4.0 0.54±3.8 2.04±1.3 0.95±2.9 0.37±0.8 2.06±4.5 15.77±46.6 0.27±0.4 7.03±20.4 5.34±6.3 0.76±0.3 0.08±0.2
cayenne 3.0.1 198.2 235 3193 160 6.43±12.4 5.73±8.3 1.32±2.6 0.88±5.7 2.60±1.6 0.48±1.7 0.30±0.7 1.82±2.9 10.81±21.5 0.15±0.3 24.67±81.7 10.02±15.4 0.61±0.3 0.12±0.2
checkstyle 5.6* 36.6 42 553 18 7.40±9.5 5.00±5.0 1.20±2.2 0.76±7.4 2.52±1.5 0.64±1.1 0.44±0.8 1.92±2.4 10.01±13.0 0.14±0.3 13.90±46.6 9.57±9.3 0.88±0.3 0.08±0.2
cobertura 1.9.4.1 54.6 34 160 11 12.18±25.1 20.91±90.1 6.82±19.8 0.32±1.4 1.66±1.1 0.29±0.7 0.14±0.4 5.24±11.3 114.72±533.7 0.25±0.4 2.18±4.6 2.06±2.1 0.64±0.4 0.11±0.2
collections 3.2.1 55.4 23 676 27 6.12±10.2 8.42±9.1 1.07±1.7 0.91±3.1 3.16±2.4 1.74±2.8 0.85±1.3 1.70±1.7 16.31±26.6 0.12±0.2 22.09±48.0 17.04±12.0 0.61±0.3 0.13±0.1
colt 1.2.0 35.9 24 381 67 7.11±14.7 8.19±10.9 1.53±4.0 2.02±7.8 1.95±1.7 1.20±2.9 0.33±0.7 2.54±3.8 25.76±42.4 0.12±0.2 22.92±26.9 9.21±8.9 0.45±0.3 0.26±0.3
columba 1.0 71.9 212 1183 110 6.52±11.4 5.26±6.2 1.80±3.3 0.51±4.3 2.54±1.9 0.31±1.5 0.17±0.5 1.80±2.0 9.97±13.9 0.19±0.3 10.91±25.2 4.25±5.4 0.53±0.3 0.17±0.3
compiere 330 400.5 78 2622 57 6.50±19.5 13.24±19.1 2.83±6.7 0.78±14.0 2.53±1.4 0.57±1.4 0.23±0.6 2.26±4.1 32.00±50.4 0.27±0.5 128.51±382.9 25.35±94.6 0.51±0.4 0.09±0.2
derby 10.9.1.0* 651.1 217 3010 388 12.00±54.0 11.47±26.7 3.57±25.2 0.78±6.6 2.28±1.8 0.93±2.9 0.31±0.7 2.62±5.9 34.64±134.3 0.22±0.3 45.79±135.1 10.37±23.5 0.53±0.4 0.22±0.4
displaytag 1.2 20.5 32 320 16 6.70±13.7 5.19±8.6 1.44±4.4 0.69±6.7 2.88±1.6 0.59±2.2 0.25±0.8 1.86±2.5 9.93±19.3 0.12±0.3 13.91±27.5 8.28±20.1 0.65±0.4 0.12±0.2
drawswf 1.2.9 27.7 34 311 25 6.21±13.7 8.23±14.8 2.67±3.8 0.54±1.8 2.40±1.8 0.49±1.7 0.23±0.7 2.02±3.5 17.73±30.3 0.26±0.3 8.18±10.4 4.15±5.0 0.38±0.3 0.14±0.3
drjava 20100913-r5387 89.5 30 1210 95 7.43±22.8 6.94±15.8 1.93±8.3 1.01±6.1 2.34±1.7 0.40±1.7 0.18±0.6 1.86±2.5 13.53±37.0 0.14±0.3 34.23±50.4 14.23±16.5 0.44±0.3 0.20±0.1
eclipse_SDK 3.7.1 2484.3 1425 24871 3410 8.06±17.4 7.75±12.9 2.42±6.9 1.17±12.8 2.02±1.7 0.75±3.3 0.33±0.7 2.73±5.3 23.30±62.9 0.22±0.3 61.61±287.5 11.42±15.2 0.46±0.3 0.25±0.3
emma 2.0.5312 23.1 33 321 57 7.47±20.0 4.93±5.3 2.90±12.3 0.57±1.5 1.42±1.2 0.38±0.9 0.14±0.4 2.53±4.3 14.28±22.8 0.16±0.3 9.24±12.5 3.97±4.5 0.40±0.3 0.34±0.3
exoportal 1.0.2 96 413 2162 257 4.34±8.4 5.53±6.9 1.44±2.5 0.64±6.0 2.20±1.8 0.44±1.1 0.37±0.9 1.58±1.7 9.06±12.2 0.18±0.3 8.50±24.6 3.04±3.8 0.59±0.4 0.15±0.3
findbugs 1.3.9 110.8 67 1432 127 7.15±21.7 6.14±11.3 2.49±5.4 0.64±3.2 1.98±1.8 0.61±2.8 0.34±0.8 2.85±7.8 19.33±40.8 0.23±0.3 26.66±66.6 12.25±26.6 0.59±0.4 0.18±0.3
fitjava 1.1 3.5 5 95 0 4.38±5.4 4.37±4.3 1.82±2.7 0.70±2.8 2.36±0.9 0.60±0.7 0.66±1.0 1.88±2.1 9.14±10.8 0.19±0.3 7.00±14.0 8.00±5.7 0.82±0.3 0.00±0.0
fitlibraryforfitnesse 20110301* 46.6 157 1337 102 3.34±6.0 4.64±7.1 1.19±1.9 0.71±4.2 1.96±1.5 0.23±0.7 0.13±0.4 1.53±1.6 7.65±15.5 0.12±0.3 13.15±29.7 5.01±8.3 0.58±0.4 0.13±0.2
freecol 0.10.3 106.4 51 952 32 9.63±20.8 7.71±15.2 2.54±4.3 0.83±5.4 2.88±1.9 0.60±1.2 0.32±0.8 2.76±5.1 22.95±59.3 0.20±0.3 29.39±53.7 10.69±19.7 0.45±0.3 0.07±0.1
freecs 1.3.20100406 22.6 12 146 16 12.30±34.2 8.58±14.8 4.56±12.3 0.59±4.4 1.42±0.7 0.90±0.9 0.23±0.2 4.22±10.2 40.46±70.1 0.57±0.4 30.75±34.2 10.08±14.2 0.42±0.3 0.14±0.3
freemind 0.9.0 52.8 45 751 79 5.80±13.7 7.21±12.8 2.10±5.6 0.65±2.1 2.15±1.6 0.41±1.9 0.17±0.5 1.90±2.6 14.19±28.1 0.19±0.3 22.62±46.9 7.87±10.1 0.51±0.3 0.13±0.2
galleon 2.3.0 61.1 35 533 30 11.23±26.8 6.60±10.6 3.90±5.6 0.58±3.9 3.30±2.5 0.56±0.9 0.44±0.7 2.85±6.3 21.38±32.7 0.33±0.4 12.49±28.4 6.57±7.0 0.77±0.3 0.04±0.1
ganttproject 2.1.1* 48.6 55 785 115 5.64±13.7 6.42±9.6 2.67±6.0 0.72±2.3 1.83±1.6 0.39±0.9 0.19±0.5 1.72±2.9 11.28±22.4 0.26±0.4 20.91±38.1 7.02±7.8 0.50±0.3 0.15±0.2
gt2 9.2* 876.5 894 9991 1560 6.55±24.6 7.82±15.9 2.19±14.6 0.50±2.9 2.19±1.7 0.69±2.6 0.31±0.7 1.96±3.7 16.60±39.4 0.15±0.3 29.93±95.2 8.78±12.5 0.63±0.4 0.13±0.3
hadoop 1.1.2* 319.9 238 3968 189 8.81±17.0 5.42±9.3 2.26±4.9 0.64±3.9 1.79±1.0 0.44±1.4 0.24±0.6 2.19±3.0 13.52±29.4 0.18±0.3 27.93±93.6 7.84±16.4 0.56±0.4 0.10±0.2
heritrix 1.14.4 64.9 48 656 51 7.75±13.3 7.72±12.0 1.85±3.9 0.76±2.9 3.08±2.4 0.58±1.2 0.50±1.1 2.22±3.0 18.94±33.6 0.18±0.3 17.98±36.3 8.31±8.3 0.53±0.3 0.16±0.2
hibernate 4.2.0* 431.7 856 7119 661 5.18±12.2 6.47±11.8 1.88±3.6 0.70±6.1 1.69±1.3 0.60±2.0 0.25±0.6 1.52±1.9 10.14±23.4 0.26±0.3 13.74±72.5 4.46±7.0 0.75±0.3 0.11±0.2
hsqldb 2.0.0 149.7 34 660 58 11.36±27.7 13.33±20.1 5.93±22.0 0.48±1.8 1.74±1.2 1.27±3.7 0.23±0.6 3.30±7.0 48.57±94.9 0.32±0.4 29.26±49.7 10.65±18.4 0.53±0.3 0.19±0.2
htmlunit 2.8 100.8 43 903 32 8.61±14.3 9.00±21.6 1.16±7.9 0.91±8.3 3.00±1.9 0.42±1.3 0.28±0.8 1.67±2.5 15.59±37.5 0.10±0.3 26.05±70.6 16.44±29.0 0.62±0.3 0.04±0.1
informa 0.7.0-alpha2 218 120 1771 45 8.75±26.5 8.87±12.4 3.28±7.6 0.47±4.0 4.43±2.3 2.18±6.8 1.08±1.2 2.06±3.3 18.87±37.5 0.28±0.4 25.89±92.2 12.70±25.0 0.64±0.3 0.04±0.1
ireport 3.7.5 13.9 26 223 46 5.05±14.5 6.70±10.1 1.80±3.7 0.67±2.1 1.55±1.4 0.23±0.6 0.08±0.4 1.74±2.9 12.62±17.1 0.20±0.3 9.31±23.6 5.77±5.6 0.73±0.3 0.11±0.2
itext 5.0.3 78.3 34 583 42 8.89±21.4 9.08±16.0 3.73±7.0 0.50±2.4 1.76±1.3 0.46±1.6 0.14±0.4 2.98±5.8 30.55±62.2 0.26±0.4 14.09±33.3 8.59±21.0 0.44±0.3 0.10±0.2
ivatagroupware 0.11.3 24.7 94 228 24 8.19±19.0 8.63±9.2 2.78±4.0 0.20±0.5 2.05±1.3 0.60±1.0 0.32±0.6 2.20±3.8 19.53±32.6 0.33±0.4 5.31±11.9 2.05±2.1 0.55±0.4 0.13±0.3
jFin_DateMath 1.0.1 8.9 26 121 2 5.57±12.8 6.42±7.8 5.28±29.7 0.18±1.0 2.08±0.9 0.14±0.4 0.05±0.2 1.49±1.7 10.30±11.5 0.16±0.3 1.81±3.6 3.65±2.7 0.81±0.4 0.06±0.2
jag 6.1 15.7 18 136 7 8.11±20.9 9.10±10.9 4.21±7.0 0.33±1.2 1.95±1.6 0.29±0.5 0.14±0.6 2.36±4.1 23.28±32.2 0.38±0.4 6.89±7.3 4.28±5.4 0.36±0.3 0.05±0.1
james 2.2.0 42.8 53 531 78 8.02±19.6 6.38±10.0 2.25±4.5 0.67±2.2 1.95±1.4 0.57±3.1 0.29±0.7 2.32±4.0 15.11±30.4 0.18±0.3 8.25±18.8 6.02±9.1 0.65±0.4 0.17±0.2
jasml 0.1 5.7 5 50 1 15.26±39.8 4.04±7.2 3.42±4.6 0.48±2.0 1.50±0.7 0.24±0.4 0.22±0.4 5.30±13.8 26.82±67.7 0.08±0.2 3.00±3.0 2.00±1.4 0.57±0.4 0.02±0.0
jasperreports 3.7.4* 169.8 61 1709 285 6.62±16.0 8.98±18.9 2.60±6.3 0.97±4.9 1.55±1.1 0.16±0.5 0.08±0.4 1.85±2.8 17.77±40.6 0.22±0.4 47.13±138.1 20.39±24.6 0.58±0.3 0.20±0.3
javacc 5.0 18.3 12 135 6 12.47±34.9 5.03±6.9 2.30±3.7 0.78±3.9 1.90±1.0 0.29±1.7 0.10±0.3 3.65±8.0 30.95±71.9 0.20±0.4 2.33±4.9 2.33±3.0 0.76±0.4 0.10±0.1
jboss 5.1.0 524.9 1170 7362 1546 6.52±14.3 6.07±8.7 1.44±3.3 0.41±2.0 2.00±2.1 0.34±1.0 0.20±0.7 1.77±2.4 11.37±20.4 0.15±0.3 2.45±8.0 3.53±5.6 0.71±0.4 0.23±0.3
jchempaint 3.0.1 212.8 201 2134 122 7.76±20.5 8.06±14.8 1.32±3.4 0.89±7.1 2.26±1.7 0.48±1.5 0.31±0.9 2.10±6.7 18.06±41.0 0.12±0.3 31.73±116.3 8.66±12.5 0.58±0.3 0.09±0.2
jedit 4.3.2 109.5 38 1017 69 10.98±20.8 6.01±16.4 3.10±8.6 0.42±2.1 2.14±1.9 0.59±1.2 0.38±0.8 3.11±5.6 21.83±82.5 0.20±0.3 19.08±43.9 8.53±11.5 0.67±0.3 0.12±0.1
jena 2.6.3 65.8 48 1279 192 3.94±11.8 6.98±14.3 1.42±4.6 1.33±6.1 1.86±1.6 0.65±1.5 0.40±0.7 1.81±4.8 13.78±32.4 0.12±0.3 35.90±67.2 14.40±13.6 0.50±0.3 0.23±0.2
jext 5.0 60.2 59 761 35 10.77±36.9 4.57±8.4 2.23±4.9 0.60±6.1 2.28±1.6 0.76±1.7 0.57±1.0 3.02±8.6 15.55±36.0 0.18±0.3 10.83±34.6 6.70±6.6 0.65±0.4 0.06±0.1
jfreechart 1.0.13 143.1 69 1037 103 9.54±16.3 10.60±17.3 2.10±5.2 0.64±2.2 2.32±1.3 0.68±1.3 0.15±0.4 2.02±3.0 22.97±43.9 0.17±0.3 28.96±56.2 12.25±11.2 0.63±0.4 0.10±0.1
jgraph 5.13.0.0 31.8 34 298 23 7.77±15.4 8.70±17.2 3.07±6.3 0.70±1.7 2.52±2.0 0.80±1.7 0.57±1.1 2.56±3.8 24.38±54.1 0.24±0.4 7.85±17.5 4.09±4.1 0.60±0.3 0.09±0.2
jgraphpad 5.10.0.2 24.2 22 375 16 8.94±21.3 4.40±9.6 1.57±5.5 0.72±6.1 3.62±1.8 0.46±1.3 0.46±1.1 2.46±3.5 11.83±27.2 0.12±0.3 15.54±31.2 12.00±25.1 0.66±0.4 0.14±0.2

∗ a more recent version than the one in the original Qualitas Corpus [97]

104
A

ppendix
D

.
M

etrics
D

ata
from

the
Q

ualitas.class
C

orpus
The Qualitas.class Corpus (2 of 2)

System Version∗ KLOC NOP NOCLNOI MLOC
NOM NOA NOC DIT NORM SIX VG WMC LCOM CA CE I A

jgrapht 0.8.1 17.2 30 324 33 6.79±10.5 4.29±4.8 1.47±2.4 0.72±2.0 1.96±1.4 0.26±1.0 0.15±0.6 1.79±1.7 8.08±10.1 0.12±0.2 19.47±40.3 6.53±10.1 0.50±0.4 0.15±0.3
jgroups 2.10.0 96.3 28 1036 80 7.77±12.3 7.07±9.9 3.51±5.3 0.55±3.7 1.50±1.0 0.83±2.0 0.27±0.5 2.45±3.2 20.40±39.1 0.29±0.3 46.07±87.9 15.25±17.5 0.52±0.3 0.13±0.2
jhotdraw 7.5.1 79.7 66 765 60 7.41±17.5 8.58±9.9 2.18±3.7 0.74±2.9 2.55±1.7 1.27±2.2 0.53±0.9 2.20±3.5 20.57±32.5 0.22±0.3 22.15±39.0 6.65±8.2 0.37±0.3 0.12±0.2
jmeter 2.5.1 94.8 175 1038 80 6.67±12.4 8.04±9.8 2.21±4.5 0.76±3.5 2.70±2.1 0.54±1.7 0.26±0.7 1.86±2.5 16.18±22.6 0.18±0.3 15.38±44.4 4.33±5.9 0.60±0.4 0.12±0.3
jmoney 0.4.4 8.2 4 83 3 9.77±29.6 6.93±8.3 5.18±8.0 0.45±1.7 3.20±2.0 0.49±1.5 0.46±1.1 1.88±2.3 13.39±19.4 0.32±0.4 13.00±11.4 8.50±7.4 0.50±0.3 0.08±0.1
joggplayer 1.1.4s 29.9 17 300 17 9.18±26.5 6.15±7.4 3.96±8.8 0.28±1.4 2.37±2.0 0.54±3.0 0.23±0.6 2.46±4.2 18.22±37.4 0.30±0.4 8.00±11.0 7.94±15.5 0.40±0.4 0.11±0.2
jparse 0.96 24.8 4 75 6 23.44±66.6 10.92±13.5 8.08±28.7 1.33±5.3 4.53±2.2 0.77±1.1 0.50±1.0 7.28±19.1 87.84±311.8 0.26±0.3 21.50±20.5 16.75±7.5 0.62±0.3 0.16±0.1
jpf 1.5.1 13.3 10 140 31 7.26±16.5 8.23±7.2 3.15±3.6 0.73±1.5 1.59±1.4 0.35±0.8 0.20±0.6 2.33±3.5 20.95±27.4 0.37±0.4 12.10±18.3 7.80±5.5 0.61±0.4 0.28±0.3
jrat 1.0-beta1* 14 77 382 37 3.63±5.5 4.29±4.9 1.58±2.2 0.30±1.1 1.56±1.3 0.49±1.8 0.18±0.5 1.42±1.1 6.85±7.8 0.19±0.3 5.82±17.0 3.26±2.6 0.66±0.3 0.12±0.2
jre 1.6.0 923.9 425 9923 1700 7.33±20.3 8.22±19.6 2.06±5.3 4.01±173.7 1.81±1.5 0.91±3.6 0.32±0.8 2.37±4.6 21.46±52.4 0.16±0.3 44.76±155.3 8.31±16.6 0.37±0.3 0.34±0.3
jrefactory 2.9.19 123.4 113 1668 53 6.82±14.2 6.09±18.8 1.67±6.1 0.57±3.2 2.92±2.1 0.51±1.2 0.38±0.8 2.50±5.1 17.40±165.5 0.13±0.3 19.04±44.1 8.88±14.0 0.56±0.3 0.07±0.1
jruby 1.7.3* 244.3 139 3689 176 5.81±20.5 5.69±20.0 1.23±5.6 2.22±46.2 1.64±1.2 0.66±2.2 0.25±0.6 2.11±4.5 14.63±59.3 0.10±0.2 36.94±119.4 8.94±18.9 0.54±0.4 0.12±0.2
jsXe 04_beta 18.5 14 251 11 8.93±19.1 5.04±8.4 2.04±3.5 0.21±1.2 2.05±1.8 0.39±0.9 0.22±0.6 2.71±5.8 15.29±31.5 0.19±0.3 15.07±17.2 6.50±4.3 0.42±0.2 0.09±0.1
jspwiki 2.8.4 60.2 70 582 36 9.69±16.4 6.51±11.9 1.82±3.5 0.47±2.3 2.03±1.1 0.53±1.2 0.25±0.6 2.24±3.2 16.02±27.7 0.19±0.3 14.24±40.2 6.16±7.5 0.54±0.3 0.11±0.2
jtopen 7.8* 342 15 1915 100 8.89±27.5 11.63±20.6 3.24±7.0 0.59±2.8 2.09±1.3 1.24±2.7 0.39±0.7 2.76±7.0 33.67±70.6 0.25±0.4 30.00±86.9 33.67±45.7 0.78±0.3 0.09±0.1
jung 2.0.1 37.9 44 588 63 6.20±14.4 5.87±8.7 2.34±3.8 0.67±2.1 1.79±1.6 0.40±1.2 0.19±0.6 1.86±2.3 11.44±15.8 0.22±0.3 20.36±34.6 7.14±6.9 0.51±0.3 0.17±0.2
junit 4.1 6.6 28 171 15 4.02±4.9 4.68±5.1 0.93±1.2 0.70±1.8 1.57±1.2 0.29±0.9 0.16±0.5 1.52±1.1 8.63±11.5 0.11±0.2 8.32±12.5 4.21±3.2 0.56±0.3 0.22±0.2
log4j 2.0-beta* 33.3 64 616 55 5.98±10.2 4.40±8.6 1.54±2.8 0.43±1.6 1.45±1.0 0.31±0.9 0.13±0.3 1.98±2.5 10.48±17.2 0.15±0.3 16.11±38.2 5.75±5.3 0.63±0.4 0.12±0.2
lucene 4.2.0* 413 387 4629 142 9.99±27.7 5.14±6.3 2.18±3.6 0.98±9.7 2.28±1.2 0.43±1.1 0.21±0.6 2.50±9.3 13.79±33.0 0.18±0.3 23.16±100.3 6.66±11.8 0.69±0.3 0.07±0.2
marauroa 3.8.1 17.7 41 247 14 6.22±9.1 6.57±7.7 1.98±3.4 0.41±2.2 1.55±0.9 0.37±0.7 0.10±0.2 1.81±2.0 12.72±19.9 0.18±0.3 10.98±19.7 4.39±6.0 0.60±0.4 0.10±0.2
maven 3.0.5* 70.9 181 916 175 6.25±13.8 6.72±12.9 1.80±3.4 0.41±1.0 1.68±1.5 0.38±2.0 0.10±0.4 1.81±2.3 12.70±30.1 0.18±0.3 6.61±16.9 3.76±5.4 0.66±0.4 0.20±0.3
megamek 0.35.18 242.8 37 1859 64 13.93±43.4 6.53±23.8 3.52±12.5 0.81±5.8 4.10±2.3 0.61±2.5 0.40±0.9 3.80±12.5 27.30±145.9 0.16±0.3 67.57±211.8 38.00±122.5 0.47±0.4 0.14±0.2
mvnforum 1.2.2-ga 105.3 75 784 144 8.20±23.0 9.88±15.6 2.85±7.0 0.51±2.7 1.15±0.9 0.20±1.0 0.07±0.3 2.39±6.2 27.44±48.2 0.22±0.4 20.12±41.8 7.11±8.8 0.53±0.4 0.15±0.3
myfaces_core 2.1.10* 343.3 277 3426 265 7.71±19.4 6.92±10.6 2.12±8.0 0.90±3.4 1.97±1.4 0.74±2.8 0.24±0.6 2.17±4.0 17.02±32.4 0.17±0.3 16.14±47.9 4.84±7.3 0.53±0.4 0.20±0.3
nakedobjects 4.0.0 133.9 496 2975 470 3.54±6.5 5.77±8.6 1.16±2.4 1.01±4.0 1.82±1.3 0.41±1.2 0.19±0.5 1.40±1.3 8.48±13.7 0.13±0.3 17.27±54.8 4.72±6.3 0.57±0.4 0.22±0.3
nekohtml 1.9.14 7.6 7 64 5 9.56±18.6 7.56±9.9 3.42±7.4 0.39±1.3 1.67±1.1 0.73±2.1 0.22±0.5 3.30±5.7 27.36±57.3 0.22±0.3 4.86±5.0 4.86±2.6 0.63±0.3 0.09±0.2
netbeans 7.3* 2153.2 1959 25054 2374 7.75±30.8 6.44±10.1 2.43±5.8 0.66±5.2 1.97±1.6 0.56±1.6 0.27±0.7 2.45±5.8 18.03±47.6 0.22±0.3 6.39±12.9 6.11±7.3 0.64±0.3 0.17±0.3
openjms 0.7.7-beta-1 39.4 66 616 79 5.85±9.6 6.12±7.5 1.62±2.8 0.66±1.5 1.86±1.5 0.34±0.8 0.14±0.4 1.86±2.0 12.44±18.3 0.18±0.3 11.21±17.8 5.44±6.2 0.52±0.4 0.17±0.2
oscache 2.3* 7.6 22 115 10 6.82±12.2 6.09±8.3 2.21±3.2 0.36±0.9 2.03±1.2 0.50±1.2 0.23±0.5 2.36±3.8 15.42±32.9 0.22±0.3 4.18±7.9 3.23±1.8 0.63±0.3 0.13±0.2
picocontainer 2.10.2 9.3 15 206 29 3.79±6.1 5.85±7.4 0.98±1.6 0.97±2.2 1.75±1.4 0.45±1.0 0.25±0.6 1.58±1.7 9.71±16.4 0.09±0.2 12.40±26.5 8.87±9.7 0.55±0.3 0.23±0.3
pmd 4.2.5 60.7 88 872 52 6.37±17.0 6.30±21.9 1.70±8.0 0.71±4.6 2.27±1.4 0.53±1.2 0.44±0.8 2.61±6.8 17.59±128.1 0.11±0.3 10.41±38.8 5.36±6.7 0.75±0.4 0.09±0.2
poi 3.6 203.1 212 2414 131 6.63±16.0 7.34±18.3 2.05±7.8 0.55±3.8 2.12±1.2 0.41±1.1 0.15±0.4 1.81±3.3 14.68±30.5 0.18±0.3 16.63±48.8 7.71±13.7 0.54±0.3 0.09±0.2
pooka 3.0-080505 44.5 28 491 36 7.67±13.2 8.31±12.2 2.31±4.0 0.48±1.6 2.48±1.9 0.85±3.1 0.27±0.8 2.53±3.2 21.50±38.8 0.26±0.4 16.93±27.4 7.50±12.6 0.46±0.3 0.13±0.2
proguard 4.9* 62.6 35 648 42 5.62±16.3 8.35±13.7 2.31±5.1 1.48±10.2 1.71±1.2 2.48±6.8 0.54±0.8 1.97±4.5 17.33±29.6 0.17±0.3 48.17±80.3 12.89±12.8 0.46±0.3 0.15±0.2
quartz 1.8.3 28.6 51 269 36 7.08±18.0 10.28±19.0 2.57±8.2 0.94±4.0 1.47±1.1 0.40±1.2 0.13±0.4 2.00±3.8 21.40±47.1 0.20±0.3 5.41±19.1 3.82±4.2 0.77±0.3 0.10±0.2
quickserver 1.4.7 18.3 28 196 23 8.33±24.0 7.50±15.2 3.65±8.0 0.40±1.4 1.50±1.3 0.47±2.3 0.15±0.4 2.44±5.7 20.03±44.6 0.26±0.4 8.64±17.3 4.71±3.5 0.61±0.4 0.13±0.3
quilt 0.6-a-5 8 20 113 9 6.63±13.3 6.99±7.9 3.40±4.6 0.49±1.7 1.55±1.0 0.46±0.9 0.18±0.4 1.91±2.5 13.81±14.7 0.31±0.4 6.05±8.1 4.05±4.7 0.57±0.4 0.14±0.2
roller 5.0.1* 65.7 95 738 76 6.08±13.2 8.06±9.9 2.34±3.6 0.40±2.1 1.78±1.3 0.67±1.2 0.30±0.6 1.96±2.8 17.46±22.1 0.28±0.4 8.21±16.8 6.22±7.0 0.65±0.3 0.13±0.2
rssowl 2.0.5 100.6 54 771 110 11.34±25.1 7.55±9.7 2.91±7.1 1.09±5.3 1.77±1.4 0.37±1.0 0.13±0.4 2.60±4.0 21.29±36.8 0.24±0.4 39.18±68.1 11.50±9.5 0.48±0.3 0.16±0.3
sablecc 3.2 28.4 5 242 5 9.45±41.9 8.56±23.2 1.81±3.6 0.96±5.9 2.15±1.0 2.09±5.4 0.58±0.7 2.08±6.8 18.34±53.1 0.15±0.3 33.40±47.1 26.00±33.3 0.56±0.3 0.10±0.1
sandmark 3.4 93.2 127 1045 42 9.47±24.6 6.15±8.5 2.16±3.2 0.62±2.4 2.10±1.4 0.52±1.3 0.20±0.4 2.77±5.9 19.42±40.3 0.19±0.3 10.83±39.0 5.07±8.4 0.72±0.3 0.08±0.2
springframework 3.0.5 329.4 598 5999 692 5.73±10.0 5.76±9.4 1.35±3.1 0.74±4.0 1.81±1.7 0.28±0.8 0.17±0.6 1.58±1.9 9.46±17.2 0.15±0.3 6.57±16.0 5.39±6.1 0.71±0.3 0.20±0.3
squirrel_sql 3.1.2 6.9 3 73 16 7.61±14.7 7.71±9.3 3.96±5.6 0.26±0.6 1.62±1.8 0.41±1.0 0.15±0.5 1.74±1.6 13.51±22.0 0.42±0.4 6.67±6.6 12.67±14.4 0.59±0.3 0.09±0.1
struts 2.2.1 143.4 261 2239 169 6.07±12.8 6.29±8.8 2.06±4.4 0.74±4.5 2.24±1.7 0.50±1.9 0.23±0.6 1.89±3.4 12.28±28.8 0.22±0.3 13.35±50.3 5.37±7.8 0.68±0.4 0.11±0.2
sunflow 0.07.2 22 22 209 19 10.28±25.7 6.13±7.5 3.95±6.2 0.64±2.5 1.17±0.9 0.12±0.4 0.07±0.3 2.80±5.5 19.68±29.6 0.20±0.3 18.54±29.4 6.18±6.3 0.52±0.3 0.03±0.1
tapestry 5.1.0.5 97.8 144 2133 406 4.88±7.8 4.31±9.5 1.41±2.7 0.74±4.2 1.39±1.5 0.15±1.6 0.05±0.3 1.38±1.2 6.30±13.8 0.14±0.3 29.66±84.3 11.12±25.4 0.60±0.4 0.17±0.3
tomcat 7.0.2 181.2 157 1876 187 7.38±17.4 8.15±15.0 2.69±5.7 0.61±2.9 1.68±1.2 0.71±2.3 0.30±0.7 2.53±4.5 22.24±49.0 0.23±0.3 14.62±31.8 4.69±7.4 0.54±0.4 0.16±0.3
trove 2.1.0 5.8 4 72 9 8.35±12.2 6.75±10.3 0.86±1.3 1.78±6.0 1.61±1.2 0.51±1.5 0.14±0.4 1.81±1.6 13.15±20.2 0.09±0.2 1.25±1.3 4.25±3.6 0.83±0.2 0.11±0.1
velocity 1.6.4 37 42 445 47 7.68±23.8 6.16±10.4 1.76±5.6 0.65±3.5 2.00±1.4 0.63±2.3 0.26±0.5 2.57±9.8 17.37±95.5 0.13±0.3 14.07±22.9 7.29±13.2 0.66±0.4 0.14±0.2
wct 1.5.2 52.3 130 677 82 4.62±11.9 8.99±11.2 3.24±5.2 0.39±1.7 1.93±1.9 0.23±0.5 0.14±0.5 1.66±2.4 15.36±23.7 0.36±0.4 10.29±22.1 3.61±4.9 0.51±0.4 0.13±0.2
webmail 0.7.10 10.1 19 115 11 6.42±15.4 8.66±10.3 1.98±2.8 0.77±2.7 1.57±1.1 0.34±0.7 0.15±0.4 2.11±3.4 19.25±34.4 0.23±0.3 12.05±15.3 3.58±4.8 0.43±0.4 0.12±0.3
weka 3.6.9* 272.6 113 1766 122 9.92±23.2 10.41±12.5 3.88±6.4 1.29±10.3 2.48±1.5 1.10±1.8 0.33±0.6 2.68±4.5 30.68±44.3 0.32±0.4 20.50±85.9 9.97±11.3 0.66±0.3 0.13±0.2
xalan 2.7.1 183.9 89 1409 238 9.88±36.9 8.21±15.3 1.85±4.1 1.01±3.5 2.05±1.6 1.11±2.6 0.65±1.2 2.41±5.7 21.47±42.9 0.17±0.3 27.86±56.2 8.70±16.3 0.56±0.4 0.22±0.3
xerces 2.10.0 126 53 947 157 8.98±23.1 9.76±13.6 2.98±7.0 0.76±2.8 2.00±1.8 1.21±3.4 0.43±1.0 3.06±6.3 31.79±67.4 0.22±0.3 21.11±38.2 10.15±12.8 0.56±0.3 0.19±0.3
xmojo 5.0.0 4 15 32 4 9.31±16.3 8.31±6.8 5.16±5.3 0.16±0.4 1.50±1.5 0.22±0.5 0.07±0.2 2.25±3.4 20.56±24.5 0.48±0.4 0.87±0.8 0.60±0.5 0.47±0.4 0.10±0.2

∗ a more recent version than the one in the original Qualitas Corpus [97]

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem
	1.2 An Overview of the Proposed Approach
	1.3 Outline of the Thesis
	1.4 Publications

	2 Background
	2.1 Architectural Models
	2.2 Architecture Conformance
	2.3 Refactoring
	2.4 Remodularization
	2.5 Recommendation System
	2.6 Final Remarks

	3 The Proposed Recommendation System
	3.1 Overview
	3.2 Basic Concepts
	3.3 Architectural Repairing Recommendations
	3.3.1 Training System
	3.3.2 Syntax and Auxiliary Functions
	3.3.3 Recommendations
	3.3.4 Algorithm
	3.3.5 Module Suitability

	3.4 The ArchFix Tool
	3.5 Discussion
	3.6 Final Remarks

	4 Evaluation of the Suitable Module Heuristic
	4.1 The Qualitas.class Corpus
	4.1.1 Compilation Process
	4.1.2 Measurements

	4.2 Empirical Study on the Module Suitability
	4.2.1 Similarity Coefficients
	4.2.2 Strategies
	4.2.3 Evaluation

	4.3 Final Remarks

	5 Evaluation of the Recommendation System
	5.1 Research Questions
	5.2 Target Systems
	5.3 Methodology
	5.3.1 Triggering Recommendations
	5.3.2 Correctness Evaluation
	5.3.3 Complexity Evaluation

	5.4 Geplanes Results
	5.5 BrTCom Results
	5.6 Analysis of Results
	5.7 Lessons Learned
	5.8 Threats to Validity
	5.9 Final Remarks

	6 Conclusion
	6.1 Contributions
	6.2 Limitations
	6.3 Future Work

	Bibliography
	A Repairing Functions
	B Auxiliary Functions
	C Description of Repairing Recommendations
	D Metrics Data from the Qualitas.class Corpus

