
Monads are important programming tools in functional languages. They
allow the programmer to build up computations using sequential building
blocks. However, it is observed in practice that monadic programs fail to
modularize crosscutting concerns properly. AspectH, an aspect oriented
extension of Haskell, was developed to offer new means of separation of
concerns in monadic programs. This paper presents a case study where we
use AspectH to redesign the weaver that implements the AspectH language
itself. The analysis of the results includes a discussion about the strategy
of introducing monads only in late stages of the development of functional
programs, used in the development of the AspectHs weaver.


