
Universidade Federal de Minas Gerais

Instituto de Ciências Exatas

Departamento de Ciência da Computação

Modular Denotational Semantics Description

by

Roberto da Silva Bigonha

RT 004/94

Caixa Postal, 702

30.161 - Belo Horizonte - MG

November 24, 2013



Contents

1 Introduction 1

2 The Methodoly 1

3 The Programming Language ASPLE 3
3.1 Concrete and Abstract Syntaxes . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 The Static Type Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2.2 Machine Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2.3 Type Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.4 Program Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.5 Declaration Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.6 Identifier Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.7 Expression Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.8 Type Coercion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.9 Statement Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 The Semantics of ASPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Continuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 The Run-time Environment . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3 The Abstract Machine . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.4 The Concrete Machine . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.5 The Semantics of Programs . . . . . . . . . . . . . . . . . . . . . . 17
3.3.6 The Semantics of Declarations . . . . . . . . . . . . . . . . . . . . . 18
3.3.7 The Semantics of Identifiers . . . . . . . . . . . . . . . . . . . . . . 19
3.3.8 The Semantics of Expressions . . . . . . . . . . . . . . . . . . . . . 20
3.3.9 The Semantics of Statements . . . . . . . . . . . . . . . . . . . . . 22

4 The PROJECT Module 23

5 Conclusion 24

i



1 Introduction

2 The Methodoly

In denotational semantics, the meaning of a language is given by associating with each
construct in the language a corresponding semantic object, such as an abstract mathemat-
ical denotation. The language constructs are members of abstract syntactic domains and
the mathematical objects in corresponding semantic domains. The association of language
constructs with semantic objects is specified via mappings from syntactic to semantic do-
mains. A denotational definition consists of the specification of syntactic and semantic
domains together with the associated mappings.

Usually the first step in the formulation of a denotational semantic definition is the
specification of the syntactic universe, i.e., the abstract syntax of the language. Princi-
ples of denotational semantics suggest that constructs with semantic similarities should
be grouped in a single syntactic category. The underlying idea is to enhance conceptual
clarity and to make the semantic definition more compact and elegant. This partitioning
of the domain of constructs of a language into conceptually meaningful groups constitutes
a key point in enhancing the readability of denotational definitions. A good partitioning
reduces the number of semantic functions, and thus concentrates the definition of semantic
concepts at specific points in the description as opposed to having pieces of them scat-
tered throughout the entire definition. If one chooses to place each type of command of
an imperative language into a separate syntactic domain, the meaning of the language’s
commands is given not by one semantic function but by a collection of possibly mutually
recursive functions.

In general, the classification of a language’s constructs into groups according to their
semantic similarities is not a difficult task, as long as some knowledge about the semantics
of the language is available in advance. In practice, this would not be much of a problem
because at the time the definition of the language is being formulated, all or at least a
major portion of the language must have already been designed, so that the definer should
have good insight into its semantics. Conversely, for the case of a newly designed language,
it has been recommended [?, ?] that the very process of formulating the language definition
should be also used to evaluate and reveal problems in its design. In any event, if the initial
assumptions about the language’s semantics do not turn out to be entirely valid, either a
different syntactic classification is in order or the design should be changed.

The second step in the formulation of a denotational definition is the characterization
of the necessary semantic domains. In contrast with syntactic domain specifications, it is
more difficult to formulate all the necessary semantic domain equations in advance of the
specification of the semantic functions. In general, the semantic domain structures depend
on the way the associated mappings are defined. For instance, standard denotational
semantic definitions are modeled on the notions of stores, environments and continuations.
However, the need for these concepts and details of their internal structures vary from
language to language. Apparently, the most natural approach is to provide the specification

1



of semantic domains incrementally as they are demanded by semantic functions.
An important principle in denotational semantic definitions is that the meaning of a

language construct should depend only on the meaning of its immediate constituents. This
principle, called referentially transparent property [?], is related to the fact that in denota-
tional semantics, the denotation of a construct is intended to be a complete representation
of its semantics, and, the semantics of a construct should be a function of the denotations
of its constituents and nothing else. Requiring referential transparency is tantamount to
requiring that if two constructs have the same denotation, then they are semantically
indistinguishable.

Moreover, the dependency between the denotation of a construct and those of its con-
stituents need only be on the types and names of the associated semantic functions, and
not on their complete definition. In terms of formulating language definitions the property
of referential transparency provides the basis for applying information hiding techniques as
suggested by modern object-oriented programming methodology. A module can be used
to abstract away syntactic domains and associated semantic functions.

Another characteristic of denotational semantic definitions is that they are (abstract)
syntax-directed. Therefore unlike programs in a general purpose programming language,
denotational definitions have their control structure more or less fixed in advance by the
language’s abstract syntax. Consequently, the language’s abstract syntax plays a very
important role in the organization of denotational definitions. A methodology for formu-
lating denotational semantic definitions should give more emphasis on the specifications of
abstract syntaxes and semantic domains rather than on the control structure of semantic
functions. In fact, the problems of formulating denotational semantic descriptions are well
treated by the abstract data type and object-oriented methodologies [?, ?, ?, ?]. In par-
ticular, the readability problem of denotational semantics lies mainly on the way domains
are presented. As in the object-oriented methodology, attention should be focused on data
rather than control. Basically, the underlying strategy is to form modules consisting of the
data structure, i.e., domain definitions and related semantic and auxiliary functions.

Fundamentally, methodology proposed has its basis in the use of the language’s syn-
tactic hierarchy as a criterion to separate the semantic details of the language into levels.
This approach has the advantage that the module structure is automatically established
when the language’s abstract syntax is defined. Therefore, this immediately solves the
most difficult task in the object-oriented methodology, namely, the problem of identifying
the best collection of classes.

Similar criteria have been widely used to provide BNF-based informal definitions of
programming languages [?, ?, ?, ?, ?, ?]. These definitions are, in general, organized into
chapters and sections which can be viewed as modules, each of which dedicated to specific
language concept while abstracting away details of others. The ALGOL 60 report [?], for
instance, dedicates a section to each major concept in the language, such as expressions,
commands, declarations, etc.. Abstractions are informally used throughout the report.
Consider section 4.6 of the Algol 60 report, which is concerned with for statement. In this
context, all that is required to be known about Algol 60 expressions are their types, while
details about how they are constructed have been abstracted away into another section.

2



The structure of the Algol 60 report is essentially that of the syntactic specification of
the language. In addition, there is a “module” for each semantically meaningful syntactic
category in the grammar.

In summary, the proposed methodology for formulating structured denotational seman-
tic definitions with the support of SCRIPT consists of the following steps:

1. From the concrete syntax of the language and from the language’s semantics the
definer has in mind, the corresponding abstract syntax shoud be defined.

2. One or more syntactic domains in the abstract syntax are associated with module
which defines:

• The internal structure of the domains.

• Associated semantic functions.

3. Important semantic domains such as Stores and Environments should be identified
and treated as “abstract data types” or object’s classes, and thus, also entitled to
their own modules which encapsulate their internal structure and define associated
operators.

4. As modules are explicitly defined, the need for new types or semantic domains may
arise. Like in the methodology, new modules should be created accordingly.

It should be emphasized that inherent properties of denotational semantics do not
permit information hiding principles to be used to their full extent. The internal structure
of syntactic domains may not be completely hidden inside modules because of the syntax-
directed nature of the semantic definition style. Also, the internal structure of domains
of continuations cannot be encapsulated because their internal details are needed at the
various point where the continuation functions are defined. The important implication of
this approach is that modules must be flexible in terms of visibility to information than a
module that implements an abstract data type.

3 The Programming Language ASPLE

In order to show an application of the proposed methodology, a formal semantic definition
of a simple language ASPLE [?] will be presented.

A denotational definition of ASPLE has already been published by D. Gouge [?]. This
present definition borrows many of the solutions in [?] and highlights the proposed module
organization.

The formal definition of ASPLE is presented in two parts: The first is concerned with
type-checking ASPLE programs while the second describes the dynamic semantics of type-
checked ASPLE programs.

Guided by extant semantic definitions of ASPLE, the domains of ASPLE constructs can
be defined as tt Program, Dcl, Stmt and Exp for programs, declarations, commands and
expressions, respectively. With every member of each of these domains will be associated

3



two semantic functions: one to describe the type-checking of ASPLE constructs and the
other to define their semantic interpretations.

Other syntactic domains easily identifiable in the concrete syntax of ASPLE are the
domain Id of identifiers, the domain Mode of ASPLE type specifications and the domains
Num and Bool for ASPLE constants.

3.1 Concrete and Abstract Syntaxes

The following module provides the concrete syntax of ASPLE and indicates how the cor-
responding abstract syntax is to be generated.

SYNTAX ASPLE

program ::= "begin" dcl-train stmt-train "end";

dcl-train ::= dcl+;

dcl ::= mode id+-"," ";" : [mode ide+];

mode ::= "bool" : "bool"

| "int" : "int"

| "ref" mode ;

stmt-train ::= stmt+-";" ;

stmt ::= asgt-stmt : asgt-stmt

| cond-stmt : cond-stmt

| loop-stmt : loop-stmt

| transput-stmt : transput-stmt;

asgt-stmt ::= id ":=" exp ;

cond-stmt ::= "if" exp "then" stmt-train "fi"

| "if" exp "then" stmt-train

"else" stmt-train "fi"

loop-stmt ::= "while" exp "do" stmt-train "end" ;

transput-stmt ::= "input" id | "output" exp ;

exp ::= factor : factor

| exp "+" factor ;

factor ::= primary : primary

| factor "*" primary ;

primary ::= id

| constant : constant

| "(" exp ")" : exp

| "(" compare ")" : compare ;

compare ::= exp "=" exp

| exp "#" exp ;

4



constant ::= bool | num ;

bool ::= "true" : TT

| "false" : FF;

DOMAINS

dcl-train,dcl : Dcl;

stmt-train,stmt : Stmt;

exp, factor, primary, compare : Exp;

LEXIS

UNIT ::= layoutchart+ : ()

| id : (OUT "ID", id)

| num : (OUT "NUM", num);

layoutchar ::= " " | "\n" | "\f" ;

id ::= letter+ : QUOTE letter+

letter === "A" ... "Z";

num ::= digit+ : NUMBER digit+ ;

digit === "0" ... "9" ;

END ASPLE

3.2 The Static Type Checker

3.2.1 Introduction

The primary function of the ASPLE’s type checker is to verify whether:

• all used identifiers are properly declared;
• all identifiers are declared only once within the same scope;
• the way identifiers are used agrees with the type assigned to them.

The type checker extends a given ASPLE program text by incorporating in it type
information, to simplify the mappings of ASPLE constructs to their denotations. For
example, run-time type-checking isv required during I/O operations. If the types of the
variables involved are available locally, no type environment would be required in the
run-time semantic definition. Moreover, type information is needed to carry out implicit
coercions [?, ?]. Since all the necessary coercions can be identified at compile time, the
type checker should make implicit coercions explicit.

Additionally, the type checker should use the type information it collects to perform
operator identification. For example, in ASPLE, the same symbols, namely "+" and "*",

5



are used to denote integer and boolean operations. In particular, the type checker should
replace "+" and "*" by or and and, respectively, whenever the corresponding operands
have ASPLE type bool.

Now that we have decided to define the type checker as mappings from ASPLE con-
structs to extended ASPLE constructs three problems remain to be solved. The first
problem regards the abstract syntax of the extended constructs. Notice that the fact that
the type checker extends ASPLE programs does not affect the concrete syntax because ex-
tended programs are never parsed. It is nevertheless too early to make precise the needed
extension because they are construct dependent. Their specifications will be delayed until
the type checking functions for the involved constructs are defined.

The second problem has to do with error handling and the semantic style to be adopted.
One possibility is to adopt continuation semantics, so that the type checker produces either
an extended ASPLE program in abstract syntax form or an error message. The advantage
of this approach is its convenient way of dealing with error conditions. Its main disadvan-
tage is that the type checker terminates its processing upon encountering the first error.
From the viewpoint of language definitions this would not be entirely bad because formal
definitions are expected to provide the meaning of semantically correct programs while
rejecting wrong ones. However, it seems wise to use formal definitions to establish a basis
for standardizing the compiler’s error messages. The addopted approach is the use direct
semantics, and replacing ill-typed constructs by error indicators. Specifically, type checking
functions are defined as mappings from parse trees, which are SCRIPT representations
of abstract programs, to extended parse trees which may contain the undefined value (?)
as subtrees. The value "?" is construed as an error indicator.

3.2.2 Machine Context

Since the formal definition of ASPLE is intended to be machine independent, certain
parameters should be passed to the definition. These parameters are called machine context.
In general, they should contain information that enables the formal definition to take into
account certain machine dependent characteristics of the language such as the maximum
value of integers. The module Machine-context encapsulates all these parameters as
follows:

MODULE Machine-context

EXPORT

maxint;

DOMAINS

maxint : N;

DEFINITIONS

DEF maxint = 32767

END Machine-context

6



3.2.3 Type Environment

The necessary type environment will be defined as a mapping from ASPLE identifiers to
their respective type denotations. Module Type-environ defines the structure of the type
environment and associated operators.

The type environment is defined as Env = Id -> Den, where Id is the domain of AS-
PLE identifiers and Den that of denotations. For the specific purpose of type checking
ASPLE programs, the domain Den should include all ASPLE modes. In addition, Den

must have elements that indicate error conditions. Module Type-environ is as follows:

MODULE Type-environ

EXPORTS

*Env, *Den, initial-env;

IMPORTS

Type-dcl(Mode);

DOMAINS

Env = Id -> Den;

Den = Mode | "err" ;

DEFINITIONS

DEF initial-env : Env = LAM id . ?

END Type-environ

Function initial-env defines the initial environment in which all ASPLE identifiers
are bound to the constant undefined (?).

3.2.4 Program Typing

Function check-prog below maps ASPLE programs to type-checked extended ASPLE pro-
grams.

MODULE Type-program

EXPORTS

Program, check-prog;

IMPORTS

Type-dcl(Dcl,check-dcl);

Type-stmt(Stmt,check-stmt);

Type-environ(*Env,initial-env);

DOMAINS

Program = ["begin" Dcl Stmt "end"];

e : Env;

DEFINITIONS

DEF check-prog(program) : Program =

LET ["begin" dcl stmt "end"] = program

LET (dcl’,e) = check-dcl(dcl,initial-env)

7



LET stmt’ = check-stmt(stmt,e)

IN ["begin" dcl’ stmt’ "end"]

END Type-program

3.2.5 Declaration Typing

Function check-dcl below transforms ASPLE declarations into type-checked ASPLE dec-
larations. In addition, it enriches the given type environment.

MODULE Type-dcl

EXPORTS

Dcl, Mode, check-dcl;

IMPORTS

Type-environ(Env);

Type-id(Id,check-id-list);

DOMAINS

Dcl = [Dcl+] | [Mode Id+];

Mode = "bool" | "int" | ["ref" Mode] ;

e : Env;

DEFINITIONS

DEF check-dcl(dcl,e) : (Dcl,Env) =

CASE dcl

/[dcl+] -> LET (dcl’+,e’)=check-dcl-list(dcl+,e)

IN ([dcl’+],e’)

/[mode id+] ->

LET (id1+,e1) = check-id-list(id+,e,mode)

IN ([mode id1+],e1)

END

DEF check-dcl-list(dcl*,e) : (Dcl*,Env) =

CASE dcl*

/dcl1 PRE dcl1* ->

LET (dcl1’,e1) = check-dcl(dcl1,e)

LET (dcl1’*,e2) = check-dcl-list(dcl1*,e1)

IN <dcl1’ PRE dcl1’*, e2)

/<> -> (<>,e)

END

END Type-dcl

3.2.6 Identifier Typing

Function check-id-list below binds a list of identifiers to their declared modes in the
environment. Identifiers which are declared more than once in the same scope are bound
to "err".

8



MODULE Type-id

EXPORTS

Id, check-id-list;

IMPORTS

Type-dcl(Mode);

Type-environ(*Env,*Den);

DOMAINS

Id = Q;

e : Env;

DEFINITIONS

DEF check-id-list(id*,e,mode) : (Id*,Env) =

CASE id*

/id1 PRE id2* ->

LET (id1’,e1) = check-id(id1,e,mode)

LET (id2’*,e2) = check-id-list(id2*,e1,mode)

IN (id1’ PRE id2’*,e2)

/<> -> (<>,e)

END

DEF check-id(id,e,mode) : (Id,Env) =

e(id) NE ? ->(?,e{"err"/id}),(id,e{["ref" mode]/id})

END Type-id

3.2.7 Expression Typing

Function check-exp below maps ASPLE expressions in the presence of an environment
to corresponding type checked expressions and their computed modes. During the process,
all implicit coercions are made explicit by appropriate insertion of the operator deref.
Moreover, "+" and "*" which denote boolean operators are conveniently replaced by or

and and, respectively.

MODULE Type-exp

EXPORTS

Exp, check-exp;

IMPORTS

Type-environ(Env,Den);

Coercion(base-level,deref);

Machine-context(maxint);

Type-id(Id)

DOMAINS

Exp = [Exp "+" Exp]

| [Exp "*" Exp]

9



| [Exp "=" Exp]

| [Exp "#" Exp]

| [Exp "or" Exp] ! extension

| [Exp "and" Exp]! extension

| ["deref" Exp] ! extension

| [Id] | [Num] | [Bool] ;

DOMAINS

e: Env;

d: Den;

DEFINITIONS

DEF check-exp(exp,e) : (Exp,Den) =

CASE exp

/[id] ->

LET d = e(id)

IN (d EQ "err") OR (d EQ ?) ->

(?,"err") -- ill or undeclared

([id],d)

/[num] -> (num LE maxint -> ([num],"int"),

(?,"err"))

/[bool] -> <[bool],"bool">

/[exp1 "+" exp2] ->

LET (exp1,d1) = check-exp(exp1,e)

ALSO (exp2,d2) = check-exp(exp2,e)

LET (d1’,n1) = base-level(d1)

ALSO (d2’,n2) = base-level(d2)

IN (d1’ EQ d2’) AND (d1’ NE "err") ->

(LET exp1’ = deref(exp1,n1)

ALSO exp2’ = deref(exp2,n2)

IN (d1’ EQ "int") ->

([exp1’ "+" exp2’],d1’),

([exp1’ "or" exp2’],d1’))

(?,"err")

/[exp1 "*" exp2] ->

LET (exp1,d1) = check-exp(exp1,e)

LET (exp2,d2) = check-exp(exp2,e)

LET (d1’,n1) = base-level(d1)

ALSO (d2’,n2) = base-level(exp2,n2)

IN (d1’ EQ d2’) AND (d1’ NE "err") ->

(LET exp1’ = deref(exp1,n1)

ALSO exp2’ = deref(exp2,n2)

IN (d1’ EQ "int") ->

10



([exp1’ "*" exp2’],d1’),

([exp1’ "and" exp2’],d1’),

(?,"err")

/[exp1 "=" exp2] ->

LET (exp1,d1) = check-exp(exp1,e)

ALSO (exp2,d2) = check-exp(exp2,e)

LET (d1’,n1) = base-level(d1)

ALSO (d2’,n2) = base-level(d2)

IN (d1’ EQ "int") AND (d2’ EQ "int") ->

(LET exp1’ = deref(exp1,n1)

ALSO exp2’ = deref(exp2,n2)

IN ([exp1’ "=" exp2’],"bool")),

(?,"err")

/[exp1 "#" exp2] ->

LET (exp1,d1) = check-exp(exp1,e)

ALSO (exp2,d2) = check-exp(exp2,e)

LET (d1’,n1) = base-level(d1)

ALSO (d2’,n2) = base-level(d2)

IN (d1’ EQ "int") AND (d2’ EQ "int") ->

(LET exp1’ = deref(exp1,n1)

ALSO exp2’ = deref(exp2,n2)

IN ([exp1’ "#" exp2’], "bool")),

(?,"err")

END

END Type-exp

3.2.8 Type Coercion

Function base-level counts the number of dereferencings [?, ?] to which a given mode
must be submitted to produce its basic mode. Specifically, base-level counts and elimi-
nates all refs that precede an int or bool in a given mode. It returns the basic mode and
the number of dereferencings needed.

Function deref dereferences ASPLE expressions n times by appending a sequence of
derefs in front of them. The value of n is given by function base-level.

MODULE Coercion

EXPORTS

base-level, deref;

IMPORTS

Type-environ(Den);

Type-exp(Exp);

11



DEFINITIONS

DEF base-level(d : Den) : (Den,N) =

CASE d

/["ref" mode] -> LET (d’,n’) = base-level(mode)

IN (d’,n’ PLUS 1)

/QUOTE ? -> (d,0)

/? -> ("err",0)

END

DEF deref(exp,n) : Exp =

n EQ 0 -> exp, deref(["deref" exp], n MINUS 1)

END Coercion

3.2.9 Statement Typing

Function check-stmt transforms ASPLE statements in the presence of an environ to type
checked ASPLE statements.

MODULE Type-stmt

EXPORTS

Stmt, check-stmt;

IMPORTS

Type-environ(Env,Den);

Type-exp(Exp,check-exp);

Type-dcl(Mode);

Coercion(base-level,deref);

DOMAINS

Stmt = [Stmt+]

| [Id ":=" Exp]

| ["if" Exp "then" Stmt "else" Stmt "fi"]

| ["if" Exp "then" Stmt "fi"]

| ["while" Exp "do" Stmt "end"]

| ["input" Id]

| ["input" Exp Mode] ! extension

| ["output" Exp]

| ["output" Exp Mode]; !extension

DOMAINS

e : Env;

d : Den;

12



DEFINITIONS

DEF check-stmt(stmt,e) : Stmt =

CASE stmt

/[stmt+] -> LET stmt’+ = check-stmt-list(stmt+,e)

IN [stmt’+]

/["if" exp "then" stmt1 "fi"] ->

LET (exp’,d) = check-exp(exp,e)

LET (d’,n) = base-level(d)

LET exp’ = (d’ EQ "bool" -> deref(exp’,n),?)

ALSO stmt’ = check-stmt(stmt1,e)

IN ["if" exp’ "then" stmt’ "fi"]

/["if" exp "then" stmt1 "else" stmt2 "fi"] ->

LET (exp’,d) = check-exp(exp,e)

LET (d’,n) = base-level(d)

LET exp’ = (d’ EQ "bool" -> deref(exp’,n),?)

ALSO stmt1’ = check-stmt(stmt1,e)

ALSO stmt2’ = check-stmt(stmt2,e) IN

["if" exp’ "then" stmt1’ "else" stmt2’ "fi"]

/["while" exp "do" stmt "end"] ->

LET (exp’,d) = check-exp(exp,e)

LET (d’,n) = base-level(d)

LET exp’ = (d’ EQ "bool" -> deref(exp’,n),?)

ALSO stmt’ = check-stmt(stmt,e)

IN ["while" exp’ "do" stmt’ "end"]

/["input" id] ->

LET ([id],d) = check-exp([id],e)

LET (mode,exp) =

(d EQ "err") -> (?,?),

LET (d’,n) = base-level(d)

IN (d’,deref([id], n PLUS 1))

IN ["input" exp mode]

/["output" exp] ->

LET (exp’,d) = check-exp(exp,e)

LET (mode,exp’’) =

d EQ "err" -> <?,?>,

LET (d’,n) = base-level(d)

IN (d’,deref(exp’,n))

IN ["output" exp’’ mode]

/[id ":=" exp] ->

LET ([id1],d1) = check-exp([id],e)

ALSO (exp1,d2) = check-exp(exp,e)

LET (d1’,n1) = base-level(d1)

13



ALSO (d2’,n2) = base-level(d2)

IN (d1’ EQ d2’) AND (d1’ NE "err") ->

( (n1 LE (n2 PLUS 1)) ->

LET n’ = (n2 PLUS 1) MINUS n1

LET exp1’ = deref(exp1,n’)

IN [id1 ":=" exp1’], ?), ?

END

DEF check-stmt-list(stmt*,e) : Stmt* =

CASE stmt*

/<> -> <>

/stmt1 PRE stmt2* ->

(check-stmt(stmt1,e) PRE

check-stmt-list(stmt2*,e))

END

END Type-stmt

3.3 The Semantics of ASPLE

Continuation semantics is used to define the semantics of ASPLE in order to facilitate the
handling of the various run time errors, such as access to uninitialized variables, operation
overflow, attempt to read past the end of file mark; invalid input data.

3.3.1 Continuations

With the three major constructs in ASPLE, namely declarations, commands and expres-
sions, are associated the following domains of continuations: Elab-cont, Exec-cont and
Eval-cont, which are defined in the following module:

MODULE Continuations

EXPORTS

*Exec-cont, *Elab-cont, *Eval-cont, init-exec-cont, no-action;

IMPORTS

Sem-environ(Env);

Abstract-machine(State, Input, Value, Answer);

DOMAINS Exec-cont = State -> Input* -> Answer;

Elab-cont = Env -> Exec-cont;

Eval-cont = Value -> Exec-cont;

DEFINITIONS

LET init-exec-cont (state)(input*) : Exec-cont = <>

LET no-action(exec-cont) : Exec-cont= exec-cont

END Continuations

14



Notice that the internal structures of State, Value, Answer, Input and Env are
imported from the cited modules, while the domains of continuation are exported opened.

3.3.2 The Run-time Environment

The run-time environment keeps track of the association of ASPLE identifiers to the loca-
tions assigned to them in the memory of the abstract machine. Operators for “updating”
and accessing the environment are provided by SCRIPT directly. Acess to internal details
of domain Env is granted to client modules.

MODULE Sem-environment

EXPORTS

Env, initial-env;

IMPORTS

Sem-id(Id);

Abstract-machine(Loc);

DOMAINS

Env = Id -> Loc;

initial-env : Env;

DEFINITIONS

DEF initial-env = LAM id. ?

END Sem environ

3.3.3 The Abstract Machine

The abstract machine that mimics the state to state transformations which model execution
of ASPLE commands is defined by module Abstract-machine. This module encapsulates
the concepts of machine state, memory locations, storable values, input/output and final
answers. Moreover, this module provides all the required operators to handle the machine
state and to perform input/output operations.

Notice that the particular structure chosen to define the domains of states, locations,
final answers, and so forth does not affect the rest of the definition. Notably, no information
about the internal structure of these domains is used outside module Abstract-machine.
Operations are imported by other modules as needed. The following modules describes a
possible abstract machine:

MODULE Abstract-machine

EXPORTS

Answer, Loc, State, M, Value, Mode, Input,

init-state, newloc, update, content, write, read, wrong;

15



IMPORTS

Continuations(*Eval-cont,*Exec-cont);

DOMAINS

Answer = Q*; !Answers

Loc = N ; ! Locations

State = (M,Loc); ! States

M = Loc -> Value ! Memories

Value = N | T | Loc; ! Storable Values

Mode = "int" | "bool";! of printable values

Input = ?????

DEFINITIONS

DEF wrong(q)(state)(input*) : Answer = (QUOTE <"ERROR :",q>)

DEF init-state : State = (LAM loc. ?, 0)

DEF newloc(eval-cont)(state) :(Input* -> Answer) =

LET (m,last) = state

LET last’ = last PLUS 1

LET state’ = (m,last’)

IN eval-cont(last’)(state’)

DEF update(loc,value)(exec-cont)(state):(Input*->Answer)=

LET (m,last) = state

LET m’ = m{value/loc}

LET state’ = (m’,last)

IN exec-cont(state’)

DEF content(loc)(eval-cont)(state):(Input*->Answer)=

LET (m,last) = state

LET value = m(loc)

IN value NE ? -> eval-cont(value)(state),

wrong "undefined" (state)

DEF write(value,mode)(exec-cont)(state)(input*) : Answer=

LET q = CASE mode

/"int" -> LET NUMBER q’* = value

IN QUOTE q’*

/"bool"-> (value -> "true","false")

END

IN <q> CAT (exec-cont(state)(input*))

DEF read(loc,mode)(exec-cont)(state)(input*) : Answer=

CASE input*

/input1 PRE input2* ->

CASE (input1,mode)

16



/(TRUTH ?,"bool")/(NUMBER ?,"int")->

update(loc,input1)(exec-cont)(state)(input2*)

/? -> wrong("input type")(state)(<>)

END

/? -> wrong ("end of file")(state)(<>)

END

END Abstract-machine

In the module above, the state is composed of a pair (m,last), where m, the memory,
is a function from locations to storable values, and last is the last location in use.

Function newloc passes the next free location and the updated state to the given
continuation.

Function update binds a given storable value to a given location in m and passes the
updated state to the given continuation.

Function content passes the value bound to a given location in m to the continua-
tion. However, if the given location happens to be uninitialized, an error error message is
produced and the normal continuation is ignored.

Function read reads in the next value in the input file into a given location. This value
is type-checked appropriately. If it passes the consistency check, the abstract machine
state is updated and the updated state and the remainder of the input file are passed to
the continuation. Otherwise, an error message is produced and the normal continuation is
ignored.

Function write passes a given value to the continuation.
The value output is made part of the final answer produced by an ASPLE program.
Finally, wrong maps error messages to final answers.

3.3.4 The Concrete Machine

Module Concrete-machine is the run-time counterpart of module Machine-context de-
fined in the ASPLE type-checker.

MODULE Concrete-machine

EXPORTS

maxint;

DEFINITIONS

DEF maxint:N = 32767

END Concrete-machine

3.3.5 The Semantics of Programs

The domain Program of ASPLE programs is associated with the main module defined
below and the other domains are associated with other SCRIPT modules.

We have chosen to repeat the definition of the ASPLE syntactic domains in the following
modules instead of importing them from the corresponding modules of the type checker.

17



We believe that at the expense of having to write more, this approach makes the run-time
semantics more independent of the corresponding compile-time semantics, thus enhancing
readability. Recall that the consistency among the various definitions of the same domain
is automatically verified by the SCRIPT type-checker, which employs a particular kind
of structural equivalence scheme of types.

In the main module Sem-program, a given program is type-checked first via the function
check-prog and then its semantics is evaluated accordingly.

Function run maps type-checked ASPLE programs along with ! an ”input file” to final
answers. !

MODULE Sem-program

EXPORTS

Program, run ;

IMPORTS

Sem-dcl(Dcl,elaborate);

Sem-stmt(Stmt,execute);

Continuations(*Exec-cont,init-exec-cont);

Sem-environ(Env,initial-env);

Abstract-machine(init-state,Answer,Input);

Type-program(check-prog);

DOMAINS

Program = ["begin" Dcl Stmt "end"];

DEFINITIONS

DEF run(program)(input*) : Answer =

LET ["begin" dcl stmt "end"] = check-prog(program) IN

elaborate(dcl)(initial-env); LAM env.

execute(stmt)(env);

init-exec-cont(init-state)(input*)

END Sem-program

3.3.6 The Semantics of Declarations

Function elaborate processes type-checked ASPLE declarations in order to allocate mem-
ory space for the declared variables. It also binds declared variables to their assigned lo-
cations in the environment. Details about allocation of memory space are given in module
Sem-id.

MODULE Sem-dcl

EXPORTS

Dcl, Mode, elaborate;

18



IMPORTS

Sem-environ(Env)

Continuations(Elab-cont,Exec-cont);

Sem-id(Id,elaborate-id-list);

DOMAINS

Dcl = [Dcl+]

| [Mode Id+];

Mode = "bool" | "int" | ["ref" Mode] ;

DEFINITIONS

DEF elaborate(dcl)(env)(elab-cont) : Exec-cont =

CASE dcl

/[dcl+] -> elaborate-list(dcl+)env;elab-cont

/[mode id+] ->

elaborate-id-list(id+,mode)env;elab-cont

END

DEF elaborate-list(dcl*)env;elab-cont : Exec-cont =

CASE dcl*

/dcl1 PRE dcl1* ->

elaborate(dcl1)env;LAM env’.

elaborate-list(dcl1*)env’;

elab-cont

/<> -> elab-cont(env)

END

END Sem-dcl

3.3.7 The Semantics of Identifiers

Function elaborate-id allocates a memory cell for a given ASPLE variable and calls
function allocate to take care of the additional space needed for references to to the variable
as indicated in the variable’s mode.

Function elaborate-id-list is used in module Sem-dcl to allocate memory space for
ASPLE variables and to bind these variables to their locations in the environment.

MODULE Sem-id

EXPORTS

Id, elaborate-id-list;

IMPORTS

Sem-dcl(Mode);

Sem-environ(*Env,*Den);

19



Continuations(Elab-cont,Exec-cont);

Abstract-machine(new-loc,loc,update);

DOMAINS

Id = Q;

DEFINITIONS

DEF elaborate-id-list(id*,mode)(env)(elab-cont) =

CASE id*

/id1 PRE id2* ->

elaborate-id(id1,mode)(env);LAM env’.

elaborate-id-list(id2*,mode)env’;elab-cont

/<> -> elab-cont(env)

END

DEF elaborate-id(id,mode)(env)(elab-cont) : Exec-cont =

newloc;LAM loc.

LET env’ = env{loc/id}

LET exec-cont’ = elab-cont(env’)

IN allocate(loc,mode); exec-cont’

DEF allocate(loc,mode)(exec-cont) : Exec-cont =

CASE mode

/["ref" mode’] -> newloc;LAM loc’.

update(loc,loc’);

allocate(loc’,mode’); exec-cont

/"int"/"bool" -> exec-cont

END

END Sem-id

3.3.8 The Semantics of Expressions

Function evaluate evaluates ASPLE expressions in the presence of an environment and a
memory and passes value produced to the continuation. In case an overflow condition is
detected, the appropriate error message is produced.

MODULE Sem-exp

EXPORTS

Exp, evaluate;

IMPORTS

Sem-environ(Env,Den);

Concrete-machine(maxint);

Abstract-machine(Value,content,loc,wrong);

20



Continuations(Eval-cont,Exec-cont);

Sem-id(Id);

DOMAINS

Exp = [Exp "+" Exp]

| [Exp "*" Exp]

| [Exp "=" Exp]

| [Exp "#" Exp]

| [Exp "or" Exp] ! extension

| [Exp "and" Exp]! extension

| ["deref" Exp] ! extension

| [Id] | [Num] | [Bool] ;

DEFINITIONS

DEF evaluate(exp)(env)(eval-cont) : Exec-cont =

CASE exp

/[id] ->

LET loc = env(id)

IN eval-cont(loc)

/[num] -> eval-cont(num)

/[bool] -> eval-cont(bool)

/[exp1 "+" exp2] ->

evaluate(exp1)(env);LAM value1.

evaluate(exp2)(env);LAM value2.

LET n = value1 PLUS value2

IN n LE maxint -> eval-cont(n),wrong "overflow"

/[exp1 "*" exp2] ->

evaluate(exp1)(env);LAM value1.

evaluate(exp2)(env);LAM value2.

LET n = value1 MULT value2

IN n LE maxint -> eval-cont(n),wrong "overflow"

/[exp1 "or" exp2] ->

evaluate(exp1)(env);LAM value1.

evaluate(exp2)(env);LAM value2.

LET t = value1 OR value2

IN eval-cont(t)

/[exp1 "and" exp2] ->

evaluate(exp1)(env);LAM value1.

evaluate(exp2)(env);LAM value2.

LET t = value1 AND value2

IN eval-cont(t)

/[exp1 "=" exp2] ->

evaluate(exp1)(env);LAM value1.

21



evaluate(exp2)(env);LAM value2.

value1 EQ value2 -> eval-cont(TT),eval-cont(FF)

/[exp1 "#" exp2] ->

evaluate(exp1)(env);LAM value1.

evaluate(exp2)(env);LAM value2.

value1 NE value2 -> eval-cont(TT),eval-cont(FF)

/["deref" exp1] ->

evaluate(exp1)(env);LAM loc.

content(loc); eval-cont

END

END Sem-exp

3.3.9 The Semantics of Statements

Basic operations such as input/output and storing a value in the memory of the abstract
machine are carried out by calling the operators defined in module Abstract-machine

MODULE Sem-stmt

EXPORTS

Stmt, execute;

IMPORTS

Sem-environ(Env);

Sem-exp(Exp,evaluate);

Sem-dcl(Mode);

Continuations(Exec-cont,no-action);

Abstract-machine(read,write,loc,update,Value,wrong);

DOMAINS

Stmt = [Stmt+]

| [Id ":=" Exp]

| ["if" Exp "then" Stmt "else" Stmt "fi"]

| ["if" Exp "then" Stmt "fi"]

| ["while" Exp "do" Stmt "end"]

| ["input" Exp Mode] ! extension

| ["output" Exp Mode]; !extension

DEFINITIONS

DEF execute(stmt)(env)(exec-cont) : Exec-cont =

CASE stmt

/[stmt+] -> execute-list(stmt+)(env);exec-cont

/["if" exp "then" stmt1 "fi"] ->

evaluate(exp)(env);LAM t.

22



(t->execute(stmt1)(env),no-action);

exec-cont

/["if" exp "then" stmt1 "else" stmt2 "fi"] ->

evaluate(exp)(env); LAM t.

(t -> execute(stmt1)(env), execute(stmt2)(env));

exec-cont

/["while" exp "do" stmt "end"] ->

DEF exec-cont’=

evaluate(exp)(env);LAM t.

(t -> execute(stmt)(env);exec-cont’,

exec-cont)

IN exec-cont’

/["input" exp mode] ->

evaluate(exp)(env);LAM loc.

read(loc,mode); exec-cont

/["output" exp mode] ->

evaluate(exp)(env);LAM value.

write(value,mode); exec-cont

/[id ":=" exp] ->

evaluate([id])(env);LAM loc.

evaluate(exp)(env);LAM value.

update(loc,value); exec-cont

END

DEF execute-list(stmt*)(env)(exec-cont) : Exec-cont =

CASE stmt*

/<> -> exec-cont

/stmt1 PRE stmt2* ->

execute(stmt1)(env);

execute-list(stmt2*)(env);

exec-cont

END

END Sem-stmt

4 The PROJECT Module

The entire semantic definition is introduced via the following module of PROJECT type:

PROJECT ASPLE

IMPORTS

Program(run, Program);

Abstract-machine(Input, Answer);

23



DOMAINS

run := Program -> Input-data -> Answer;

Input-data = Input* ;

INFILES

Program = "prog.asp"

Input-data = "prog.inp"

OUTFILE

Answer = "prog.out"

COMPONENTS

"Minil.scr", "Program.scr", "Env.scr", "Command.scr", "Expression.scr"

END ASPLE

5 Conclusion

The semantic definition of ASPLE has been decomposed into small pieces which are more
or less independent of each other. Basic semantic concepts such as stores, environments and
continuations have been isolated into separate modules so that the choice of a particular
model for them does not affect the rest of the definition.

We have used the syntactic structure of the language being defined to guide the parti-
tioning of the definition into small modules. Each module encapsulates the details of the
definition of some domains and related functions, and makes their names and types avail-
able for use in other modules. This partitioning of the definition into syntactic modules
corresponds to common practice.

We claim that such a partitioning of a denotational definition produces satisfactory
results in the sense that the interfaces among the various modules are kept reasonably
small.

Except for the emphasis we have placed on the use of the language’s abstract syntax
as one of the criteria to organizing denotational definitions, our approach is very similar to
the CLEAR-OBJ approach of Goguen, Burstall and Parsaye [GOGUEN 77a, GOGUEN
80] and to Mosses’ theories approach [MOSSES 79]. In essence, all of these approaches
share the same underlying ideas proposed by the data abstraction methodology.

In fact, the basic differences are not in the methodology proposed but in the style of
presentation of semantic descriptions. In the first place, we work with explicit definitions of
data types and their related operations, while Goguen, Mosses, Burstall and Parsaye have
favored implicit specifications of theories and abstract data types. Second, SCRIPT has
more expressive power than CLEAR and OBJ in terms of modularization capabilities
because SCRIPT allows definition of cyclic graphs of modules. Note that the restriction

24



imposed by CLEAR or OBJ that only acyclic graphs of modules can be specified may force
the definer to deviates from the most natural module organization.

Although SCRIPT is an object oriented functional language, the important mecha-
nisms of inheritance and dynamic binding have not been used in the definition of ASPLE.
A new methodology that will bring denotational to the realm of object oriented paradigm
is certainly in order.

25


