Universidade Federal de Minas Gerais
Instituto de Ciéncias Exatas
Departamento de Ciéncia da Computagao

Laboratério de Linguagens de Programacao

A Self-Applicable Partial Evaluator for ASM
by

Vladimir O. Di Iorio
Roberto S. Bigonha
Marcelo A. Maia

LLP 011/99

Caixa Postal 702
30.161-970 - Belo Horizonte
Minas Gerais - Brazil
September 1999

Abstract

This paper presents an offline partial evaluator for Abstract State Machines.
In order to allow specialization of ASM programs containing user-defined func-
tions (derived functions), the implementation combines techniques from partial
evaluation of imperative and functional languages. Self-application of the partial
evaluator is possible by means of a simplified version written in ASM itself. Us-
ing self-application, we have generated compilers for small languages from their
interpreter definitions. We also present techniques for describing the semantics
of programming languages in a way suitable for partial evaluation.

1 Introduction

A partial evaluator is an algorithm that, when given a source program and part
of its input, produces a new program designated as specialized program [9]. The
specialized program, when given the rest of the input, yields the same result that
the original program would have produced with the entire input. Efficiency is
an important goal in this process, so it is expected that the specialized program
runs faster than the original one.

Abstract State Machines are a formal specification method created by Yuri
Gurevich with the goal of simulating algorithms in a direct and coding-free
way [6]. ASM has been often used to describe the semantics of programming
languages [7,12,2]. The description usually consists of an interpreter for the
programming language. Specializing the interpreter with respect to a source
program yields an specific ASM for that program.

Huggins and Gurevich presented an offline partial evaluator for ASM in [§],
which allows the specialization of conditional instructions and update blocks.
This paper presents a partial evaluator that extended that work mainly in two
aspects: it also allows the specialization of user-defined functions (derived func-
tions [3]) and the self-application is possible, due to a version of the partial
evaluator written in ASM itself. In addition, this paper presents some sugges-
tions on how to describe the semantics of programming languages in ASM, in a
way suitable for partial evaluation.

Derived functions are a mechanism to define functions by giving an expres-
sion to calculate them. This definition can be recursive, but side effects are not
allowed. The implementation of partial evaluation of derived functions required
the use of techniques for specialization of functional programs.

It is possible to compile by partially evaluating an interpreter with respect
to a source program, yielding a target program written in the partial evalua-
tor’s output language. Partially evaluating a partial evaluator (self-application)
with respect to an interpreter yields a compiler. This is possible if the partial
evaluator and its input are both written in the same language. One can describe
the semantics of a programming language by defining an interpreter for it, so
self-application makes semantics-directed compiler generation possible. We have
implemented a simplified version of the partial evaluator in ASM. Specializing
the simplified version with respect to interpreters for small languages, we have
generated compilers from those languages to ASM.

When describing the semantics of programming languages in ASM, important
concerns are correctness and readability [7,12,2]. The interpreters are provided
on several abstraction levels which make them easier to understand, but they
are usually not suitable for partial evaluation. Without loss of readability, we
propose small changes to these descriptions in order to achieve much better
specialization results.

This paper is organized as follows. In section 2, we discuss the formal back-
ground for compiler generation by means of partial evaluation and its limitations
and drawbacks. In section 3, the techniques used to implement our partial eval-
uator for ASM are presented and illustrated with examples. In section 4, we

discuss techniques that can make the description of the semantics of program-
ming languages more suitable for partial evaluation. We present some results
of self-application of the partial evaluator in section 5. Section 6 contains the
conclusions and a discussion about future work.

2 Partial Evaluation and Compiler Generation

An offline partial evaluator consists of two phases. The first one is called binding-
time analysis (BTA) [9], in which all objects and structures are classified either
as static or dynamic, according to their relationship with the static (known)
and dynamic (unknown) parts of the input. In the second phase the actual
program specialization takes place, making use of the static inputs to the extent
determined by the previous phase. The static structures are computed, and code
is generated for the dynamic ones.

A partial evaluator performs a mixture of execution and code generation
actions. This is the reason why Ershov called the process “mixed computation”
[4], and the partial evaluator is usually called mix.

If P is a program written in a language L, we will use [P], to denote its
semantics. Futamura was the first researcher to suggest compiler generation by
self-application of a partial evaluator [5]. Therefore, the equations describing
compilation, compiler generation and compiler generator generation are called
the Futamura Projections. Suppose that int is an interpreter for a language Ly,
written in a language S:

target = [mix], (int, source) (1)
compiler = [mix]|; (mix, int) (2)
cogen = [mix|, (mix,mix) (3)

Equation 1 shows that compilation can be achieved by partial evaluation of
an interpreter, with respect to a specific source program. The language of the
programs submitted to the partial evaluator mix is S (input language), which is
usually also the language of the programs produced by mix (output language).
The partial evaluator mix is written in L (implementation language).

Equation 2 shows compiler generation by self-application of mix, specialized
with respect to a specific interpreter. In this case, a compiler from L;,; to S
is generated. This way of performing compiler generation requires that mix be
written in its own input language, i.e., that S = L.

In a partial evaluator for ASM the input language S is the ASM language.
Our partial evaluator was implemented in Java, while that presented by Huggins
and Gurevich was implemented in C. Let mix; be our partial evaluator. To
achieve the results of equation 2, we have built mix, in ASM language, which
is a simplified version of mix; implementing only the specialization phase of an
offline partial evaluation method. The simplification is highly desirable in this
case, otherwise the result of applying mix; to mixs would be time-consuming
and generate longer and more inefficient programs.

As mixs does not implement the binding time analysis phase, its inputs are
an annotated program P,, and the static inputs of P,,. The annotations define
the static and dynamic structures of the program, established by an external
BTA process, previously executed. To achieve compiler generation, we partially
evaluate mixs with respect to a specific interpreter:

compiler = [mix;] (mixs, intyy)

The annotated program is submitted to mixs in an abstract syntax tree for-
mat [1], so that mix, does not have to worry about syntax. Since the structures
used to implement mix; have been also used to generate P,,, only little addi-
tional code has been necessary to implement the annotated program generator.

We present mix, in section 5, where we discuss implementation issues and
evaluate the results of applying the self-applicable partial evaluator to small
interpreters. We have not investigated the application of equation 3 yet.

3 A Partial Evaluator for ASM

In this section, we present the techniques used to develop an offline partial evalu-
ator for Sequential ASM. The language includes update instructions, conditional
commands and also user-defined functions. First, we show a small difference be-
tween the language we deal with and that of [3]: a new command named stop,
used to interrupt the program execution. In some ASM implementations the
program execution stops when no update is executed after firing the transition
rules, but we decided to use this command for efficiency reasons.

The command stop can be easily translated into pure ASM. Let A be an
ASM with vocabulary 7" and transition rule R containing stop. Let fstop ¢ 1"
be the name of a new basic function. The ASM A’ with vocabulary Y U{fstop},
where fstop is initialized with false, and transition rule “if not fstop then
R' endif” has the same semantics as A, if R’ results from the replacement of
every command stop in R by “fstop := true”.

3.1 Binding-Time Analysis (BTA)

The partial evaluation process starts with the definition of what parts of the
input are static, i.e., known in advance. The terms static and dynamic have dif-
ferent meanings in ASM, so we will follow Huggins and Gurevich’s suggestion to
use positive instead of static and negative instead of dynamic. Our ASM inter-
preter offers predefined functions to do input and output, and the programmer
can use annotations to define what parts of the input will be considered positive.

The purpose of the BTA phase is to classify all functions as either positive or
negative, according to their relationship with the input. Then it classifies each
command and function application, generating an annotated program that will
be used in the subsequent phases.

Binding Time Identification We have implemented an algorithm similar to
that used in [8] to compute the division of functions into positive and negative:

1. Input is done via an input file with a finite number of primitive values.
The program gets these values using a predefined function input (intval),
where intval is an integer representing a position within the input file. The
user indicates which positions are negative and which are positive. Initially,
only the references to the predefined input function are classified as positive
or negative, according to the user annotations. All other functions are left
unclassified.

2. A function f is classified as negative if there is an ASM update rule f(¢) := to
such that ¢ or ¢y references a negative function. Both ¢ and ¢y may depend
on derived functions. If, for all updates, every reference in ¢ and tg is positive
and f is not already negative, it is classified as positive.

A derived function f has the following format:
derived function f (param,, ..., param,) = expression

where expression contains references to the formal parameters and possibly
recursive invocations of f. Each invocation of f is classified as positive or negative
according to the classification of the expressions used as parameters.

The second step of the algorithm is repeated until a fixpoint is reached.
All remaining unclassified functions are classified as negative. Then this step is
repeated until reaching a fixpoint by the second time.

It is important to classify a sufficient number of functions as negative to
ensure finiteness of the specialization algorithm, but classifying more negative
functions than necessary leads to poor specialization. The problem of finding an
optimal division is not computable [9].

The classification algorithm above does not handle circular dependencies.
The following example, borrowed from [8], illustrates this problem. Consider the
following transition rules:

if Num > O then Num := Num + 1 endif
if MyList # Nil then MyList := Tail(MyList) endif

Supposing that the initial values of Num and MyList are known, there is no
problem in classifying MyList as positive. But classifying Num as positive will
lead the specialization algorithm into an infinite loop, because the number of
different values Num can assume is infinite and the specialization algorithm tries
to generate code using each one of them.

We treat circular dependencies in a way similar to that of [8]. We classify as
positive the functions that depend only upon themselves in a bounded manner.
For example, MyList will eventually be reduced to Nil and remain at that value.
We apply the same criteria to classify as positive the derived functions that
depend upon themselves (recursive) in a bounded manner.

For our division algorithm is not very sophisticated, we allow users to help
the classification of functions with annotations. We intend to eliminate this pos-
sibility in the future, building a totally automated process.

Generation of the Annotated Program All expressions and commands are
also classified as either positive or negative, generating an annotated program.
This process is performed observing the following situations:

— a reference to the predefined input function is classified as positive or neg-
ative according to the user annotations. It is the beginning of the entire
classification process;

— output is implemented by an output (expression) command. It is always
classified as negative;

— a term f(¢) is classified as negative if any of the terms in ¢ is negative; it is
positive if all terms in ¢ are positive and f is not already negative;

— an update command f(t) := t, is negative if f is negative, and is positive if
f is positive;

— aconditional command if (condition) then ... isnegativeif the boolean
expression condition is negative, and is positive if condition is positive;

— the command stop is always classified as negative.

When the classification algorithm ends, the entire program is annotated. The
last step consists of producing different versions of the user-defined (derived)
functions, according to the classification of the expressions used as parameters
in each invocation.

An invocation of a derived function f inside the transition rules of the pro-
gram has the format £ (exp;, ..., expg), where each exp;, 1 < i < k, was
already classified either as positive or negative. Let (S1, ..., Sg) represent the
classification of those expressions, where S;, 1 < i < k, is either positive or nega-
tive. A different version of f is generated for each different tuple (S;, ..., Sg),
and the structures inside the derived function expression are classified according
to these values. Each invocation of f is translated into an invocation of one of
the new versions produced.

At the end of the BTA phase, the set of functions referenced in the program
was divided into positive and negative, and an annotated program is produced.
The annotated program contains one or more versions of each derived function,
according to the process described above.

3.2 Pre-Processing

In [8], a pre-processor performs some transformations over the original program,
in order to make the specializer simpler. These transformations increase the
program size, possibly exponentially. At the end of the process, the program is
represented as a binary tree, where leaves are update blocks and internal nodes
are boolean guards.

We have decided to postpone the pre-processing of the program until after
the BTA phase. The information produced by that phase is used to minimize
code expansion. In the sequel, we explain how transformations are performed.

In each block, all rules are reordered so that all conditional commands lie at
the end of the block. If there are at least two conditional commands in the block,

the last one is removed and inserted simultaneously into the THEN and ELSE
clauses of one of the other conditional commands. This process is recursive and
is repeated until all blocks contain at most one conditional command. At the
last recursion level, a special dummy command is inserted into each block. This
command will be used later by the specializer to indicate the generation of a new
state. Only blocks containing a stop command will not have a dummy inserted,
because they will not generate new states during specialization.

An important difference between our algorithm and that of [8] is that we
avoid many duplications of update instructions. In our algorithm, the innermost
blocks contain a special dummy command indicating the generation of a complete
state, while in [8] they contain all possible update instructions. The purpose of
the dummy command will be clear when we discuss the specializer algorithm in
the next section.

We also avoid the duplication of some conditional commands, with the help
of BTA information. A positive conditional command whose clauses contain only
update instructions is not duplicated, avoiding, in some cases, the code expansion
imposed by the algorithm above. One might argue that this is not a very frequent
case, but our experience with interpreters for programming languages written in
ASM has shown the opposite.

3.3 Specializer

Specialization is executed over the program produced by the pre-processor. Let
Fp be the set of functions classified as positive. The specializer works on an
ASM Ay, whose vocabulary is restricted to F'p, trying to establish all possible
states which are reachable from the initial state.

The initial state is represented by the initial values of the positive functions.
In each iteration, the entire program is analyzed. Code is generated for the neg-
ative structures, and positive update instructions generate new states. Each new
state is processed, producing an associated code and generating more states,
which may have been already processed. This procedure ends when all possi-
ble states have been processed. The way BTA has been done ensures that the
procedure will eventually end, unless there is an infinite loop produced by the
positive functions.

To generate the code associated with a state and define the new states to be
generated, each transition rule of the program is processed in the following way:

If the rule is a block, each command in the block is processed.
— A positive update command adds an update to the set of current updates.
A negative update command f (t) := tp generates code for an update in-

struction with all positive information within # and to computed.

In a positive conditional command, first the condition is evaluated. If it is
true, the THEN clause is processed, otherwise the ELSE clause is processed.
A negative conditional command generates code for a conditional command
where all positive information of the condition expression is computed and
the THEN and ELSE clauses are processed. In this case, however, the set of

current updates is duplicated. A copy of this set will be used when processing
the THEN clause, and the other, when processing the ELSE clause.

— Commands stop and output simply generate code for themselves. All the
positive information in the output expression is computed.

— A dummy command indicates the point where all updates that build a new
state have already been processed. All registered updates are fired at the
current state, in parallel, and a (possibly new) state is generated. The gen-
erated code is a dummy command together with information that references
the generated state, as we will show soon.

Let k be the number of different generated states. After all states have been
processed, a set of rules {Ry, ..., R;} has been generated, each associated with
a different state. Suppose that R; was produced when processing the initial
state. Each dummy command inside R; contains a reference to one of the states,
describing which are the possible rules to be executed in the next step. The
dummy command defines the dynamic flow of control and could be translated
into a goto, if the language had such a command.

Let pe_flag be a function name that does not belong to the vocabulary of
the original ASM submitted to the partial evaluator. Each command dummy is
replaced by pe_flag := i, where ¢ is the state referenced by it. The final program
has the following format:

Initial values:

pe_flag := 1
Transition rules:

IF pe_flag = 1 THEN R,

IF pe_flag = k THEN Ry

The specialization of the derived functions demands other procedures. Sup-
pose that f is a derived function used inside the transition rules of the pro-
gram. During BTA, one or more annotated versions of £ have been generated.
Let {fy,...,f,} be this set of annotated versions. For 1 < i < n, suppose
that the number of £; parameters classified as positive is Ny, and build a tuple
(p{i . ,pf{',fi) with these parameters. The invocations of f; inside {Ry,..., R}
are used to identify all possible different values for this tuple. Each different
tuple value originates a new specialized version of f;.

As we have shown, the specialization of derived functions is carried out in
two steps, generating two levels of specialized versions. We have used indexes
to identify each version, so when a derived function f is residualized in the final
program, its name usually has the format f_i_j, where 7 and j are indexes used
for identification.

3.4 Optimizations

The code generated by the specializer is usually very inefficient, there are many
opportunities for code optimizations. Some of them were implemented in [8] and
also in our partial evaluator.

A rule with the format
if pe_flag =i then pe_flag :=j

can be deleted, if all references to state i are replaced by j. Another important
optimization is combining the code of two rules that would be executed consec-
utively, but whose codes can be executed simultaneously without altering the
semantics of the program.

The two optimizations listed above are usually known as transition compres-
ston, what, in some imperative languages, would mean elimination of redundant
gotos. We have decided to do transition compression on the fly, i.e., during the
specialization process, instead of doing it as a separate phase after the whole
residual program has been generated. Although the strategy chosen is a little
bit more complicated, it can be much more efficient, due to the great number
of superfluous rules that are usually generated by the specialization process.
Another good reason to choose this strategy is that it improves the results of
self-application significantly [9].

The number of residualized derived functions is also usually very high. In
many cases, the function is residualized as a simple expression, without recursive
calls. In these cases, each function call is replaced by the associated expression,
with the correct values substituted for the parameters. The function definition
does not appear in the final code.

Suppose that a negative function f with arity n is always used with posi-
tive information for its k-th parameter, 1 < k < n. The residualized functions
associated with f will have arity n — 1, and the positive values will be used to
build the names of the new functions. For example, if the first parameter of a
negative function func is always positive, a call func("key”,x) will be resid-
ualized as func key (x). If the values of the parameters are not appropriate to
build names, a different integer number is associated with each different value,
and this number is used to build the new function name. This process can be
extended to multiple positive parameters. The partial evaluator will use as many
positive parameters as possible.

Other simple optimizations have been implemented. Some of them use also
online information.

3.5 A Turing Machine Semantics

We will show a very simple example of specializing an interpreter with respect to
a specific source program, which we have borrowed from [9]. More sophisticated
examples are treated in section 4. From now on, we will use [e; e ... e,] to
denote a list with n elements. The associated operations on lists are car, cdr,
and isnull. The empty list is [] or null.

Consider a version of the Turing Machine with alphabet {0,1,undef} and
a program [IpI; ...I,], where each I;, 0 < i < n, is one of the following
instructions: right, left, write a, goto i, if a goto i, stop. The machine
has a tape head indicating the current scanned tape cell. The semantics of the

instructions are: write a changes the scanned cell to a, right and left move
the tape head, if a goto i causes the next instruction to be I; if the scanned cell
contains the value a, goto i is an unconditional jump, and stop interrupts the
program execution. The instructions are executed in sequence, unless a jump is
executed.

The following TM program changes the first 0 it finds in the tape to 1, or
goes into an infinite loop if no 0 is found:

0: if 0 goto 3
1: right
2: goto O
3: write 1
4: stop

Next, we show the ASM transition rules which implement an interpreter to
the language described above. Suppose that the machine tape is represented by
function tape. The program instructions are fetched by functions code, pari
and par2 such that, when given the instruction number, return the code, the
first parameter and the second parameter of the instruction, respectively. The
number of the current instruction is represented by pc and the tape head is
represented by head:

IF code(pc) = ”GOTO” THEN
pc := parl(pc)
IF code(pc) = ”IFGOT0O” THEN
IF parl(pc) = tape(head) THEN
pc := par2(pc)

ELSE
pc :=pc +1
IF code(pc) = "WRITE” THEN BEGIN
pc :=pc +1
tape(head) := parl(pc)
END
IF code(pc) = "LEFT” THEN BEGIN
pc = pc + 1
head := head - 1
END
IF code(pc) = "RIGHT” THEN BEGIN
pc :=pc +1
head := head + 1
END
IF code(pc) = ”STOP” THEN
STOP

Suppose that this interpreter is submitted to the partial evaluator, to be
specialized with respect to the TM program given in this section. The BTA
phase will classify pc, code, parl and par2 as positive, while tape and head
will be classified as negative. The functions pc and head are examples of the

special BTA case described in section 3.1. A code analysis shows that pc depends
upon itself in a bounded way, and so it is classified as positive. On the other
hand, head can assume an infinite set of different values, and so it is classified as
negative. The result of the specialization is showed next. We have omitted the
initialization code.

IF tape(head) = O THEN BEGIN
tape(head) := 1
STOP

END

ELSE head := head + 1

The function pe_flag used in section 3.3 defines an order of execution for
the set of rules. In the example above, the transition compression reduced the
number of rules to 1, so pe_flag was not necessary. The code shown above is
exactly that produced by the partial evaluator.

4 Interpreters Suitable for Partial Evaluation

We have assumed in section 3.1 that the BTA division of the functions into
positive and negative is unique and remains the same during the whole special-
ization process. This is called an uniform division [9]. For most small programs,
an uniform division is enough to guarantee good specialization results, but for
larger programs it is sometimes overly restrictive, as we will show soon.

The description of the semantics of programming languages in ASM usually
consists of an interpreter for the language, written in ASM. Most times, the
interpreter is large enough to make the uniform division of the functions in a
specialization process lead to poor results.

In this section, we will show two examples with a description of a program-
ming language. The first one involves the description of C, and we discuss prob-
lems related to the function return mechanism. The second example involves the
description of a subset of Java, and we discuss problems related to polymorphism.
A direct approach to treat the function return mechanism and polymorphism
make the uniform division be unsuitable for a good specialization. We show how
small changes in the description can lead to good specialization results, even
using an uniform division.

4.1 First Example: Function Return in C

In the example showed in section 3.5, all structures related to the TM program
were classified as positive, so none of them appeared in the residualized program.
We will consider now an interpreter for a more sophisticated language, with
definition of recursive functions.

The description of the semantics of the C programming language presented
in [7] includes the definition of C recursive functions. An ASM function CurTask
plays a role similar to pc in the example of section 3.5: it indicates the current

task to be performed. From now on, suppose that the interpreter for the C
programming language is specialized with respect to a specific source program.
It is desirable that CurTask be classified as positive, so compiling from C to
ASM can achieve results similar to that of section 3.5.

C functions may have several active incarnations at a given moment. In [7],
the next task to be performed after a function returns is stored in a stack. This
is implemented by the following ASM commands:

ReturnTask(StackTop+l) := CurTask
StackTop := StackTop + 1

where StackTop represents the top of the stack and ReturnTask will indicate
the new value of CurTask when the execution of the current function terminates.
These commands are executed immediately before the flow of control is trans-
fered to the function body. The set of values StackTop can assume is infinite,
so BTA will classify it as negative, and consequently ReturnTask will also be
negative.

When the execution of the current function terminates, the next task to be
performed is on the stack. CurTask is updated with this value. The following
ASM commands are part of the semantics of the C return statement, that
terminates a function execution:

CurTask := ReturnTask(StackTop)
StackTop := StackTop - 1

The first update above will make BTA classify CurTask as negative, creating an
undesirable situation.

A solution for the problem above is to use a pointwise division in BTA [9].
In a pointwise division, functions can receive different classifications in different
points of the program submitted to the partial evaluator. CurTask could be
classified as negative in the few points where it is necessary, and positive in the
rest of the program. The annotations in the program produced after BTA would
suffer some changes, and the implementation of the specializer would be a little
bit more complicated.

Neither our partial evaluator, nor the one presented in [8] implements point-
wise division. We intend to add this possibility in the future, but we want to
show here that it is still possible to achieve good specialization results with an
uniform division. All that is necessary is to change slightly the C interpreter.
The changes we propose will make BTA classify CurTask as positive, even in an
uniform division.

Let f be a C function in a program P submitted to the C interpreter. The
places where f is called inside P are all known before the execution of the pro-
gram starts. It is an information that depends only on P, so a list [tg t1 ... ty)
of the possible next tasks after f returns can be computed before the execution
of P starts. Let ListRetTasks be an ASM function that associates a function
name with the list of its possible next tasks after returning. In this case, we would
have ListRetTasks ("f”) = [t t1 ... t,]. The function whose execution is ter-
minated by each C return statement is also known before the program starts.

Let NameFuncReturn be an ASM function that represents the name of such C
function. Part of the new code for the semantics of the C return statement is
showed next:

if CurListRet = undef then
CurListRet := ListRetTasks(NameFuncReturn)

else if ReturnTask(StackTop) = Car(CurListRet) then begin
CurTask := Car(CurListRet)
StackTop := StackTop - 1

end
else
CurListRet := Cdr(CurListRet)

We have used the ASM function CurListRet to store the current list of the
possible next tasks. We assume that ListRetTasks is well built, so it is not
necessary to include code to treat the case where CurListRet becomes empty.

Note that now CurTask is updated with values from CurListRet. The func-
tion ListRetTasks will be classified as positive because it depends only on static
information from the source program P. Therefore CurListRet and CurTask will
also be classified as positive. The residualized code will consist of a sequence of
conditional commands, each testing a possible value for ReturnTask (StackTop):

if ReturnTask(StackTop) = tp then begin
{ code resulted from specialization with CurTask = ¢, }
StackTop := StackTop - 1

end
else if ReturnTask(StackTop) = t; then

In [7], the semantics of the C programming language is specialized with re-
spect to the C function strcpy. To achieve the good results showed, only a part
of the semantics of C is considered. The partial evaluator is given an interpreter
that does not describe the semantics of function call and return and automatic
variables. Using the techniques described in this section, we have been able to
specialize the entire semantics of C.

4.2 Second Example: Polymorphism in Java

We have made some experiences with the description of the semantics of a small
subset, of Java. Our description includes creation of objects and implementation
of polymorphism.

Suppose that C7; and Cy are Java classes, where C5 is a subclass of (.
Suppose that both classes have a function £ with the same signature:

int £();

Let x be an object reference of class C7. In the following function call, it is
not possible to know in advance which f version is invocated:

int i = x.f();

It depends on the class of the object referenced by x in the moment of the call.
The object referenced by x, in this case, can be either of class C; or class Cs. It
is an information available only at execution time.

The following Java command creates an object of class C> and associates an
object reference of class C to it. We do not consider object initialization yet:

Clx = new C2();

When an object is created, memory is allocated to store its value. The object
reference x is updated with the memory address of the newly created object.
Information to associate this memory address with class C is also stored.

As in last section, let CurTask be an ASM function to represent the current
task to be performed. In a function call, CurTask must be updated to the first
task inside the function body. Let FuncFirstTask indicate the first task of a
function, when given the name of that function and the class the function is
associated to. In the function call x.f(), f is associated to object reference x.
So it is necessary to first discover the class of the object referenced by x.

Let Obj_to_Class be an ASM function that associates an object (represented
by a memory address) with a Java class. Let CurFunc be the name of the function
in the current function call, and let CurObj be the object reference associated
with it. Finally, let Memory indicate the value stored in a given memory loca-
tion. In a function call associated with an object reference, the following ASM
command updates CurTask with the first task inside the function:

CurTask := FuncFirstTask (CurFunc, Obj_to_Class(Memory(Cur0Obj)))

Memory stores the values of the Java objects during execution. If the Java
interpreter is specialized with respect to a source program, BTA will classify
Memory as negative. The ASM command showed above will make BTA also
classify CurTask as negative. As we have discussed in the last section, this can
lead to poor specialization results.

We can use the trick of the last section to make BTA classify CurTask as
positive, even in an uniform division. The information about object references
and class hierarchy depends only on the source program. The object reference
x belongs to class C, so it can be associated, during execution, to an object of
class C; or Cs.

Suppose that CurListClassesis initialized with a list containing the possible
classes associated with the current object reference. In the example discussed,
CurListClasses = [C; C3]. The classes can be represented by their names, for
example. The following ASM rules define a different way to update CurTask:

if Obj_to_Class(Memory(CurObj)) = Car(CurListClasses) then
CurTask := FuncFirstTask (CurFunc, Car(CurListClasses))
else
CurListClasses := Cdr(CurListClasses)

BTA will classify CurListClasses as positive, because all the information
necessary to build it depends only on the source program. So CurTask will also
be classified as positive. The residualized code will be a sequence of conditional
commands. For example:

if Obj_to_Class(Memory(”’x”)) = C; then
CurTask := FuncFirstTask ("f”, C})

else if Obj_to_Class(Memory(”x”)) = C> then
CurTask := FuncFirstTask ("f”, C))

We have made some simplifications in the code above. For example, the value
associated with x would also depend on the environment.

5 Self-Application of the Partial Evaluator

As discussed in section 2, we have built a simplified version of our partial eval-
uator in ASM itself. We have called the main partial evaluator mix;, and the
simplified one has been named mix,. Good results on self-application of a partial
evaluator have become possible only after offline methods have been developed.
Dividing the process into BTA and specialization phases, it is possible to submit
to the partial evaluator a simplified version that performs only the specialization
phase. This is what we have done in mixs,.

Programs are submitted to mixs in an abstract syntax tree format. First,
they are pre-processed as described in section 3 and receive BTA annotations.
The same pre-processor and BTA procedures implemented to be used in mix;
are also used to generate the transformations and annotations for the mixs in-
put program. The generation process of the abstract syntax tree format is also
automated.

We have made some experiences with compiler generation by means of self-
application of the partial evaluator. The simplified version mixs is specialized
with respect to an annotated interpreter int,, for a language L;,;, yielding a
compiler from L;,; to ASM:

compiler = [mix;] (mixs, intyy)

The compiler is an ASM program that receives as input a program P written in
Lin: and produces another program, written in ASM, with the same semantics
of P.

In this section, we describe how the simplified partial evaluator works and
present some results of compiler generation using it. First, we show a brief de-
scription of the format of the programs submitted to mix,.

5.1 Input Programs

Lists are used to represent the abstract syntax tree format of the programs sub-
mitted to mixs. Programs are divided into three sections: function declarations,

initialization and transition rules. These sections are represented by lists of dec-
larations and commands. Each command, declaration and function application
is also represented by a list, whose first element denotes its binding time: ”+”
for positive and ”-” for negative. Next, we show a small example of the adopted
format.

In the ASM program of section 3.5, the command

pc:=pc+1

would be represented as

[’+” ”update” "pc” null
["func” ”+” "plus” [
[77func77 7’+7’ 7’pc7’ null]
[int? 1]
1]
]

An update command has the format

[signal ~7update” fname listexp expression]

where signal denotes the binding time associated, fname is the name of up-
dated function, listexp is the list of parameters and ezpression is the value to be
calculated. A function application has the format

[7func” signal fname listexp]

This format is used in any function application, including those which have an
empty list of parameters (for example, the ASM function pc).

In the example above, the ASM function pc has been classified as positive
by the BTA phase. Annotations have been added to indicate that the update
command and the function applications are also positive.

5.2 Inside mix,

The simplified partial evaluator performs only the specialization phase, analyzing
each command and following strictly the associated annotations. In this section,
we describe how mixy behaves while processing the three sections of its input
programs: function declarations, initialization and transition rules.

When mixs finds a positive command, it behaves like an ASM interpreter.
All the information is computed according to ASM semantic rules. The simpli-
fied partial evaluator needs a complete ASM interpreter to compute the posi-
tive structures. So, before implementing mixs, we have first built an ASM self-
interpreter, i.e., an interpreter for ASM written in ASM itself. In section 6 we
discuss how this self-interpreter has been used to evaluate the performance of
the main partial evaluator.

Function Declarations The first task in mixs is to determine the list POS
of positive functions used to build the different states. This task is performed
while mix, process the function declarations of the input program. If a function
is not updated after initialization, its value remains the same in all states, so it
does not have to be considered in POS, even if it is positive. In the example of
section 3.5, the only positive function that is updated by the transition rules is
pc, so POS = ["pc”].

Code is generated for the declarations of negative functions. The residualized
declarations have exactly the same format of the input program, except for the
annotations. All derived functions are residualized, because mix, does not treat
specialization of derived functions yet. We are working now to introduce this
feature.

Initialization An ASM function FVal is used to store all information related
to the functions used in the input program. FVal associates a function name and
a list of values to another value. Using the example of section 3.5, Tape(1) = 0
would be represented by mix, as FVal(”Tape”, [1]) = 0. As FVal is used to store
the function values, it is classified as negative. The simplified partial evaluator
is built in such a way that the first parameter of FVal is always positive, so
a function call FVal(”Tape”,[1]) will be residualized as FVal Tape([1]). This
transformation was described in section 3.4.

The initial values of the functions are defined by update instructions in the
initialization section. Code is generated for the initialization of negative func-
tions, and the initial values of the positive functions are computed. Using POS,
the initial state for the specialization process is built.

The simplified partial evaluator keeps all states produced during the special-
ization process in a table, which is represented by an ASM function designated
as pe_states. Fach state is represented by a list of values, associated with the
functions listed in POS by their positions. In the example of section 3.5, the
initial state would be the list [1], which means that initially pc has value 1.

Transition Rules An ASM function pe_index indicates which of the states of
the pe_states table is the current state being processed. The transition rules
are analyzed, with all positive information computed using the values of the
current state. The process is very similar to that described in section 3.3, where
the specialization algorithm of mix; is showed.

Positive updates are registered in a set of current updates. A negative condi-
tional command makes the set of current updates be duplicated and used when
processing the THEN and ELSE clauses. The dummy commands indicate that
a (possibly new) state will be built by firing the set of current updates at the
current state. The code generation for the negative structures is also similar to
that of mix;, but the code is generated in an abstract tree format, the same used
for the input program.

The new states produced are inserted in pe_states. An ASM function pe_last
indicates the last position of the pe_states table. The process stops when
pe-index = pe_last.

Most of the optimizations presented in section 3.4 have not been implemented
in mix, yet.

5.3 Compiler Generation

As we have stated before, the simplified partial evaluator still has some limita-
tions. It does not specialize derived functions and most of the optimizations of
mix; have not been implemented yet.

We are working in order to build a version of mix, that is equivalent to the
specialization phase of mix;. Supposing that int is an interpreter for a language
Ly and source is a program written in this language, the following result can
be accomplished, if the two specializers are equivalent:

compiler = [mix];,,, (mixz, intennotated) (4)

[compiler],q,, (source) = [mix;],, (int, source) (5)

The left hand side of equation 5 is the result of compiling source to ASM
with the compiler generated by self-application of the partial evaluator. The
right hand side is the result of compiling by means of partially evaluating an
interpreter with respect to a source code. The right hand side of equation 5 will
produce better results until optimizations are introduced in mixs.

The discussion above is related only to the quality of the code generated by
compiler. Other important issues are the size of the compiler generated with
self-application and its efficiency (how fast it generates code). These properties
are affected by the optimizations present in mix; and the way mix, is built. The
examples of section 4 showed how appropriate changes in a program can lead to
much better specialization results.

Because of the restrictions discussed above, we have only made compiler gen-
eration experiences with simple interpreters until now. The compiler generated
by specializing mixs with respect to the Turing Machine interpreter is more than
six times longer than the interpreter itself. In average, running a TM program
compiled using this compiler is three times faster than interpreting the same
program with the TM interpreter. The quality of the code generated by the
compiler is worse than that generated by specializing the interpreter, specially
because the lack of transition compression optimizations in mixs,.

We have also made some experiences with other small interpreters, specially
the description of a small subset of C. The results produced have been similar
to those described above.

The simplified partial evaluator mix, has been built in such a way that im-
plementing transition compression is not a hard work. We intend to do this soon,
improving the quality of the generated code. We expect that small changes in the
code of mixs will lead to compilers not so long. After implementing specialization
of derived functions, we will make experiences with more complex interpreters,
for example, the entire semantics of the C programming language and Java.

6 Conclusions and Future Work

In order to evaluate the performance of a partial evaluator, a self-interpreter test
is suggested in [9]. Suppose that an interpreter for the partial evaluator’s input
language S is written using the same language S. Specializing this interpreter
with respect to a program P must yield the same program P, if the partial
evaluator is powerful enough to remove all interpretational overhead.

As described in section 5.2, we have built a self-interpreter for ASM. The
self-interpreter has been specialized with respect to many long ASM programs.
The residualized programs produced have been exactly the same given as input,
except for some function renaming.

Results similar to those presented in section 3.5 have been achieved with more
complex languages. Compilation by means of partial evaluation of the entire
semantics of C and a small subset of Java have produced very good results. To
accomplish this, the techniques presented in section 4 have played a fundamental
role.

The main weakness of the partial evaluator developed is the BTA phase.
The algorithms we have used are not very sophisticated, so user annotations
are sometimes needed. We intend to improve BTA soon, adding to it even the
possibility of a pointwise division of the functions.

We have considered the results of the self-interpreter test and compilation
by means of the First Futamura Projection very good. On the other hand, the
simplified partial evaluator mixs built for self-application is still very simple. As
stated in section 5, our plans include adding a lot of new features to mixs soon,
namely: specialization of derived functions, transition compression and other
optimizations. Then we will be able to apply the Second Futamura Projection
to more complex languages. The simplified partial evaluator is the first step on
developing a work on semantics-directed compiler generation using ASM and
partial evaluation. The Third Futamura Projection (compiler generator genera-
tion) will be considered later.

Partial evaluation of concurrent and parallel programs may be a great source
of research. Our future plans include extending the partial evaluator to deal with
ASM extensions such as Parallel and Distributed ASM [6], and Interactive ASM
[11,10].

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA, USA, 1986.

2. E. Borger and W. Schulte. Programmer Friendly Modular Definition of the Se-
mantics of Java. In J. Alves-Foss, editor, Formal Syntaz and Semantics of Java,
LNCS. Springer, 1998.

3. G. Del Castillo. The ASM Workbench: an Open and Extensible Tool Environment
for Abstract State Machines. In Proceedings of the 28th Annual Conference of the
German Society of Computer Science. Technical Report, Magdeburg University,
1998.

10.

11.

12.

A. Ershov. Mixed computation: Potential applications and problems for study.
Theoretical Computer Science, 18:41-67, 1982.

Y. Futamura. Partial evaluation of computation process — an approach to a
compiler-compiler. Systems, Computers, Controls, 2(5):45-50, 1971.

Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Bérger, editor, Specifi-
cation and Validation Methods, pages 9-36. Oxford University Press, 1995.

Y. Gurevich and J. Huggins. The Semantics of the C Programming Language. In
E. Borger, H. Kleine Biining, G. Jager, S. Martini, and M. M. Richter, editors,
Computer Science Logic, volume 702 of LNCS, pages 274-309. Springer, 1993.

Y. Gurevich and J. Huggins. Evolving Algebras and Partial Evaluation. In
B. Pehrson and I. Simon, editors, IFIP 13th World Computer Congress, volume I:
Technology/Foundations, pages 587-592, Elsevier, Amsterdam, the Netherlands,
1994.

N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Englewood Cliffs, NJ: Prentice Hall, 1993.

M. Maia, V. Di Iorio, and R. Bigonha. Interacting Abstract State Machines.
In V International Workshop on Abstract State Machines, Magdeburg, Germany,
September 1998.

M. Maia, V. Iorio, and R. Bigonha. Interacting Abstract State Machines. In
Proceedings of the 28th Annual Conference of the German Society of Computer
Science. Technical Report, Magdeburg University, 1998.

C. Wallace. The Semantics of the C++ Programming Language. In E. Borger,
editor, Specification and Validation Methods, pages 131-164. Oxford University
Press, 1995.

