
Universidade Federal de Minas Gerais
Instituto de Cincias Exatas

Departamento de Cincia da Computao
Laboratório de Linguagens de Programao

A Three Layer View of
Arcademis

Fernando Magno Quinto Pereira
Marco Tlio de Oliveira Valente

Roberto da Silva Bigonha

– Technical Report –
LLP 003/2003

e-mail: {fernandm,mariza,bigonha}@dcc.ufmg.br,mtov@pucminas.br

– Dezembro de 2003 –

1

Abstract

This technical report presents Arcademis, a framework for object-oriented mid-
dleware development. This framework, which has been implemented in the Java
programming language, consists of a set of abstract classes and interfaces that
define the general architecture of middleware platforms. The main objective of
Arcademis is to allow the implementation of non-monolithic and easily recon-
figurable middleware systems that can be customized to fit different scenarios.
In order to illustrate the use of the framework, the paper also presents RME,
a remote method invocation service that has been derived from Arcademis to
support distributed applications in the CLDC configuration of Java 2 Micro
Edition.

0.1 Introduction

Distributed applications are each time more necessary and their demand has
increased continuously since their appearance. In order to evince this fact it
suffices to point that the world-wide Internet community increases by 17% each
year, having presently more than six hundred million users [6] who commu-
nicate and share resources by means of distributed systems. In addition to
this, examples of distributed applications can also be found in more restrict
networks which belong to institutions such as universities or private companies.
Such systems are developed with several different purposes, for example: ma-
king information available, providing communication between users, using idle
computational resources productively and replicating data to improve its acces-
sibility and security [3]. Although these applications can be quite different in
terms of aims and implementations, all of them have in common the capacity
of integrating distinct computers.

The design and implementation of distributed applications is generally more
difficult than the development of local systems because in the former case the
programmer has to deal with distinct machines, and, consequently, with the
heterogeneity of computer architectures and communication protocols. In or-
der to provide the application developer a set of abstractions that facilitate the
design and implementation of distributed programs, it has been introduced the
concept of middleware system: a software layer that is interposed between the
operating system and the applications [5]. The middleware’s main objective is
to prevent the programmer from having to deal with the low-level primitives
that the operating system provides for data transmission. For example, mid-
dleware systems can make the programmer oblivious to different techniques of
number representation such as little endian or big endian. If it were not by these
platforms, there would be cases when the programmer would have to explicitly
convert numbers from a format to another when passing them between different
computers.

There are several kinds of middleware platforms [9], such as message passing
systems or tuple-space based systems; however, object-oriented middleware se-
ems to be the most popular platforms at the present time. Examples of such
platforms are CORBA [11], Java RMI [17] and .NET [10]. These middleware
have in common the fact of being based on the model first introduced by the
Network Objects of Modula-3 [1]. According to that model, the programmer
can invoke methods on remote objects as though they were present in the local
address space. This is a really powerful abstraction because the application
developer can take all the benefits from the object-oriented paradigm while
programming in a distributed environment.

The most popular middleware architectures are complex systems originally
devised to fit the necessities of stationary computer networks plenty of resources
such as memory and bandwidth. These platforms are monolithic software that
barely support customization and adaptation [5]. The advent of mobile com-
puting brought on the necessity of developing applications targeting resource
constrained devices, such as cell phones and palmtops. A traditional mono-

1

lithic architecture cannot be properly employed in this environment because, in
addition of being too heavy for the requirements of mobile devices, its unused
functionality cannot be removed from the whole platform in order to make it
lighter. For instance, a CORBA implementation such as VisiBroker or Orbix
that occupy tens of megabytes of memory cannot be deployed in a cell phone
with a total memory footprint of 128-KBytes.

In order to support the implementation of modular and highly customi-
zable middleware platforms, this article introduces Arcademis: a Java based
framework for middleware development. A framework, essentially, is a reuse te-
chnique, which is normally represented by a set of abstract classes and interfaces
that, together, describe the skeleton of an application that can be customized
by the programmer [8]. The main purpose of Arcademis is to be as flexible
as possible, allowing the deployment of middleware platforms that fits several
different sets of requirements. Therefore, instances of Arcademis can be custo-
mized to provide distributed applications with just the very functionality that
they will need. For instance, the specification of a particular application can
state that cell phones will not be used as servers. In this case, Arcademis can
be used to derive a middleware system that only provide client capabilities to
developers.

This paper also presents RME [12], an instance of Arcademis that has been
developed to provide a particular configuration of J2ME [14], called CLDC,
with a remote invocation method service, similar to Java RMI. J2ME is a Java
distribution that targets resource constrained devices, and Java RMI is the
standard remote invocation service provided by the Java language. Although
both Java RMI and RME, offer application developers essentially the same
functionality, these systems differ fundamentally with respect to the technique
used to accomplish object serialization. Such difference make it possible to use
RME in an environment where Java RMI can not be put to work. To the best of
the authors knowledge, there is no other remote invocation service that can be
used in the CLDC configuration; hence, the existence of RME can be regarded
as a concrete contribution to the research presented in this paper.

0.2 Architecture of Arcademis

The implementation of Arcademis is based on a number of design patterns,
such as object factory, decorator, singleton and proxy [4]. These patterns are
programming techniques that can be employed for solving families of related
problems. Therefore, a design pattern can be be described by the specification
of a problem, its solution and the context in which that solution works [8].
The utilization of these techniques in the design of Arcademis brings several
advantages. First, the patterns make it easier to document and organize the
framework’s implementation, because they provide a common vocabulary for
describing the components and the interactions among them. Secondly, the
patterns contribute for enhancing the flexibility of the framework and of the
middleware platforms derived from it. This second benefit comes from the

2

Arcademis Middleware Distributed
Applications

Middleware
developer

Application
Developer

End
User

Level 1 Level 2 Level 3
Operating System

Distributed Applications

Object Id
Factory

Skeleton
Factory

Stub
Factory

IdentifierSkeletonStubChannel

Channel
Factory

ORB (15 factories)

(a) (b)

Figure 1: (a) The programming level views. (b) The ORB organization.

fact that several design patterns have being engendered in order to allow the
implementation of more modular systems that could be easily modified.

A distributed system built on top of Arcademis has three main constitu-
ents or programming levels. The first of these levels is composed by the ele-
ments that constitute Arcademis. Essentially these are abstract classes and
interfaces, although the framework also provides concrete components that can
be used without further extensions. The second level is formed by the con-
crete middleware platform, obtained as an instance of Arcademis. The fra-
mework postpones to this level decisions such as the communication protocol
and the serialization strategy that will be adopted, for example. Finally, the
third programming level comprise all the components that will provide services
and abstractions to users that are not necessarily programmers. These compo-
nents constitute what is normally called distributed applications, such as e-mail
systems or virtual bookstores, for example. A diagram depicting the relation
between the programming levels and their users is presented in Figure 1 (a).

Each instance of Arcademis has a central component called ORB. This ele-
ment is implemented as a singleton, a design pattern that guarantees that, given
a class, there will exist just one instance of it per application [4]. Besides being
implemented as a singleton, the ORB can also be characterized as a set of object
factories. An object factory is another design pattern [4] that is used to generate
instances of objects. The main advantage of this pattern is to make it easier
to change a component’s implementation without interfering in other parts of
the system. For instance, according to the Arcademis’s specification, all the
communication channels are created by an object factory. When necessary to
modify the transport protocol used by the middleware, for instance, from TCP
to UDP, it is sufficient to change the channel factory bound to the ORB. Be-
cause the channel’s interface keeps the same, the other platform’s components
need not to be altered. Figure 1 (b) pictures the general organization of any
distributed system based on Arcademis.

Arcademis has been originally devised to permit the development of object-
oriented middleware platform. According to this model, a client object relies on
intermediate components in order to invoke methods on remote objects. These

3

intermediate elements are called stubs and skeletons. Although the application
developer has the illusion the methods are being locally processed, actually
every remote call is transmitted by the stub to the skeleton and then to the
implementation of the remote object. The method’s result is sent in the oppo-
site way. In order to best describe the Arcademis architecture in view of such
model, the framework’s structure can be divided into three main layers: the
stub/skeleton layer, the remote reference layer and the transport layer. These
parts are discussed in the remainder of this section.

0.2.1 The Transport Layer

The transport layer comprises all the components responsible for transmission
of data between hosts and by connection establishment. This is the only layer
which is in direct contact with the operating system, since it needs to deal with
the raw sequences of bytes that represents information to be transmitted. The
main components of the transport layer are the channel implementation, the
connection server, the communication protocol and the components responsible
for connection establishment. Arcademis allows the middleware developer to
configure all of these elements.

The most basic element of the Arcademis’s transport layer is called a channel.
This component is responsible for transmitting byte sequences between clients
and servers. The framework does not assumes the utilization of any specific
transport protocol, and possible implementations can be based, for example,
on UDP, TCP, HTTP or SOAP. In order to add further functionality to a
channel, Arcademis uses a design pattern called decorator [4], which provides
a way to modify the behavior of individual objects without having to create
new derived classes. A channel decorator is an object that extends that class
and, in addition to this, has an attribute of the channel type. As a subclass
of channel, the decorator can overwrite some of that component’s methods in
order to aggregate further capabilities to them.

Figure 2 (a) shows an example of composition of decorators. ZipChannel
compress messages in order to take better benefit from the available bandwidth
and ProtocolChannel implements the middleware communication protocol,
that defines the kinds of messages available for performing all the services offe-
red by the platform. The class labeled TcpSocketChannel is one of the concrete
components provided by Arcademis. The same chain of capabilities could have
being built by means of inheritance, but, in that case, it would not be so flexible.
In Figure 2, nothing prevents ZipChannel from being inserted before the other
decorator; moreover, a third decorator can be added to that sequence without
the necessity of modifying other’s components code. Simple inheritance does
not afford such flexibility.

The process of connection establishment, in Arcademis, has been imple-
mented according to the acceptor-connector design pattern [15]. This pattern
decouples the connection initialization from its processing, once the channel has
been initialized. The main participants of the pattern are the acceptor, the
connector and the service handlers which are depicted in Figure 2 (b). The

4

<<interface>>

Channel

 (from arcademis)

+send(in a:byte[])

+recv() : byte[]

ChannelDecorator

 (from arcademis)

ProtocolChannel

 (from rme)

ZipChannel

 (from rme)

TcpSocketChannel

 (from rme)

Receiver extends
ServiceHandler {
 open(channel)
}

Sender extends
ServiceHandler {
 open(channel)
}

Connector {
 connect(epid)
}

Acceptor {
 accept()
}

Channel {
 send(bytes)
 recv()
}

<creates> <creates>

<uses>

<creates> <creates>

<uses>

(a) (b)

Figure 2: (a) Composition of decorators. (b) The acceptor-connector compo-
nents.

connector is responsible for contacting the acceptor when necessary to set up
a channel between two hosts. Once the process of connection establishment
has been completed, the resulting channel is passed to a service handler, which
will send and receive messages through it according to the needs of a particular
application. One of the advantages of this design pattern is the possibility of
configuring different connection strategies without the necessity of modifying
the service handlers’ code. Possible strategies include synchronous and asynch-
ronous connection establishment and the use of caches for reusing channels.

0.2.2 The Remote Reference Layer

The remote reference layer contains all the components responsible for the loca-
tion and identification of remote objects distributed across a computer network.
Its most important element is called a remote reference. This component pro-
vides client applications the means to contact the remote object it represents;
hence, it contains two basic values: the first of them is the location of the remote
object in the distributed environment, and the other is an identifier, which is
used to distinguish a remote object from another. Another function of remote
references is to define the semantics of common operations pertaining to every
object, such as toString, equals and hashcode.

The framework represents the unique identifier and address of an object by
the classes Identifier and EndPointIdentifier respectively. Again, Arcade-
mis does not determine any specific implementation for these components. For
instance, remote addresses can be defined as ordered pairs formed by a host
name and a port number, or they can encapsulate the location of a shared me-
mory address. Identifiers can also be implemented in a number of ways. When
not necessary to discriminate a really large number of elements, they can be
defined as single integer numbers. On the other hand, in more scalable systems
the identifiers should grant that in the whole distributed network there will be
no two distinct remote objects holding equal identifiers.

Another element of the remote reference layer is the RemoteObject class,
which should be extended by every object whose methods can be remotely
invoked. That is an abstract component that has to be implemented in every
instance of middleware platform derived from Arcademis. Among the methods

5

<<interface>>

Active

+activate()

+deactivate()

<<interface>>

Epid

<<interface>>

Identifier

<<interface>>

Remote

RemoteRef

Stub

RemoteObject

Skeleton

Discovery
Agency

Remote
Object

Client
Application

Service
Description

Service
Description

Cliente/server
communication

Find Publish

(a) (b)

Figure 3: (a) Components of the remote reference layer. (b) Service-oriented
architecture.

of RemoteObject, two deserve special attention: activate and deactivate.
Both are abstract methods, and the first of them defines how an object will
be made ready for receiving and processing remote calls. The second operation
permits to release to the operating system the resources employed by the remote
object for handling requests. The relations among the main participants of the
remote reference layer is shown in Figure 3 (a).

The last component of the remote reference layer is the discovery agency.
The great majority of middleware platforms obtained from Arcademis can be
described as service-oriented architectures [2]. This model involves three diffe-
rent actors: service providers, service requesters and discovery agencies. Service
providers are represented by the implementation of remote objects, whereas the
requesters are represented by clients in general. The discovery agency, or name
service, is a independent element that should be provided by all the Arcademis’s
instances. The three main constituents of the service-oriented architecture are
depicted in Figure 3 (b).

Arcademis does not define a standard interface for name services because it
can vary considerably among applications. For instance, the Java RMI platform
defines a name server based on five operations: lookup and list for discovering
names and bind, rebind and unbind for registering and unregistering services.
According to that model, quests are based on the strings bound to remote
objects in the directory of names. On the other hand, it is possible to define a
name server that associate to remote references interfaces or service descriptions
instead of names. Therefore, the stipulation of a specific type of discovery agency
would impact on Arcademis’s flexibility. In spite of that, the framework defines a
basic name server interface as part of its collection of concrete components. Such
functionality provides two operations: find and publish, but they are declared
in different Java interfaces located in different packages. That is because clients
applications normally do not use the publish operation, so clients should not
have to import the package that contains the find functionality.

6

0.2.3 The Stub/Skeleton Layer

In a distributed system, normally clients and servers are not located on the same
node; hence, in order to allow the communication between them, it is necessary
to provide each host with a local representative of the entity not physically
present. The stub is the local representative of the server in the client address
space, and the skeleton is the local representative of the client in the server
address space. The stub may be described by the proxy design pattern [4],
which is used in situations when it is necessary to provide a surrogate for an
object. As a proxy, the stub defines all the remote methods of the object it
represents. When the client application performs a remote method invocation,
it is actually calling a method on the stub, that will take the responsibility of
delivering the call to the actual implementation of the remote object. The stub
counterpart in the server’s address space is called skeleton: a component that
can be described by the adapter design pattern [4]. The skeleton’s main function
is to receive requests describing method invocations and to assign them to the
component responsible for their processing. After the method’s processing, the
skeleton sends the result of that execution to the client side stub.

The skeleton and the stub communicate by means of four different service
handlers that, together, constitutes a design pattern called request-response.
These service handlers are called request-sender, request-receiver, response--
sender and response-receiver, and Figure 4 (a) shows the relation between them.
The major advantages of this pattern is the possibility of easily configuring the
politics of thread utilization in the client and in the server spaces. In addition
to this, the request-response pattern facilitates the customization of the remote
call semantics.

In the Arcademis framework, clients and servers can be customized accor-
ding to different strategies of thread utilization. For instance, a client can be
defined to be synchronous or asynchronous. In the former case, the client appli-
cation remains blocked during all the process of remote method execution, until
it receives the call’s result or a network error takes place. In the asynchronous
case, the client does not stay blocked while the call is being processed by the
server. This strategy can be used to increase the client’s throughput [3]. Asyn-
chronous method invocation also gives room for further optimizations. One such
optimization is to bufferize several requests so that all of them can be sent in a
single package. The use of the buffer allows a better utilization of the available
bandwidth.

Arcademis also permits the developer to define different strategies of thread
utilization for the server side of the middleware. The server can be configured
to run in a single control thread or in several threads. In the second case, it
is possible to distribute tasks among threads in different ways. For instance, a
new, independent thread, can be allotted to each incoming method request, or
to each connection created with the server, or to each client that is accessing
the server. In addition to this, separate threads can be designated to some
of the server’s components, such as the acceptor or the response-sender. The
request-response pattern also allows the customization of structural aspects of

7

the server architecture. For example, the request-receiver can directly deliver
method requests to the skeleton, or they can be inserted into a queue, where a
scheduler running in a separate thread is responsible for determining the priority
in which remote requests are processed.

Figure 4 (b) depicts an example of client/server configuration, where method
invocations are asynchronously delivered to the server. The server architecture
obeys the active object [16] design pattern. This pattern suits well the neces-
sities of a remote invocation method service because it decouples an operation
execution from its calling. According to this technique, requisitions of method
execution are passed to an object that resides in its own thread of control by
means of a data structure called activation queue. The order in which tasks
are retrieved from the queue and sent to the active object is determined by a
component known as scheduler. Arcademis provides the developer a factory of
queues and several different implementations of such structures. Two instances
of them are visible in the figure: the answer queue and the activation queue.
A scheduler factory is also provided by the framework together with a default
implementation.

The utilization of the active object pattern affords several possibilities of
reconfiguration to the server structure. Firstly, it allows the adoption of diffe-
rent strategies for thread’s management: the active object may be executed as
a single thread or as a pool of threads. Secondly, it provides the middleware
developer different ways to determined the priority of method execution. For
instance, in order to implement the shortest-job-first algorithm, the stub can
assign each method a constant priority that the developer determines accor-
ding to that method’s complexity. Simpler methods are given higher priorities
because they tend to be processed in a shorter period of time. A second sche-
duling algorithm, called first-in, first-out, can be implemented by ascribing to
each method a priority based on the time its requisition has been inserted onto
the activation-queue. Requisitions may also be given different priorities based
on the requester’s identity. In this case each client has a specific priority, that
may be defined by several different factors, such as the frequency in which the
client issues remote method invocations. In this case, clients that access the
server more frequently can be given a higher or lower priority, depending on the
adopted algorithm. The use of threads and the distribution of priorities among
remote invocations can be customized by changing the implementation of the
scheduler component of the framework.

The client shown in Figure 4 (b) performs asynchronous calls, what means
that is does not stay blocked while remote operations are being processed by
the server. An independent thread is created in the client’s space for receiving
the results of remote calls. Such results are stored in a queue that can be
inspected by the client application at any time during its execution. Because
invocations are made asynchronously, messages can be grouped in a buffer, in
order to be sent together. The buffer utilization delays the transmission of
method requests; hence, it may increase invocation’s latency. On the other
hand, it reduces the number of packages sent through the transport layer, what
can improve application’s throughput. The event that causes the delivery of

8

Remote
Object

SkeletonStub

Client

Response
Receiver

Request
Receiver

Response
Sender

Request
Sender

1
2

3
4 5 6

78
9

10

client address space server address space

Remote
Object

Skeleton

Stub

Client

Response
Receiver

Request
Receiver

Response
Sender

Request
Sender

...
activation
queue

...
answer
queue

Client address space Server address space

The dashed area delineates independent threads

(a) (b)

Figure 4: (a) Request-response. (b) Example of server configuration.

requests stored in the buffer can be customized in a number of ways. A simple
strategy is to send the stored messages when its quantity reaches a certain limit.
The number of bytes in the buffer may also be used as the triggering criterion for
sending the grouped messages. In addition to these two strategies, the buffer’s
content should be sent to the server within regular time intervals, in order to
diminish the impact of the buffer over the application’s latency.

Another main benefit of the request-response pattern is to allow the para-
meterization of remote invocation’s semantics. The semantic of a remote call
defines the level of reliability the middleware platform provides to the client
application. The chances of a method invocation not been processed in the
expected way in a distributed environment is orders of magnitude greater than
in the local case. The three most popular invocation semantics are called best-
effort, at-most-once and at-least-once [3]. The first of them do not offers the
client any guarantee regarding the remote call’s processing. It may be executed
one time, several times, or no time at all. The semantics know as at-most-once
gives the client application the guarantee that the remote call will be processed
no more than one time, but it may be not executed. Finally, the at-least-once
semantics affords the client application the guarantee that remote calls will be
necessarily executed one or more times.

The configuration of most of the aspects of middleware’s internal structure
discussed in this section are restricted to the implementation of the four service
handlers that constitute the request-response design pattern. For instance, in
order to group messages in a buffer for improving application’s throughput, it
suffices to alter the code of the request-sender. Different implementations of the
request-receiver yields different politics of thread utilization, such as thread-
per-request or thread-per-connection. In addition to this, the three distinct
semantics of method invocation can be implemented by changing the structure
of just the request-sender and the request-receiver. Figure 5, for example, shows
the state machines that characterize the implementation of the at-most-once
semantics. According to that scheme, the request sender, after sending a method
invocation request, starts a time counter, and, if a certain interval has elapsed
before it receives any response for the remote call, it will repeat this process.
After a given number of calls without answer, the client application assumes

9

IDLE

FAILED

WAITING

TIMING

STARTING

entry/time=0

sucess

abort
[msgs>limit]/
rise exception

recv ack

send req/
msgs++

request/
msgs=0

time out
send req
[msgs<limit]/
msgs++

do/update(time)

IDLE

PROCESSING
REQUEST

Do/Execute request

TESTING
recv req

[list.contains(id)==true]/
send(list.get(id))

[list.contains(id)
==false/]

finish processing/
send(return);
list.add(id, return)

(a) (b)

Figure 5: At-most-once call semantics: (a) request-sender state machine. (b)
request-receiver state machine.

that the server is not achievable, and an exception is throw, denoting this fact.
The request receiver, on the other hand, keeps the calls’ identifiers in a list, in
order to discard repeated requests. In the list, identifiers of method invocations
are associated to their return values; therefore, if a repeated request is received,
the server can answer it without further processing.

Serialization of Objects in Arcademis

Object serialization is the process of converting the object’s internal state into
a raw sequence of bytes in such a way that the original object can be recovered
from it. This mechanism allows an object to be recorded in a file-system or
transmitted along a network. In the Java RMI platform, objects are passed as
arguments or return values of remote invocations as serialized data. Because
an object usually contains references to others, in order to serialize it, it may
be necessary to traverse the graph of references that constitutes its internal
state, so that no information be lost in the process. In the Java programming
language, such task is accomplished by means of a mechanism called reflexivity.
Computational reflection provides a program the knowledge about parts of its
internal structure, such as the type of a variable or the list of methods pertaining
to a certain class. The use of reflection makes it possible to automate the
serialization process in such a way that the programmer is unaware of it; hence,
it saves a lot of effort that, otherwise, would be spent in the manual conversion
of objects and primitive data into byte sequences.

Although the serialization strategy adopted in the Java language offers the
programmer a great level of abstraction, it has some limitations. The most
important of them is the existence of environments where reflexivity is not
available. For example, the CLDC configuration of the J2ME platform does
not provide all the reflexivity capacities present in other editions of the Java
language. As a consequence of this limitation, it is not possible to employ Java
RMI, as it is currently implemented, in that scenario. In addition to this, RMI’s
architecture is not enough modular to allow the adoption of another serialization

10

import arcademis.*;

public class Person
implements Marshalable {
private String name = null;
private int age = null;
private boolean isMan = null;

public void marshal(Stream b)
throws MarshalException {

b.write(name);
b.write(age);
b.write(isMan);

}

// implementation of the other methods

public void unmarshal(Stream b)
throws MarshalException

name = (String)b.readObject();
age = b.readInt();
isMan = b.readBoolean();

}
}

Figure 6: Example of serializable class.

strategy that does not require the availability of computational reflexivity.
It is desirable that middleware platforms obtained from Arcademis be used

in all the three main distributions of the Java language: J2ME, J2SE and J2EE.
In order to accomplish this requirement, Arcademis does not relies on particular
characteristics of any of the platforms, what includes the reflection mechanism.
The strategy of object serialization adopted by Arcademis consists in trans-
ferring to the application developer the task of implementing the serialization
routines of all the classes whose instances may need to be serialized. With this
objective, Arcademis defines the interfaces Marshalable and Stream. Accor-
ding to the Arcademis specification, serializable objects are instances of Marsha-
lable. This interface declares two methods: marshal and unmarshal. The first
of them describes how an object is converted into a sequence of bytes, whereas
the second determines how the state of the object can be recovered from that
sequence. The Stream interface specifies the serialization protocol, by means
of a collection of methods for reading and writing byte sequences. Although
this interface can be implemented in different ways, in essence, any implemen-
tation encapsulates an array of bytes. An example of class that implements
Marshalable is presented in Figure 6.

0.3 RME: RMI for J2ME

In order to validate the Arcademis framework, it has been used to derive a re-
mote invocation service for Java 2 Micro Edition [14], a Java distribution that
targets resource constrained devices such as cell phones and palmtops. The
J2ME platform can be divided in different configurations, each of them proper
to a specific family of devices. A J2ME configuration defines a Java Virtual
Machine, a set of libraries and the Java capacities that are available for a group
of devices that meet the minimum set of requisites stipulated by that configura-
tion. Presently, J2ME provides two main configurations: CDC and CLDC. The
first configuration, named CDC (Connected Device Configuration), groups devi-
ces that can afford at least 2MB of memory and persistent network connections,
often using TCP/IP. This configuration provides the application developer with

11

Operating System

Distributed Applications
St

ub
/

Sk
el

et
on

la
ye

r

R
em

ot
e

R
ef

la
ye

r

T
ra

ns
po

rt
la

ye
r

RmeStub RmeSkeleton RmeStream
Response-receivers

Best-effort At-most-once

RemoteRef RmeRemoteObject
HostTimeCountId HostPortId

RmeNamingService

BlockingAcceptor SyncConnector
RMEP

TcpIpChannel
TcpIpServer

HttpChannel
HttpServer

O

R

B
AppStub

RmeStub

RmeResponseReceiver

RmeRequestSender

Acceptor

RmeResponseSender

RmeRequestReceiver

Remote Object

AppSkeleton

RmeSkeleton

Client Client Thread

Acceptor Thread

T
hread-per-connection

Client address space Server address space

The dashed region denotes
the executing area of a
single thread.

(a) (b)

Figure 7: (a) Overview of the RME architecture. (b) Use of threads in RME.

almost all the features found in the standard Java development kit, such as
reflexivity and a complete set of I/O libraries. The other configuration, called
CLDC (Connected, Limited Device Configuration) targets more limited devi-
ces, generally mobile and battery-operated, with memory budgets of no more
than 500 Kilobytes, low bandwidth and intermittent network connections. The
CLDC libraries contains classes that are not present in the J2SE libraries, but,
in general, this configuration provides to the application developer far fewer
capabilities than the standard development kit. It does not afford, for instance,
the primitive types float and double, neither computational reflexivity, although
such capacities are present in CDC. As told in Section 0.2.3, Java RMI can not
be used in CLDC due to this configuration not offering the reflexivity functio-
nality of the Java language, that is necessary for object serialization.

The proposed service, called RME (RMI for J2ME) [12], targets the CLDC
configuration, and intends to permit the development of distributed applications
that communicate by means of a remote method invocation mechanism. An
overview of the RME architecture is presented in Figure 7 (a). The use of
threads in the client and server spaces as well as the main elements involved in
the execution of a remote method invocation are depicted in Figure 7 (b). RME
is a synchronous service, meaning that the client application remains blocked
during all the time in which a remote call is being processed. The server creates
a new thread to handle every new incoming connection, and the acceptor is
executed in a separate thread. In that scheme, RmeStub and RmeSkeleton
are subclasses of arcademis.Stub and arcademis.Skeleton respectively, and
AppStub and AppSkeleton are automatically generated instances of these local
representatives. In order to allow automatic generation of stubs and skeletons
RME provides rmec, a tool that produces the source code of these components
from the implementation of a remote object.

Figure 8 (a) shows the statechart diagram that characterizes the RME stub.
This diagram evinces the fact that the client tries to take benefit of the same

12

connection successive times, in order to improve its efficiency. The stub esta-
blishes a connection with the server when it first receives an order to perform
a remote method invocation. The next call can be handled in two different
ways. If there is not elapsed much time since the last remote invocation, the
previously used channel is utilized again. In this case, the implementation of
RME guarantees that there will be a request-receiver listening that channel in
the server side. On the other hand, after some period of time, if the channel has
not been used, RME tries to recycle the connection, in order to save resources
and for security reasons. If that is the case, the stub probes the channel with a
ping message in order to verify whether the channel is still alive, and if there is
no answer, a new connection is created with the server, otherwise the old one is
reused.

Two different semantics for call processing have been implemented for RME:
best-effort and at-most-once. The adoption of each of them is just a matter of
assigning to the ORB the proper service handler factory. Performance tests
show that providing an at-most-once guarantee level to the application adds no
more than .5 percent of time overhead when compared to the best-effort seman-
tics, although the first strategy requires substantial space for storing identifiers
in the server side [13]. RME also provides to the application developer two
implementations of the communication channel, each of them using a distinct
transport protocol: TCP/IP and HTTP. The second channel is necessary be-
cause the first release of CLDC (CLDC 1.3) just supports HTTP connections.
The TCP/IP protocol is supported by CLDC 2.0. Again, customizing the chan-
nel that will be utilized in RME is just a question of associating the correct
factory to the ORB.

The communication protocol adopted by RME is named RMEP (RME Pro-
tocol), and defines four different types of messages: call, return, ping and ack.
Call messages are used to characterize packages containing the parameters of a
remote method invocation. Return values are sent by means of return messages.
The other two messages are mostly used to probe channels and in order to verify
if servers or clients are alive. Every ping message forces the receiving entity to
answer it with an ack package. The protocol specification can be seen in Figure 8
(b). In that grammar, the symbol Epid stands for the location of a remote ob-
ject, and is used as a return address inserted into messages that originates an
answer from the receiving entity. Actually the return address is not necessary
in the current implementation of RME because the same connection is used for
sending and receiving messages during remote method invocation or during a
channel test. In an asynchronous implementation, however, the server could use
the return address as the destiny location to the values obtained as consequence
of remote call processing. Finally, the symbol Stream denotes a sequence of
bytes originated from the serialization of a list of objects and primitive data.

RME provides the application developer a programming syntax similar to
that provided by Java RMI. Remote methods must be declared in a interface
that extends the arcademis.Remote interface and must declare the possibility
of throwing arcademis.ArcademisException. The implementation of that in-
terface is a class that should extends RmeRemoteObject. Although instances

13

Idle

Probing

Disconnected
entry/connector.connect(rs)

Connected
entry/time=currentTime();
 rs.open();
exit/time=currentTime()-time;

Invocation request

Connection
established

Invocation request
[time < Tolerance]

[isAlive(ch)]
/ch.close()

[isAlive(ch)]

Invocation request[time > Tolerance]

message → header version msgtype

header → 0x52 0x4d 0x45 0x50
version → 0x01
msgtype → msgreq | msgack

msgreq → epid reqtype

reqtype → call callid objid op args
| ping

callid → id
objid → id

op → int
args → Stream

msgack → return callid retval

| ack
retval → Stream

(a) (b)

Figure 8: (a) Statechart diagram of RmeStub. (b) RMEP Specification.

of such class will be invoked remotely, its implementation do not present any
particularity for accessing the subjacent network other than the fact it extends
RmeRemoteObject. Figure 9 presents an example of distributed application ba-
sed on RME. The remote method simply sums two integer number and returns
the operation’s result. The server code responsible for the remote object initia-
lization is shown in Figure 9 (c) and the client that carries on a remote method
invocation can be seen in Figure 9 (d). Both applications contains commands
to configure the middleware, that is, to define the factories that will be associ-
ated to the ORB. Any distributed application based on RME should determine
an ORB customization before starting its execution, what can be done by an
instance of the RmeConfigurator class.

Some test have been executed in order to evaluate the performance of the
RME implementation. The execution environment utilized consists of a J2ME
emulator whose virtual machine (KVM) can execute 100 bytecodes per milli-
second. The server and the client emulator were executed in two Pentium 4,
with 2.0GHz of clock and 512MB of available memory. The computers were
connected by a 10Mb/s Ethernet LAN. The remote methods used in the test
are shown in Figure 10 (a). All those methods throws ArcademisException,
but the declarations have been omitted due to space constraints. In order to
determine an upper limit of efficiency, it was implemented a socket-based ap-
plication whose client and server simply exchange packages of the same size of
that used by the RME methods. The average number of requisitions accom-
plished per second is presented in Table 10 (b). Each of these values has been
obtained as the average of 10 series of 50 remote calls. Because the emulator
carries on to few instructions per time unit, the serialization of structured types
takes considerable time; hence, the methods that pass and return more complex
objects are slower than the corresponding upper bound.

Besides the conventional capabilities provided by RME, this middleware con-
tains some additional functionality that suits the necessities of applications exe-
cuted in the mobile environment. The first of these extra services is a cache that
can be appended to stubs, in order to save bandwidth. Rmec, the stub generator,

14

import arcademis.*;
public interface RemInt
extends Remote {

public int sum(int a, int b)
throws ArcademisException;

}

import rme.*;
import rme.server.*;
public class RemObj extends
RmeRemoteObject implements RemInt {

public int sum(int a, int b) {
return a + b;

}
}

(a) (b)

import rme.*;
import rme.naming.*;
public class Server {

public static void main(String a[])
throws Exception {

RmeConfigurator c =
new RmeConfigurator();
c.configure();
RemObj o = new RemObj();
RmeNaming.bind("obj", o);
o.activate();

}
}

import rme.*;
import rme.naming.*;
public class Client {

public static void main(String a[])
throws Exception {

RmeConfigurator c =
new RmeConfigurator();
c.configure();
RemInt i=(RemInt)
RmeNaming.lookup("obj");
i.sum(2, 2);

}
}

(c) (d)

Figure 9: (a)Remote Interface. (b)Remote Object. (c)Server. (d)Client.

import arcademis.*;

public interface MethodSet
extends Remote {

public short getShort();
public char getChar();
public int getInt();
public long getLong();
public String getString();
public String[] getStrs();
public String passBytes(byte[] b);
public String passShorts(short[] s);
public String passChars(char[] c);
public String passInts(int[] i);
public String passLongs(long[] l);
public String passStrs(String[] s);

}

mtodo RME socket RME/socket
getShort 5.08 5.11 0.99
getChar 5.05 5.12 0.98
getInt 5.06 5.11 0.99
getLong 5.02 5.07 0.99
getString 4.75 5.01 0.95
getStrs 2.96 5.00 0.59
passArgs 2.57 5.02 0.52
passBytes 4.48 5.05 0.90
passShorts 4.26 5.02 0.85
passChars 4.11 5.04 0.82
passInts 3.93 5.08 0.78
passLongs 3.03 5.04 0.61
passStrs 2.12 4.97 0.43

(a) (b)

Figure 10: (a) Performance results: requisitions/s. (b) General vision of RME.

15

can be customized to associate some methods with the cache, so that, every call
on these operations causes their arguments and return value being recorded. If
a subsequent invocation presents a list of argument already stored in the cache,
than the value associated to that list is returned by the stub, without the neces-
sity of performing a new access to the network. The other additional function
that can be used in RME is a flyweight factory of stubs. The flyweight design
pattern [4] provides an approach to share the same instances between different
object references. The flyweight factory keeps a list of stub’s instances. When
it is given a remote reference to generate a new stub, it verifies whether there
is an instance of stub in the list holding that reference, and if that is the case,
the old representative is returned instead of a new one.

0.4 Conclusion

This paper has presented Arcademis, a framework for middleware development
and one instance of it named RME, a middleware system that provides to the
CLDC configuration of Java 2 Micro Edition a remote invocation service. This
research brings forward actual contributions in both the theoretical and prac-
tical fields. First considering the theoretical contributions, the paper presents
an analysis of the main constituents of object-oriented middleware platforms,
while grouping them in three layers: the transport layer, the remote reference
layer and the stub/skeleton layer. In addition to this, it defines different ways in
which these components can be customized and how such configurations can be
accomplished. In practical terms, this research yielded a set of Java classes and
interfaces that implement several functionalities required in an object-oriented
middleware platform, and, more important, describe the overall structure of
such systems. Another practical result from this research is the derivation
of RME. This middleware provides the application developer a high level of
abstraction because it allows him to take benefit of the power of the object-
oriented programming style while making him unaware of objects’ real location.
Furthermore, to the best of the authors knowledge, there is no other complete
implementation of a remote invocation service for CLDC/J2ME, although there
is a RMI optional package for CDC/J2ME [7].

This paper concludes with a brief evaluation of the Arcademis framework
and RME, taking into consideration three main criteria: generality, flexibility
and usability. Starting by the generality, it is important to say that Arcademis
is essentially a framework targeting object-oriented middleware development;
however, it can be used to derive middleware platforms pertaining to other pa-
radigms. For instance, a complete discussion of how Arcademis can be used in
the implementation of PeerSpaces, a tuple Space-based middleware is presented
in [13, pages 105–106]. Another element that adds favorably to Arcademis’s
generality is the possibility of using the framework to implement middleware
platforms for the three main distributions of the Java language: J2EE, J2SE
and J2ME. That is possible because the Arcademis’s core components are im-
plemented with classes, interfaces and primitive types that are common to all

16

the Java editions. Two versions of RME have been implemented: one for J2ME,
presented in this paper, and another targeting J2SE, the Java standard deve-
lopment kit. Although this implementation is slower than Java RMI when pro-
cessing calls that only present primitive types, it surpasses its counterpart when
considering calls that use more complex data types due to a faster serialization
strategy [13].

The flexibility can be pointed as the main benefit of Arcademis. Every
instance of this framework is ultimately defined by a set of independent object
factories. It is possible to alter a whole aspect of the middleware by just changing
the factory that creates the components responsible by that behavior. For
instance, there are two different implementations of call semantics and transport
protocol for RME. In order to alter any of these middleware’s properties, it
suffices to replace the channel factory or the service handler factory in the
RmeConfigurator class. The factory-based design has also the advantage of
allowing the middleware to use just the components it will effectively need. As
an example, RME does not employs the queue factory or any of the concrete
queue implementations provided by Arcademis. Such components are not even
part of the RME library. By the other hand, a platform similar to that presented
in Figure 4 would take benefit from these structures. This design allows the use
of Arcademis in scenarios where more monolithic platforms could not be put
to work. RME, for instance, is used in a environment where the traditional
implementation of Java RMI can not be employed. In addition to this, the
possibility of giving the middleware just the capabilities it will need allows the
generation of platforms having small libraries, what suits the tight requirements
of embedded and mobile devices. The client version of RME’s libraries has
34.5KB, and an version of this platform, without object factories, has 29.2KB.

Finally, it is important to say that the Arcademis’s architecture, based on
design patterns, favors its usability, because most of these patterns are already
well know by the programming community. In addition to this, the modular
structure of the framework allows the modification of some of its parts without
the necessity of extending such changes to other parts, what makes it possible
to reuse complete middleware platforms in order to address a new set of requi-
rements. In general alterations in components of one specific layer (transport,
remote reference or stub/skeleton) do not have any impact over the constitu-
ents of the remaining layers. There are, however, exceptions to this rule. For
instance, if the addressing strategy, implemented by the Epid component of
the remote reference layer, is changed, than it might be necessary to alter the
channel implementation, a transport layer’s element, because connections could
have to be bound to another kind of remote address specification.

Different research threads can be originated from Arcademis. One possi-
ble direction of future work is to derive from the framework middleware plat-
forms that do not follow the object-oriented model, such as tuple space-based
or message-oriented systems. A second research topic is the parameterization of
different distributed garbage collection algorithms in Arcademis. Since the in-
troduction of the garbage collection technique of Modula-3 [1], several distinct
strategies have been devised for giving back to the operating system unused

17

memory and it would be interesting to provide an easy way to customize the
algorithm adopted in the middleware platform. Regarding RME, the natural
sequence of the present research is to provide this system with asynchronous
method invocation. Asynchronous calls suit well the necessities of a mobile
system because they allow clients to perform activities while disconnected. In
addition to this, asynchronous calls may be used for enhancing the efficiency of
applications that demand a large number of message exchanges [3].

18

Bibliography

[1] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network
objects. In 14th Symposium on Operating Systems Principles (SOSP), pa-
ges 217–230. Software–Practice and Experience, 1993.

[2] Michael Champion, Chris Ferris, Eric Newcomer, and David Orchard. Web
Services Architecture. W3C, 2002.

[3] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems
- Concepts and Design, volume 1. Addison-Wesley, 2nd edition, 1996.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns Elements of Reusable Object-Oriented Software. Addison-Wesley,
October 1994.

[5] Kurt Geihs. Middleware Challenges Ahead. IEEE Computer, 34(6):24 –
31, 2001.

[6] Sabine Graumann. Distribution of Internet users. Monitoring Information
Economics – 6th Factual Report, 1(6), 2003.

[7] Sun Microsystens Inc. Rmi optional package specification version 1.0, 2003.
http://java.sun.com/products/rmiop/ – ltima visita: junho de 2003.

[8] Ralph E. Johnson. Components, frameworks, patterns. In ACM SIGSOFT
Symposium on Software Reusability, pages 10–17, 1997.

[9] Cecilia Mascolo, Licia Capra, and Wolfgang Emmerich. Middleware for
Mobile Computing (A Survey). LNCS, 2497:20 – 58, 2002.

[10] Piet Obermeyer and Jonathan Hawkins. Microsoft .net remoting: A tech-
nical overview. Technical Report 013, Microsoft Corporation, July 2001.

[11] OMG. CORBA IIOP 2.3.1 Specification. Technical Report 99-10-07, OMG,
1999.

[12] Fernando Magno Quintao Pereira, Marco Túlio de Oliveira Valente, Ro-
berto S. Bigonha, and Mariza A. S. Bigonha. Chamada remota de mtodos
na plataforma j2me/cldc. In V Workshop de Comunicação sem Fio e Com-
putação Móvel. SBC, 2003.

19

[13] Fernando Magno Quinto Pereira. Arcademis: Um arcabouço para cons-
trução de sistemas de objetos distribúıdos em java. Master’s thesis, Uni-
versidade Federal de Minas Gerais, 2003.

[14] Roger Riggs, Antero Taivalsaari, and Mark VandenBrink. Programming
Wireless Devices with the Java 2 Platform, Micro Edition. Addison Wesley,
1th edition, July 2001.

[15] Douglas Schmidt. Acceptor-connector – an object creational pattern for
connecting and initializing communication services. In European Pattern
Language of Programs conference, July 1996.

[16] Douglas Schmidt and Greg Lavender. Active object – an object behavio-
ral pattern for concurrent programming. In Second Pattern Languages of
Programs conference, September 1995.

[17] A. Wollrath, R. Riggs, and J. Waldo. A distributed object model for the
Java system. In 2nd Conference on Object-Oriented Technologies & Sys-
tems, pages 219–232. USENIX Association, 1996.

20

