II Simpésio Brasileiro de Linguagens de Programacio 207

Rules for Verification of Interactive Systems

Marcelo de Almeida Maia
marcmaia@dcc.ufmg.br
Universidade Federal de Ouro Preto

Roberto da Silva Bigonha
bigonha@dcc.ufmg.br
Universidade Federal de Minas Gerais

Abstract

Recently, we have proposed an interaction based extension[4] to the for-
mal method ASM[2]. The extension provides mechanisms to specify directly
how pieces of specification can interact with each other. The goals of the
extension are manifold, ranging, for example, from the modularization of a
specification to the specification of mobile objects. In this work, we propose
a type discipline for the Interactive ASMs focused on the interactive portion
of the specificationy.

1 Introduction

We have proposed in [4] a method which provides a suitable way to specify dynamic
interconnection of specification units and the rules that guide their interaction. This
approach, the Interactive Abstract State Machines (IASMs), delivers enough flexi-
bility to address problems such as specifying concurrent, mobile and large software
systems. In order to provide mechanisms that enable a productive specification
writing within the context of an automated tool and also help the partial checking
of the specifications, we introduce in this work a type discipline to the Interactive
Abstract State Machines. Instead of providing a whole type system for TASMs, this
work will focus only on the interactive portion of the specification.

An influential work in the semantics of interactive systems is m-calculus[5], where
the channels of communication can be transmitted over other channels, allowing
a process to acquire dynamically new channels, and thus expressi'ng, for example,
mobility. Some type systems have already been proposed for the m-calculus, starting
with the Milner’s sort discipline based on the polyadic w-calculus[5], a subtyping
extension[6], an extension with parametric polymorphism[7]. Recently, Cardelli and
Gordon introduced the mobile ambients, as a new approach to mobility, and they
have already proposed a type system[1] with aims similar as ours.

Our intention ia (o bring to the IASM context the same range of benefits delivered
by typed caleull; aven though our context is not based on any caleulus. In the
following soctions wa reviaw tho TASM method and present its type gysten,

208 I Simp6sio Brasileiro de Linguagens de Programago

S main U} ... Um Insty -+ Instn Cy -+ Cp (m,n,p € RN)
Inst u; 1 Uj (i€ {l.n},j € {l.m})
C ur <-> ug (s € {l.n} and r #s)

Figure 1: System Specification

U ::= unit unit-name
function names f.n
interaction 1
rules rules

Figure 2: Unit Definition

2 The Interactive Abstract State Machine Lan-
guage

An TASM specification is strongly based on distributed ASM. For the sake of better
understanding, we suggest to the reader the work in [3], where we briefly present
ASM and propose an interesting case study on mobile objects. An IASM specifi-
cation is defined as a set of unit definitions, static unit instances, and static unit
connections. A unit definition contains an internal state, an interaction rule which
describes how that unit interacts with the others, and an internal rule which de-
scribes the local computation of the unit. :

The abstract syntax of a system specification S is defined as in Figure 1, where
U, ¢ € 1l.m, is a unit definition, Inst;, ¢ € 1.n, is a static unit instance
declaration, and Cj, i € 1.p, is a static unit connection defined with the operator
<->, which updates, inside each corresponding unit, the locations referring to the
other unit.

A unit definition U is defined as in Figure 2. The function names fonare in a
subset of the vocabulary, defining locations representing a local state alterable only
by the local unit rules and interaction.

The abstract syntax for an interaction ¢ is defined in Figure 3. The basic oper-
ators for interaction are those that provide input and output within a unit, respec
tively, <- and ->, which are used to receive a value from a unit into a variable and
to send a value to a unit. The operator <-- denotes a buffered input that avoids an
inconsistent update if two or more different inputs to the same variable occur in the
same step. Since we expect to define dynamically the communication topology, wa
provide the connect operator which binds a unit name to some unit instance. The
operators new and destroy are used to create and destroy unit instances. In orde

i u= internal_pub_name -> u_name

buffered_var <-- u_name.pub_name

ver <- u_name.pub_name

connect wunit:U.s | connect unit:U | connect u
new unit: U

destroy unit:U

R O e N ol P
waiting(name)

if guard then i

IMigure 3: Interaction Rule

IIT Simpésio Brasileiro de Linguagens de Programacio 209

to address complex interaction patterns that may exist between units we provide
the well-known composition operators "+" (non-deterministic choice), "|* (parallel
composition), and ";" (sequential composition). In order to synchronize the inter-
action part with the computation part of a unit we introduce labeled interactions
and the barrier waiting(name). The label I uniquely identifies an interaction, and
denotes how many times the interaction labeled with [has completely occurred. Its
initial state is zero.

Finally, the internal rules rules are defined just as traditional ASM rules. These
rules work by changing the internal state represented by function_names.

3 A Type System for Interactions

In this section, we will define a type system focusing on the interaction between
the units. We will assume that the elements of the super-universe are organized
within ground types K (possibly the type of a defined unit). The possibility of more
complex types should be addressed elsewhere.

In usual type systems specifications, the environment contains the types of free
variables during the processing of programs fragments. Since we are interested in
checking the interaction between units, we will enrich the contextual information
with the occurrence of fragments of interaction rules.

Thus, the environment T will be a list of contextual information items: 0,¢y, -
Cirp» where each (; can be: 1) a unit A that has been defined, 2) a type information
Az : K (z inside unit 4 has type K), 3) a static connection A = B (A statically
connects B, and vice versa), 4) an input fragment B.(y<-A.z) (unit B has a rule
that receives a value from the location z inside unit 4 into the location ¥), 5) an
output fragment B.(y->A) (unit B has a rule that sends the contents of the location
y to unit A), 6) a dynamic connection fragment B.(connect a : A) (unit B has a
rule that connects to unit A).

Now, we present the type system rules. We start with the set of kind of judgments
used in the rules. The judgments are described in Figure 4. We classify the type
system rules based on the possible kinds of judgments.

So, the first class of type rules, shown in Figure 5, checks if an environment is
well-formed. Each environment rule specifies what kind of item can be present in
the environment.

Another class of rules is the one which checks if a type is well-formed. Since we
will have only the ground types Bool and Int, and the types of the defined units,
there are just three rules for types, and they are shown in Figure 6.

The third class of rules, shown in Figure 7, is the one which checks if a declaration
is well-formed, where the first three rules are used to start the checking process of
a specification. Below, we define the elements used in those rules:

r-< I is a well-formed environment
r-a4 A is a well-formed type in '

[(=i 1) D is a well-formed declaration in "
[l= T

I'is a well-formed interaction in I’

[Pigure 4: Judpments

210 III Simpésio Brasileiro de Linguagens de Programagdo III Simpdsio Brasileiro de Linguagens de Programacéo 211
(Env @) (L1.1) (Env z) (1.2) (Env U) (1.3)
TFK z¢dom(l) U ¢ dom(T) (Decl Specification) (Unit definition checking) (3.1)
[Tz:KFO rLur<o I, Env(Usz,...,Un,C1,...Cr)F UL ... T,Env(Uy,...,Un_1,C1,....,Cr) F Un
IFmain Uy ... Um 11 ... In Cy ... Cr
(Env A.r) (1.4) (Env A= B) (1.5)
'K A.z ¢ dom(T) A '+ B (Decl Specification) (Static instance declaration checking) (3.2)
TJAz: KF O I'NA=BFO LUy, .oUntIi . DU, Unt In
Ttmain Uy ... Un I ... I, C; ... Cr
(Env A.(z->B)) (1.6) (Env A.(z<-B.y)) (1.7)
'HFA -8B T'A I'B (Decl Specification) (Static connection declaration checking) (3.3)
T,A(z-SB)FO T,A(z<-B)F O T, Env(Uy, oo, Umy 1y oo In) F C1 oo T, Env(Ui,y eoyUm, I, ooy In) F Cor
FbtmainUy ... Un I ... In Cy ... Cr
(Env A.(connect O0)) (1.8) (Env A.(connect B)) (1.9)
THA rr4 r+s (Decl Unit) (3.4) (Decl Internal State) (3.5)
T, A.(connect O)F & T, A.(connect B)F & T, Env(D) - U.I r'-D I'E: A r-A
F'tunit U =D1T I'+1: Ainitially £
Figure 5: Environment
(Decl Static Connection) (3.7)
- (Decl Static or Internal State) (3.6) 3B.(d : A), AV : B),
(Type Bool) (2.1) (Type Int) (2.2) (Type Unit U) (2.3) IFK, TFKp I",a:Ab:B A(b:B),B.(a: A),T"F & A.(connect b: B),
r-o r-<¢ rLUreEo TF1: K1, 1 p| : Kpj| T7,a: A,b: B,A(b: B),B.(a: A),[" Fa<->b B.(connect a : A)
I'+ Bool T+ Int r,ur'ru | B.a’ # B.aAAY # Ab
Figure 6: Types Figure 7: Rules for Declarations

e UU; 1 € 1..m is a unit definition represented below as unit U = D I, where
D is alist z; : K; =% where [is the number of internal declarations and I is
the declaration of the interaction pattern.

e ;7 € l.n is a static instance declaration represented as u : U, where U is an
already defined unit.

e C;i € l.r is a static connection declaration represented as u; <-> u;, where
u; and u; are already declared static units and ¢ # j.

e Env is a function that returns a list with the static environment generated by
its corresponding parameters, which are unit definitions, and/or static decla-
rations of instances or connections. We also assume, that if we seek for an
information of kind A = B, then if we find B = A, a successful match occurs.
Besides this we introduce a matching operator for connection items A & I3,

Env(dy,...,0z) = Env(dy),..., Env(d:)

Env(unit U = D I) = U, Envy (U, D), Env (U, 1)

Env(u:U)=u:U

Env(u; <-> u;) =U; = Uj, where u; : U; and uj : Uj.

Envy(U,z1: K1,...,z; : Kj) = Uy : Ky,...,Uz; : K

Envp(U,z->A) = U.(z->A)

Envy(U,z<-Ay) = U(z<-Ay)

Envy, (U,connect u) = U.connect O

Envy(Uy,connect u : Uy) = Uy.connect Us

Envp(U,el) = Envg(U,I), where e is a unary interaction rule
constructor (eg. if-then).

Envy(U,I, o I2) = Envg (U, I1), Envr (U, I2), where o is a binary
interaction rule constructor (eg. I ; I).

Figure 8: Function Env: computes the environment 1

which seeks for A.connect O, or A.connect B or A = B. Enwv is defined in (Interaction Input) @y (Interaction Output) @)
Figure 8 IM,z:0,B.y:0,B.(y->A),AS B,I"FO I",z:0,B.y:0,B(y<-Azx),AS BI"FO
g
IM,z:0,By:0,B.(y->A),AS B,I" - A(z <- By) I,z:0,B.y:0,B.(y<-4.z),AS B,T"+ A.(z -> B)
Finally, in Figure 9 we present the rules used when checking the interaction
- s (Interaction Conn) (1) (4.3) (Interaction Conn) (2) (4.4) (Interaction Conn) (3) (4.5)
between units. We use the abbreviation conn for connect. I, B.(conn u), I & I, B.(conn A),T" - & I, B.(conn u),T" &
In Proposition 1 appears some characteristics of the above rules. We will show I, B.(conn), I F A.(conn OJ) I/, B.(conn A),I" F A.(conn O) I7,B.(conn O),T" F A.(conn B)
1ts pFOOf elsewhere. (Interaction Conn) (4) (4.6) (Interaction new) (4.7) (Interaction destroy) (4.8)
.. . . i ; T',B.(conn u: A),T" - O TFA(u:0) Tk A(u:0)
Proposition 1 If a system specification is well-formed then: 1) for every inpul T", B.(conn A),I” I A.(conn B) TF A (new u:0) TF A.(destroy u:U)
interaction there exists the corresponding output and vice versa; 2) for every inpul
tout int 4 th ist " it o f e /- (Interaction if) (4.9) (Interaction ;) (4.10) (Interaction |) (4.11)
or output interaction there ezists a connection interaction fragment, such thal, | RIS ool - TE A ThAG) - Ais) TH Ay Tr Ais)
performed, it enables the interaction; 3) the function names that hold an exchanged TF AGS g then) TF A{i1;i2) TFAf)
value have an equivalent type in the corresponding pair input/output interaction; 4)
i 5 ; ; . (Interaction) (4.12) (Interaction : (Interaction waiting(var)) (4.14)
for every static connection there exists one, and only one, corresponding function TEAG) Dk Al A ko
name to be updated with the corresponding unit instance name; 5) for every dynamic i Dk ddn s X D) 'k A.(waiting(var))

connection there exists a counterpart fragment which may commit the connection, . ! :) ;
e 0 Rules for Interaction Checking

212 III Simpésio Brasileiro de Linguagens de Programacio

4 Conclusions

The type system presented in this work performs a more general checking since it
checks not only the types of the information exchanging rules, but also the consis-
tency between the interaction rules of the unit definitions. This checking can be
very useful when debugging large specifications. It seems to us that it would be
unreasonable trying to specify a very large system without any kind of automatic
checking. It is easy to see that all the type checking presented in this work can be
made statically.

Additionally, this type system also provide useful insights to better understand
the IJASM semantics. And since we have used a standard technique to describe the
checking system, we hope that any comparison with other approaches can be made
easily.

There are still some worthwhile issues for further studies, such as the connection
of the presented type rules with a type system for the whole specification, which
would include, for example, subtyping. We should also reason about the type sound-
ness within the system. We should still separate the notions of interchecking and
intrachecking. This separation is essential for separate checking of specifications,
which is specially important because ASM and IASM specification are suitable for
execution, and we want to support some specification libraries.

References

(1] L. Cardelli and A. Gordon. Types for mobile ambients. In 26th Annual ACM
Symposium on Principles of Programming Languages, January 1999.

[2] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Bérger, editor,
Specification and Validation Methods, pages 9-36. Oxford University Press, 1995.

[3] M. Maia and R. Bigonha. Interaction based semantics for mobile objects. This
volume, 1999.

[4] M. Maia, V. Iorio, and R. Bigonha. Interacting Abstract State Machines. In
Proceedings of the 28th Annual Conference of the German Society of Computer
Science, 1998.

[5] R. Milner. The polyadic m-calculus: a tutorial. Technical Report ECS-LFCS-91 -
180, Laboratory for Foundations of Computer Science, Department of Computer
Science, University of Edinburgh, UK, Oct. 1991.

(6] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. In Logic
in Computer Science, 1993. Full version in Mathematical Structures in Compulter
Science, Vol. 6, No. 5, 1996.

[7] B. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic pi-
calculus. In Principles of Programming Languages (POPL), 1997,

	Scan
	Scan 1
	Scan 2
	Scan 3

