Code Optimization for Trace
Compilers

...........
. 1t .
o« -

. »
''''''
. o
........

Importance of Script Languag

ol Delta in Position | Programming Language Ratings D
Nov 2009 | Nov 2008 Nov 2009 | Nov 2
1 1 Java 18.373% | -1.93% | A
2 2 C 17.315% | +2.04% | A
3 5 i1 PHP 10.176% | +1.24% | A
4 3 | Co++ 10.002% | -0.36% | A
e 4 | | (Visual) Basic 8.171% | -1.10% | A
5 7 | C# 5.346% | +1.32% | A
_— 6 | Python 4672% | 047% | A
: 9 | Perl 3.490% | -039% | A
g 10 | JavaScript 2916% | -0.01% | A
10 11 | Ruby 2404% | -047% | A
BT 8 {8 Delphi 2127% | -1.88% | A

Efficiency Challenges

* To produce machine code out of scripting
languages is difficult:
— No concrete type information is available
— Dynamic code inclusion
— Meta-programming

* Just-in-time compilers are a feasible and useful
alternative

Traditional Just-in-time

* Code is interpreted.

* The methods that are more often called are
completely compiled to machine code.

* Folk knowledge: in general about 20% of the
code will account for 80% of the execution
time.

— But the JIT compiler compiles the whole
method...

Trace Compilation

A more granular JIT

Only the most executed parts of the code are
compiled to machine code.

New approach: 2007
Used in the Mozilla Firefox.

— Now also used in Lua JIT
— Many proposals for other languages.

What is a program trace?

* A sequence of program instructions with no
branches.

— May span many basic blocks

— May span multiple functions

* Atrace has only one entry point, but may have
many exit points.

How does a trace compile work?

Start

state = param 0 ecx
sp = |d state[0]

rp = |d state[4]

cx = |d state[8]
0001eos = |d state[12]
eor = |d state[16]

|d1 = Id cx[0]

sti sp[0] = globalObj
|d2 = Id cx[152]

add2 = add Id5, 8
sti state[732] = add?2
|d9 = Id cx[152]

|d10 = Id 1d9[60]
|d11 = Id [d10[0]

sti sp[0] = add2

sti sp[8] =30

sti state[732] = add?2
loop

@

%esp,%ebp
%ecx,-0x8(%ebp)
%ecx,%eax
(%eax),%esi

Ox4(%eax),%edi
%edi,-0x4(%ebp)
Ox8(%eax),%edx

Challenges

* |s it possible to produce fast native code
without spending much time doing code

optimization?

* Can we use user input as meta-data for
optimizations?

 What standard code optimizations can we use
in trace compilation?

What We Want to Do

* Create a back-end for testing new
optimizations on top of TraceMonkey
* Implement two optimizations:

— Loop unrolling
— Qverflow test elimination

Loop Unrolling

 Many program loops contain only a few
Instructions.

e Goals

— Decrease the number of control hazards in the
total run of the loop

— Fill the unavoidable stall spots with independent
instructions

Original Code

for (i=0;i<x;i++) {

}

sum+=1

X=0

Loop Unrolling
Optimization

] +) {

}

lelse(
for (i=0;i<x;i++) {
sum+=1 }

What We Want to Do

* Create a back-end for testing new
optimizations on top of TraceMonkey
* Implement two optimizations:

— Loop unrolling
— Elimination of overflow tests

Elimination of overflow tests

JavaScript has no integer type
— 64-bit IEEE- 754 floating-pointer numbers

Many JavaScript instructions use only integer
data

— Array accesses and bitwise operators

An optimization is to convert doubles to
integers whenever possible

Can overflow tests be avoided?

state = param 0 ecx

sp = |d state[0]

cx = |d state[8]

|d1 = Id cx[O]

eql =eqldl, O

xf1: xf eql -> pc=0x30d9e7 imacpc=0x0 sp+0 rp+0
sti sp[0] = globalObj

|d5 = |d state[732]

sti sp[8] = 1d5

stisp[16] =7

addl1 = add |d5, 7

ovl = ov addl

xt1l: xt ovl -> pc=0x30d9f1 imacpc=0x0 sp+24 rp+0
sti state[732] = add1

add2 =add Id5, 8

ov2 = ov add2

xt2: xt ov2 -> pc=0x30d9f6 imacpc=0x0 sp+0 rp+0
sti state[732] = add?2

sti sp[0] = add2

sti sp[8] =30

It1 = It add2, 30

xf2: xf It1 -> pc=0x30d9ff imacpc=0x0 sp+16 rp+0

state = param 0 ecx
sp = Id state[0]
cx = Id state[8]
|d1 = Id cx[0]
egrj1—eep¢d1,00
x$ti:sp[0) £ glabal®bjod9e7 imacpc=0x0 sp+0 rp+0
|d5 = |d state[732]
sti sp[8] =1d5
stisp[16] =7
addl = add |d5, 7
astidtatedBR5 addl
xatd2 oaddAd5~-8x30d9f1 imacpc=0x0 sp+24 rp+0
sti state[732] = add2
astt2pfdddda28
x¢8:sx{ 8} 2 30pc=0x30d9f6 imacpc=0x0 sp+0 rp+0
It1 = It add2, 30

xf2: xf It1 -> pc=0x30d9ff imacpc=0x0 sp+16 rp+0

Code Optimization for Trace
Compilers

...........
. 1t .
o« -

. »
''''''
. o
........

